ON PRIMITIVE REPRESENTATIONS BY UNIMODULAR QUADRATIC Z₂-LATTICES

HIDEYO SASAKI

ABSTRACT. Necessary and sufficient conditions are given for the primitive representations of an odd quadratic \mathbb{Z}_2 -lattice M with rank m by an odd unimodular quadratic \mathbb{Z}_2 -lattice L with rank n for m+m(1)=n, where m(1) is the rank of a sublattice M(1) of M for a Jordan decomposition $M=M(0)\perp M(1)$ with M(0) unimodular and $B(M(1),M(1))\subseteq 2\mathbb{Z}_2$ for the associated bilinear form B.

1. Introduction

D.G.James gives necessary and sufficient conditions for the primitive representations of quadratic lattices by unimodular lattices in his paper [J1][J2]. In this paper we give a similar result to James' on primitive representations over \mathbb{Z}_2 . Terminology and notations are followed in [K]. We write \mathbb{Z}_2 and \mathbb{Q}_2 for the ring of 2-adic integers and the field of 2-adic numbers, respectively. Let V be a regular quadratic space over \mathbb{Q}_2 , with finite dimension $n \geq 3$, with quadratic form $Q: V \longrightarrow \mathbb{Q}_2$ and associated bilinear form B with $B(x,x) = Q(x), x \in V$. Assume V supports a unimodular \mathbb{Z}_2 -lattice L; thus $L = \{x \in V | B(x,L) \subseteq \mathbb{Z}_2\}$ is self dual. The lattice L is called even when $Q(x) \in 2\mathbb{Z}_2$ for all $x \in L$; otherwise L is odd.

Let M be an \mathbb{Z}_2 -lattice on a second quadratic space W over \mathbb{Q}_2 of dimension m. Assume that M is integral, i.e. $B_W(M,M) \subseteq \mathbb{Z}_2$. A quadratic space V represents a quadratic space W over \mathbb{Q}_2 is if there is an injective isometry $\phi: W \to V$ over \mathbb{Q}_2 . In the same way a representation of M by L over \mathbb{Z}_2 is an injective isometry $\psi: M \to L$ over \mathbb{Z}_2 . The representation (over \mathbb{Z}_2) is primitive if $\psi(M)$ is a direct summand of L.

Let $M = M(0) \perp M(1)$ be a Jordan splitting, where M(0) is unimodular and

 $B(M(1), M(1)) \subseteq 2\mathbb{Z}_2$, the sublattices M(0) and M(1) are not uniquely determined even up to isometry, although the ranks are invariants of M. Let $m(i) = \operatorname{rank} M(i)$, i = 0, 1, so that m = m(0) + m(1). The \mathbb{Z}_2 -lattice M is even if and only if M(0) is even.

 \mathbf{Z}_2^* denotes the group of units in \mathbf{Z}_2 . dM and dL denote the discriminants of M and L, respectively. S(V) denotes the Hasse invariant of a quadratic space V over \mathbf{Q}_2 .

¹⁹⁹¹ Mathematics Subject Classification. 11E08.

Key words and phrases. quadratic form, primitive representation, (unimodular) quadratic \mathbf{Z}_2 -lattice.

For a regular quadratic lattice L over \mathbb{Z}_2 , n(L) denotes the norm ideal of L. A lattice (with rank L > 1) is almost unimodular if it has a Jordan splitting $K \perp \mathbb{Z}_2 x$ where K is unimodular and $Q(x) \in 2\mathbb{Z}_2^*$.

H denotes a hyperbolic even unimodular plane over \mathbb{Z}_2 and A an anisotropic binary even unimodular lattice over \mathbb{Z}_2 .

James gives necessary and sufficient conditions for primitive representations of a \mathbb{Z}_2 -lattice M by a unimodular \mathbb{Z}_2 -lattice L for M even, and both M and L odd with m + m(1) < n. In this paper we give necessary and sufficient conditions for primitive representations of an odd \mathbb{Z}_2 -lattice M by an odd unimodular \mathbb{Z}_2 -lattice L for m + m(1) = n. We show Main Theorem (Theorem 2.1) in the next section.

2. MAIN THEOREM

Theorem 2.1. Let L be an odd unimodular \mathbb{Z}_2 -lattice with rank n and M an odd \mathbb{Z}_2 -lattice with rank m. Assume that m + m(1) = n. Then L primitively represents M if and only if:

There exist splittings $M = \widehat{M} \perp \widehat{M}^{\perp}$, with \widehat{M} be either unimodular or almost uni-modular and $n(\widehat{M}^{\perp}) \subseteq 2\mathbb{Z}_2$, and $L = \widehat{L} \perp (\perp_{rank\widehat{M}^{\perp}} H)$ such that $\mathbb{Q}_2\widehat{L}$ represents $\mathbb{Q}_2\widehat{M}$ over \mathbb{Q}_2 .

Before proving the theorem we need several lemmas. These lemmas are easily deducible from [K].

Lemma 2.2. Let $\alpha \in \mathbf{Z}_2^*$ with $\alpha \equiv -1 \mod 4$, and let \mathