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COMMUTATIVE GROUP ALGEBRAS
OF ABELIAN Z-GROUPS

PETER DANCHEV

ABSTRACT. Let G be an abelian group with first p-Ulm subgroup ¢!, p-
torsion part G, and socle G[p). The class of all abelian =-groups, which
was introduced by Irwin-Walker (1961), is very large and possesses a
key role in the abelian group theory. The first main result is actually
a new explicit criterion for one arbitrary primary abelian group to be a
z-group, namely: A p-primary abelian group 4 is a =-group if and only
if A[p]="°Lj1A.., AnCAnt1 and 4,n4aP" =al[p] for each neN. In particular,
some classical facts in this way are confirmed.

As applications, suppose r¢ is the group algebra over the field F of
characteristic p>0 and s(Fg) is the group of all normed p-units in FG.
The second central result, however, is the following: s(re) is a s-group
if and only if ¢, is a =-group, provided r is perfect. Besides, 6, a
s-group and r perfect imply that s(Fc)/G, is a =-group. As a final,
it is shown that if FH~rFG as F-algebras for any group # and such
that ¢, is a s-group, then H, is a =-group and moreover their high
subgroups are isomorphic. In particular, ¢ a p-mixed =-group whose
G/G, is reduced and the r-isomorphism FH=rG does imply that #
is a p-mixed s-group and even more, ¢ and H have isomorphic high
subgroups.

INTRODUCTION

As usual, throughout the rest of this article, G is an abelian group writ-
ten multiplicatively with first (p-)Ulm subgroup (i.e. first Ulm subgroup
with respect to p) G', with p-component G, and with socle G[p]. Also
everywhere in the text, F' will denote a field of characteristic p # 0, and R
denotes an unitary commutative ring of the same characteristic p. For R
such a ring, RG designates the group algebra of G over R with a group of
all normalized units V(RG) and p-component V,(RG) = S(RG).

For A a subgroup of G, we define I(RG; A) as a relative augmentation
ideal of RG with respect to A. All other notations and the terminology
are standard and follow essentially the classical monographies and books
[10,18,21] and [19,20,26].

Our global aim here is to study the commutative group rings of abelian
3-groups and more specially, the questions about the isomorphism between
group algebras of such groups and the structure of the group of all normal-
ized p-elements in such algebras. For this purpose we organize our work
as follows: In the first paragraph, we will obtain a new simplified but more
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convenient for us major necessary and sufficient condition, when an arbi-
trary abelian p-group can be a ¥-group. Besides, we shall next summarize
some significant facts very needed for our good presentation.

In the second paragraph, we investigate some specific conjectures for the
group algebras of abelian X-group, applying the criterion founded by us
above. The main multiplicities are selected in two sections, where are con-
sidered the modular and semisimple cases, respectively.

In the third paragraph, we conclude with some several left-open questions
which immediately arise and which are of some interest and importance. We
list only those which we believe are major.

And so, we start with

I. A CRITERION FOR AN ABELIAN GROUP TO BE A ¥-GROUP

First and foremost, we recall the definition for a X-group. Well, a sub-
group Hg of G is said to be a high subgroup if Hg is maximal in G with
respect to Hg N G! = 1. If Hg is a high subgroup of G, then Hg is
pure in G, G/Hg is divisible and Hg contains a basic subgroup of G (see
[15,16]). An arbitrary abelian group G is called a X-group if all of its high
subgroups are direct sums of cyclic groups. If one high subgroup of G is a
direct sum of cyclics, then all high subgroups of G are isomorphic and so
G is a X-group (cf. [16,17,27]). This group class listed above was posed
by Irwin-Walker [15,16] on 1961 and it possesses a paramount role in the
abelian group theory. Besides, it is quite large and properly contains the
class of all abelian groups such that their first Ulm factor is a direct sum of
cyclics (in particular, as a consequence, all simply presented torsion groups
are itself X-groups). Really, an example due to Megibben [24] demonstrates
that there exists a p-torsion X-group G so that G' is homogeneous of order
p and with power Nj, and G/G' is unbounded torsion complete (whence
it is not a direct sum of cyeclics).

After the above discussion, we are in position to state and prove the
following assertion described only in the terms of socles and heights.

Theorem (CRITERION). The abelian p-group G is a X-group if and only
[ ]
if Glp] = U Gn, where G, C Gpy1 and for every n € N is fulfilled that

n=1
G, NGP" = G'[p|.
Proof. By definition, G is a X-group if and only if some of its high subgroups
is a direct sum of cyclics. Moreover Hg is a high subgroup of G if and only
if Hg is pure in G and Glp] = Hg[p] x G![p] (cf. [28,15,16]). That is why
applying for Hg the Kaplansky’s form of the well-known and documented
classical criterion of Kulikov for direct sum of cyclic groups, namely Hg[p] =
o0 7l
U Hn, H, € Hyp1 and Ho,NHY =1 (see [18,12]), we deduce Glp] =

n=1

[o o
U (anGl[p]). Say, G, = G'[p]x H,,, whence G, C G4, and G,NGP" =
n=1
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(G[p] x Ha) N (G p] x HE [p]) = G'[p] x (H, N HY) = GY[p], where we
have applied the fact that Hgﬂ is a high subgroup of GP" (cf. [15,16,2]).
Thus the necessity holds.

oo
Now, assume that the sufficiency is true. Furthermore H¢[p] = | (G, N
n=1

H) = |J Hy, putting H, = HzNG,. Apparently H, C H, .1, and besides

n=1
we calculate H,NHY = G,NHY =G,N(G"" NHg) = (G,NGP")NHg =
G' N Hg = 1. Therefore by virtue of the Kaplansky criterion for direct sum
of cyclic groups mentioned above, we may conclude that Hg is a direct sum
of cyclics. Thus by definition, G must be a Z-group, as claimed. The proof
is finished. O

Next, we shall confirm some principal well-known and documented group-
theoretic facts concerning the characteristic properties of X-groups, namely

— A pure subgroup of a primary X-group is a X-group (see [15,16]). A
factor-group modulo pure subgroup of a ¥-group need not be a ¥-group.
The converse is also impossible.

Indeed, let it is given that C is a pure subgroup in the Z-group G.
Then using the above necessary and sufficient condition we can write G[p] =
e ¢]

U Gn, Gn € Gny1 and G, NGP" = G'[p]. In this way we obtain C[p] =

n=1
oo

U (G, N C). Moreover, it is elementary to compute that G, N C N CP" =
n=1
GaNCP" = G,N(GP"NC) = (G,NGP")NC = G'[p]NC = C'[p]. Applying
again the above criterion we get the claim.
— Direct sums of primary X-groups is a primary X-group (cf. [15,16]).
In fact, it is enough to apply our criterion together with some standard set
— theoretical and group-theoretical observations that we leave to the reader.
— G isa Y-group <= GP" isa Z-group (n € N) (see [2]).
= Every p-group G with the property G/G! is a direct sum of cyclics
is a X-group (in particular so is each simply presented group) (cf. [15,16]).
Well, using the standard form of the classical Kulikov’s necessary and suf-

o0
ficient condition for direct sums of cyclic groups, we derive G = |J Gp, G, C
n=1
Gny1 and G, N GP" = G'. Thus we have automatically seen that our cri-
terion for X-groups is immediately fulfilled.
= We shall say that one abelian group is a PZT-group if it is a pure
subgroup of a totally projective = simply presented (p-)torsion group (cf.
[13]). In particular, PT-groups are all simply presented groups and their
generalizations, so called S-groups of Warfield [14,13] and the more general
A-groups of Hill [13]. Besides, all of these classes are X-groups since as we
have seen a pure subgroup of a X-group (the simply presented groups are
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s0) is a X-group; or by other way, their first Ulm factor is itself a direct sum
of cyclics.

= The torsion subgroup of one Warfield group is an S-group (see [14])
whence it is a X-group.

= The p“*™-projective p-group (n € N) need not be a X-group.

This is so because every subgroup of p**"-projective group is themselves
p“*™-projective [25], while this is not the case with the Z-groups [24,27,11].

= An unbounded cotorsion (in other terms, coperiodical) group (in par-
ticular an algebraically compact group) need not be absolutly a X-group
(cf. [27]). More precise, each cotorsion ¥-group is bounded [27].

= An unbounded torsion-complete (or more generally, quasi-complete)
p-group strongly is not a X-group (see [10]). More precisely, every quasi-
complete (p-)torsion X-group is bounded [10].

= A torsion pure-complete X-group is a direct sum of cyclics.

This is so since we have no elements of infinite heights.

= All summable p-groups with countable lengths are ¥-groups.

And so, utilizing the classical Honda’s criterion [10] which is a strong
generalization of the presented above Kaplansky’s criterion, we can write

Glp) = U Gpn, Gn C Gp41 and G, are height-finite with heights as com-

puted i m G for each n € N. But therefore G,, has elements with bounded
finite heights (for example at n), i.e. G, NGP" C G![p], as required in our
criterion.

= The o-summable p-groups need not be X-groups [4].

= in some instances the torsion reduced X-groups can be simply pre-
sented, summable or o-summable, but this is a problem of some other ap-
proach might work (see, for example, [24,21,11]).

However, we mentione the nontrivial fact:

Proposition. Let G be an abelian p-group of length w+m, where m € Nj.
Then G is a L-group if and only if it is summable.
Proof. From our criterion it follows that G[p] = |J Gn, G, C Gn41 and

n<w
Gn N GP" = GP°[p] for all naturals n where GP*™™ = 1. It is a routine
matter to see that G, has only elements with a finite number of finite and
infinite heights. Finally the Honda’s criterion [10] yields the assertion.
O

We continue with a significant paragraph entitled
II. GROUP ALGEBRAS OF ABELIAN X-GROUPS
We shall classify the results here of two sections, namely

1. Modular group algebras of abelian ¥-groups. A paramount role
in this theory play the hypotheses for the isomorphism [19,20] and for the
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direct factor [19,20,9] (in particular, for the structure). First and foremost
we shall examine the isomorphism conjecture.
AN ISOMORPHISM QUESTION

In the general situation, the isomorphism problem for group algebras of
primary abelian groups asks the following: Does it follow that FG =~ FH
as F-algebras for some (p-)groups G and H will imply that G = H? The
question has an affirmative answer for some large classes of abelian groups;
see for example [1,23]. The general solution to this mystery is probably very
very difficult, hence we can restate it thus: Suppose G € K, any class of
abelian (p-)groups. Then whether FG = FH as F-algebras implies H € K
and even more, is' G = H? Here, we will answering in the affirmative only
the first half of the above reformulation for the class of all abelian X-groups
with p-torsion elements. Well, the main theorem which will be attached
now, however, is announced in [6] and states as follows:

Theorem (ISOMORPHISM). Presume G is so that Gy is a X-group. Then
FH =2 FG as F-algebras for any group H yields that Hy, is a X-group
and even more, that the high subgroups of G, and H, are isomorphic.

Before proving the statement we need some technical preliminaries, start-
ing with
Proposition (INVARIANTS). The F-group algebra FG determines invari-
antly the group 1+ I(FP"GP"; G[p]).

Proof. In fact, it is no harm in assuming that F'G = FH for any group
H. Therefore FP"GP" = (FG)?P" = (FH)P" = FP" HP". On the other hand
analogously F!G! = F1H! and hence owing to [4] we derive S(F'G!)[p] =
1+I(F'GY; G [p)) = 1+I(F*HY; H'[p]) = S(F*H')[p], i.e. I(F'GY;G![p]) =
I(F'H'; H'[p]). Finally we yield 1+ I(FP"GP";G'[p]) = 1 + FP"G"".
I(F1GY; G[p))1 + FP"HP" I(F'H'; H'[p]) = 1 + I(FP" H?"; H'[p]).

the proof is completed. O

Next, we come to the
Lemma (INTERSECTION). Suppose 1€ P < R and A,B < G. Then
(1+I(RG;A))NS(PB)C 1+ I(PB;BNA).
Proof. 1t is given with all details in [4]. 0O
Now, we are ready to attack
Proof of the theorem. Applying our criterion stated and proved in paragraph
I, we may write G[p] = U Gn, where Gp C Gpy1 and G, NGP" = Gl[p].

Without loss of generahty we can assume that FG = FH and that F is
perfect Therefore, employing [4] we establish S(FG)[p] = S(FH)[p] =

U S(FG;G.) where S(FG;A)% 1+ I(FG; A) whenever A < G, whence

n=1
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we have H[p| = U (S(FG;G,) N H[p]). It is evident that S(FG;G,) N

Hlp] C S(FG; G,,H ﬂH [p]. Moreover, invoking to the listed above previous
facts, we compute S(FG;Gn)NH[p|NHP" = S(FG;G,)NH[p)NS?" (FH) =
S(FG; Gn,)NH[p|NSP" (FG) = S(FG;Gn)NS(FGP")NH[p] = S(FGP"; GuN
G*") N H[p] = S(FG?";G'[p]) N H[p] = S(FHP"; H'[p]) N H[p| = H'[p), as
desired. Thus by virtue of the group criterion, H, must be a X-group, as
claimed.

Well, G, and Hp are both X-groups, hence their high subgroups are
direct sums of cyclics. But from a monumental result of W.May [22,1], G,
and Hp, have equal functions of Ulm-Kaplansky. Furthermore [16] ensure
that equal Ulm-Kaplansky invariants have their respective high subgroups.
That is why they are isomorphic [10], as stated. The proof is finished after
all. O

We begin with direct consequences, namely

Corollary. Let G be a T-group and FH = FG as F-algebras for any
group H. Then Gp and H, have isomorphic high subgroups.

Proof. Clearly G a X-group implies that G, is one also. Thus the main
theorem will be applied to complete the proof in general. O

Corollary. Let G be a p-torsion L-group and FH = FG as F-algebras
for some group H. Then H is a p-torsion X-group, as G and H have
tsomorphic high subgroups.

The next is also valuable

Corollary. Let G be an abelian group whose G is simply presented. Then
the F-isomorphism FH = FG for any group H gives that Hp, and Gy
have isomorphic high subgroups.

Remark. The last consequence ensure a positive light on the long-standing
and very difficult problem raised by W.May (1988) in (23] which asks whether
Gp = H, (see [4], too)?

Corollary. Let G be a Warfield group and the F-isomorphism FH =
FG be valid for some group H. Then H, and G, have isomorphic high
subgroups.

Proof. Since Gp is an S-group (cf. [14]) whence a Z-group, we observe
that the central theorem is applicable, completing the proof. O

Remark. When G is a p-local Warfield group, W.May showed in [23] that
G=H.

We continue the study with more serious results for group rings of mixed
Y-groups. What must be proved is the following.
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Theorem (ISOMORPHISM). Suppose G is a p-mized reduced E-group and
G/Gyp is reduced. If A is such a group that FA = FG as F-algebras, then
A and G have isomorphic high subgroups and A is a p-mized reduced T-
group, too.

Proof. It is evident that A must be p-mixed and besides reduced [7]. On
the other hand [22] guarantees that G/Gp = A/A,. From the hypothesis
follows that Hg is a direct sum of cyclics, whence the same holds for (Hg)p
[10] which, however, is a high subgroup of Gp, ie. (Hg), = Hg, (see
[15,16]) and therefore G, is a L-group. Applying (17, Theorem 2|, G splits
and Hg, x G/Gp, = Hg. Certainly, A/A, is free and thus A splits [10].
Employing the technique of [17, Theorem 2], H4 = H4, x A/A,. By virtue
of the previous theorem we have Hg, = Hy,, hence in other words A4, is
a X-group. Finally this leads us to the fact that H4 = Hg, and the last
means that A is itself a X-group. This finishes the proof. O

Remark. By what we have used above, G = Gy, X G/G, and A = A, X
A/Ap, where G/Gp = AJA,. Consequently the isomorphism G = A de-
pends on the fact whether or not G, = A,.

The next shows that the restriction "reduced” can be dropped.

Corollary (1ISOMORPHISM). Let G be a p-mized X-group whose G/Gp is
reduced. Then if for an arbitrary group A the group algebras FA and FG
are F-isomorphic, A and G have isomorphic high subgroups and A is a
p-mized X-group.

Proof. According to (7], FA, = FG,, where A, and G, are the correspond-
ing reduced parts of A and G. Moreover G, is a p-mixed X-group and
G, /(Gr)p = G- /(GrNGp) = G,Gp/Gyp C G/G, is reduced. The observation
that the last theorem is applicable ensure Hy, = Hg, , ie. Hq = Hg, as
claimed. The proof is completed. O

‘Recall that as usual G; will designate the torsion part, i.e. the maximal
torsion subgroup of G. We generalize the above idea to the next

Theorem (ISOMORPHISM). Suppose G is a reduced L-group for which G/G;
is reduced. If A is arbitrary so that KA = KG as K -algebras over all fields
K, then A and G have isomorphic high subgroups and A is also a reduced
X-group.

Proof. According to [22] we have, G/G; = A/A;. By application of [17,
Theorem 2|, Hg = (Hg): X G/Gt = Hg, x G/Gy is a direct sum of cyclics.

Furthermore A/A; is free and so A is splitting [10]. Let us now K, be a
field of charK, = p > 0. On an other hand Hg, = [| Hg, is a direct sum

p
of cyclics. From the first major theorem we obtain Hg, = H4, and thus
Hg, = [[Ha, & Hy,. Further it is easily seen that A; is reduced since

P
G; is, and hence so is A. Consequently we can apply the method in [17,
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Theorem 2] to verify that Hq = Hy, x A/A;. Finally we derive Hg = Hy4,
finishing the proof after all. O

Remark. From the listed above procedure, G = Gy x G/G; and A =
Ay x AJ/A;. But G/Gy = AJA;. Therefore the eventual existence of the
isomorphism G = A is equivalent to that between G; and A, i.e. between
Gp and A, for all primes p.

The other hot section is, however, the following
A STRUCTURE QUESTION
The next technical matter is one of the keys for the further investigations.

Proposition. Suppose A < G and R is with no nilpotents. Then
(S(RA)G,)Ip] = S(RAPIGI].

Proof. Taken z in the left-hand side. Hence we can write z = ngiai,

where g € Gp, 7; € R, a; € A plus the condition gpz:rf ad =1 ‘Where

Zr,— =1; 1 <1 < n. Without loss of generality we ma,yl presume that the

1
following relations hold: af =---=af #a) = ---=af #a] # - #
ah # af. So, we deduce gfal =1, ri+---+rs =15 Top1+- -+ =0; 1y =
-++ =1, = 0. Further we automatically obtain ga; € G[p] and thus we have
z=ga(r + rgagal_l 4+ 4 rsasa.l~l + ra+1as+1a1_1 + -+ r;alal_l) where
the last element obviously lies in G[p)S(RA)[p] because 1 +rzaga7’ +---+
riqqay’ € S(RA)[p]. This verifies the equality. a

A direct consequence is the following
Corollary. For any ordinal number a and R without nilpotents is fulfilled
(S(RP° GP")Gy)lp) = S(RP" G*")[p]Glp).
Further, the following assertion is crucial (cf. [5]).

Lemma. The abelian group Gp is balanced in S(RG), i.e. in other words
G, NS (RG) = G5 and (S(RG)/Gp)”" = S (RG)Gp/Gp =
S(RP°GP*)G,/Gp for each ordinal o.

We proceed by proving now our important goal partially mentioned in
(8], namely:

Theorem (STRUCTURE): Presume that G is an abelian group and R is
a perfect ring with trivial zero divisors. Then S(RG) is a E-group if and
only if Gy is a L-group. Moreover, G, a X-group implies that S(RG)/Gp
18 o X-group.

Proof. The necessity holds by the above discussion in paragraph I, since
the last lemma gives that G, is pure in S(RG). For the sufficiency, we
shall use the necessary and sufficient condition for a X¥-group, given by
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us in the first paragraph. In fact, write G[p] = fj G,, where G, C

Gny1 and G, N GP" = Gl[p] for all positive intege:rls n. Hence owing

to [4], S(RG)[p] = 1+ I(RG;Glp)) = U (1 + I(RG;Gy)). Next, we

will construct subgroups M, of S(RG)[p] so that the choosen groups

satisfies the conditions: S(RG)[p] = U1 M, M, C M,;; and M, N
n=

S (RGP") S(RG")[p]. Really, these groups can be constructed thus: M, =
<z,r 9; , 1 +Za(") n)(l b(n ) |T("))a(”) = R Zr(n =1; g(n) b(”)

Gn, a ( ) xe mth the property that a(k) =1 or helghtp(agz) p(m)’ ) and

helghtp(ak alk )are <n—lor >w, where 0 <e<2p,0<e <2p

and § =1 or § = —1 when j # [, for each fixed index j,k,I,n € N).
Foremost, it is our opinion to be proved that the choosing groups M, are
correct. In fact, the restrictions on the heights of the elements and their
products are possible, because the sums, in which these elements are mem-
bers, are finite, and the degrees ¢ and €' are also a finite number. And
so, every element in M, is of the form zi} ...z;., where z;, are of the
above kind and 0 < ¢ < p, 1 <i <t € N. The group M,4+; can be
constructed by the same token, too. That is why, clearly M, C M,,; and
M, C 1+ I(RG;Gy). Next, we will show that

(a) S(RG)[p] = U Ma

n=1
(b) M, N S(RGP") = S(RG')[p] for every n € N.

Indeed, if z is arbitrary from S(RG)[p], then z lies in 1 + I(RG;G;) for
some s € N. Therefore z can be written as a finite sum 1+ Y frnsgms(1—

m 8
gs), where fms € R, gms € G and g; € Gs. Since the conditions on p-
heights can be satisfied evidently, then certainly we deduce z € M, for
o0
some n € N, whence z € |J M, and thus the relation ”C” holds. The

n=1
converse is clear, which proves (a).

To prove (b), it is a routine matter to establish that the left hand-
side contains the right hand-side, because by [4] we have S(RG')[p] =
S(RG'; G'[p]) € M,, for all n € N owing to the construction of M, along
with the fact that G'[p] C G, for each n € N.

Conversely, for the other relation we take an arbitrary intersection M, N
S(RGP"). Hence it is enough to show that its elements have infinite heights
(as computed in S(RG)), which is equivalent to prove that each element
of M, has height <n —1or > w calculated in S(RG). Well, select an
arbitrary element y, € M,. Hence y, = zi}le;, where Zin,...,ZTm
possesse the present form (i.e. are generating elements) and t € N. Write
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Tin = r&")c(")—i- +'r( n)¢ ( ) in a canonical form, k € N. Without harm, we

may presume that the followmg dependences are fulfilled: c(") €EGp, 1 (n)
1; c(") (")Gn, 'r(") +7r (n) =0, c(") € G|Gp; c4") € c&")G’n, (n) €

cﬁ,“)G,,, s > 5, 'r(") - 4 rﬁ") =0, §") € G|G, and etc to the ﬁnal.
Thus it is not dlﬂicult to be seen that z;, together with its nontrivial
degrees have heights < n —1or > w, according to the fact that z;, =

~(1- ‘"’>+ (P16 71— e 4l 1
(n) (n) )+ -+, where bg") € G and to the construction of these elements

in My, namely more specially that heightp(c§")nc§n)5ﬂ )<n—1lor >w for
every 1<j, I<k and 0<7n, 7'<2¢; where d=1 or = — 1 whenever j # l.
The real inconvenience, however, is when we have a multiplication of two
or more basic elements. In this case, we restrict our consideration on two
elements since the general situation follows by means of a standard induction
on the number of the elements from the basis or by similar arguments as
below. And so, write zy, = a{")d(") +---4 (")d(") where agn) =1, dgn) €
G, and analogous relations as to the a,bove are valid. Although that we
have not zero divisors in the coefficient ring it is not easy, however, to
prove that in the canonical form of zj}z5? there exist elements of G with
nonzero coefficients which have heights > w and < n — 1 when they are
finite eventually; thus height, (zilz52) is < m—1lor > w and we are
done. Indeed, in this canonlcal form we will examine the p-heights of the
products c(ln)eldgn)zz, cg")sld(ln)q and cg")ngn)zz. So, the first element
cgnrldgn)ez € G, and then it has height <n—1 or > w. For the second we
have, ™ dl™? = M7 MM If height, (P dM ) <n -1
there lS nothmg to prove smce in the canomcal form of :nlna:% must to

exist an element of G,, with nonzero coefficient, say for example an) ldgn) .

Suppose now it is > w. By hypothesis cgﬂ)ch")_!l has height > w or <
n — 1. If the first claim holds, cg")sl dg"]zz possesses height > w, and in

the remaining case height < n — 1. Further, we consider cg")ﬁldg")22

c(zn)sl dg")sz d.(z")e2 d(ln)_zz. If now cg")ngn)sz has height < n—1 and nonzero
coefficient, the situation is very good and so we are done. But now, if it
has height > w, the desired element has height > w or < n —1 because by
hypothesis such height has eventually d\™° 2d(")—zz. And so, if &M (V"
has height <n —1 or > w and nonzero coefﬁcient we are done as usually.
All other cases from this type are similar.

(")gld(n)q and cg")ngn)tz have height < n —1 and
zero coeflicients, and c(") 1d(") has nonzero coefficient. Because not there
is zero divisors, we routlne observe that relations between the group mem-
bers with zero coefficients must to exist; without loss of generality presume

But, let us now c
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that cgn)ngn)sz = cg")sldg")c2 plus this that ag"’” + rén)el = 0. Conse-
quently c(;)EId(zn)E2 = an)"ldgn)“2 dgn)hz = c(ln)eldg")52 (dg")_ld.gn))252 has
height < n —1 or > w since the height of cgn)n dgn)cz is > w (otherwise
every is proved). Further, we consider cgn)ildg")tz € cgn)ngn) Ean by con-
struction, and hence the arguments about the p-heights and ring coefficients
are analogous as the above preceding. All other possible cases may be re-
duced or are identical to the present two main steps. By what we have just

shown above we deduce that (b) is true, concluding the proof of the first
half.

Next, the present equality (a) leads us to (S(RG)/Gp)lp] = S(RG)
o
[PIGp/Gp = Ul(MnGp/Gp). Further we will compute that
n—=

(¢) (M,Gp) N S(RGP") C G,S(RG)[p] for all n € N.
And so, given z in the left hand-side. Therefore we may write = = gy,,
where g € G, and y, € M,. But we write y, = Zrt(")cgn), where rt(") €
T

R, c§"’ € G,t € N and in this canonical form we will assume that c§"’ €

G, € M,,. Further we derive gcgn) € GP". Thus = = gc&") > rgn)cgn)cg")_l €
i

Gp(M, N S(RG?P")) and invoking step (b) we conclude z € G,S(RG")[p],
as claimed.

As a final, according to (b), to the modular law and to the Proposition plus
the Lemma, we calculate (M,Gp/Gp) N (S(RG)/Gp)?" = (MxGp/Gp) N
(S(RGP")Gp/Gp) = [(MnGp) N (S(RGP")G,L)/Gp = Gpl(MnGp) N
S(RG™)/G, = GpS(RGOB)/G, =  (S(RGYG,)pIG/Gy =
(S(RG")G,/Gp)lp) = (S(RG)/Gp)'[p] because Gy is pure in S(RG), whence
in S(RGY)Gp, C S(RG) as well. That is why our criterion for a £-group is
applicable to obtain the claim. The theorem is verified. O

Remark. Probably there are and other sets of subgroups different from
{M,}2, with the properties (a), (b) and (c). For ezxample, we can take
all possible products of cg-") s for 1 <j <k to have heights <n—-1o0r > w
and etc the same procedure for every other generating element.

The following are also well to be documented.

Corollary. Assume that G is a p-group and R is perfect with no zero divi-
sors. Then V(RG) is a -group if and only if G is a L-group. Moreover,
the T-group G implies that the same is V(RG)/G.

Remark. In the proof of this consequence we may take 0 < e < order(ag-:))
by making use of the same method.

Corollary. Let G be a Z-group and R be perfect without zero divisors.
Then S(RG) and S(RG)/Gp are both X-groups.
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Proof. As we have seen, Gp is a X-group immediately, finishing the proof.
a

Corollary. Suppose G is a group whose Gp is simply presented and R
is perfect with no zero divisors. Then S(RG) and S(RG)/Gp are both
Y -groups.

Corollary. Presume that G is a Warfield group and R is perfect with
elementary zero divisors. Then S(RG) and S(RG)/G, are both XL-groups.

Proof. As we have mentioned above, Gp is an S-group [14] and thus it is a
3-group. The proof is over. O

Remark. The last two claims give a partial positive (negative) light of a
question raised in the sense of May, which asks what is the structure of
V(FG) and whether the direct factor conjecture holds, provided F is perfect
and G is a p-local Warfield group. We note that in this case V(FG) =
GS(FG) (cf. [23,4]) and so V(FG)/G = S(FG)/Gp.

Remark. An other valuable observation is that the first main isomorphism
theorem in this article can be retrieved automatically from the main struc-
tural result.

We conclude the investigation on X-groups and their group rings with
important paragraph entitled

2. Semisimple group algebras of abelian X-groups. Let G be an
abelian p-group and K be a field of the first kind with characteristic # p.
The letters Up(KG) and S(KG) designate the unit p-group and the nor-
malized unit p-group in the group ring K G, respectively. Besides, Up(K)
is the group of all invertible p-elements in K.

The author feels that of some interest and importance is the following

Theorem (STRUCTURE).
(i) S(KG) is a B-group if and only if G/G" is a direct sum of cyclics.
(i) Up(KG) is a T-group if and only if G/G' is a direct sum of cyclics.

Proof. (i) Using a result of T.Mollov (cf. {3]), we may write the formula
S(KG) = §Y(KG) x S(K(G/G')),

where S'(KG) is the maximal divisible subgroup of S(KG).

Now, presume that S(KG) is a Z-group. Hencesois S(K(G/G')) which
is, however, separable (see [3]). Consequently S(K(G/G')) is a direct sum
of cyclics, whence G/G! is a direct sum of cyclics, too.

Conversely, G/G! a direct sum of cyclics quarantees that the same is
valid for S(K(G/G")) (cf. [3]). Therefore the present above formula leads
us to this that S(K'G) must be a direct sum of cocyclic groups, hence it is
a X-group. This proves the first half.

(ii) The next dependence is well-known

Up(KG) = S(KG) x Up(K).
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Moreover Up(K') is known to be cyclic. Furthermore U,(KG) is a X-group
if and only if S(KG) is. Thus we can apply the step (i) to finish the proof
in general after all. a

We begin with

II1. CONCLUDING DISCUSSION

We close the paper with some several remarks, suggestions plus left-open
questions and problems. And so, first and foremost we recall that if F,G
and FpH are Fp-isomorphic over the prime field with characteristic p, then
G[p) and Hlp| are isometric [1]. So, by making use of our group criterion,
if Gp is a X-group, then the same holds for H,. But our theorem in this
way, however, is more general since the coefficient field is arbitrary, while
the above is finite. The conjecture of whether G, and H, are isomorphic
is interesting to be known. In this direction the following is of some interest
and importance: It follows from [5] that two primary abelian X-groups
are not isomorphic only when there exists an isometry between their socles.
Probably some other explicit numerical invariants that characterize the high
subgroups are needed. If the last is so, then probably we will be done. After
this, it is a major fact to know whether the direct factor problem is fulfilled,
i.e. does it follow that the X-group G, is a direct factor of S(FG) or
more generally, is then S(FG)/G, a simply presented group provided F' is
perfect? In this way, S(FG)/Gp is a o-summable Z-group provided Gp
is simply presented of length cofinal with w, owing to the results in [4] and
this article. Moreover, the direct factor problem probably will be positive
answered if the isomorphism conjecture stated above when two X-groups
are isomorphic, is true.

And as a final, we ask the following: What are the structures of S(KG)
and Up,(KG) presuming that G is a L-group with p-elements only and K
is a field of the first kind? In this aspect we observe that the high subgroup
of S(KG) is well-known and it is isomorphic to S(K(G/G!)). Next, we
also ask: Suppose G is a p-torsion Y-group and KH = KG as K-algebras
over the first kind field K with charK # p. Then whether H is also a X-
group and even more, what is the complete system of invariants for KG in
this direction?
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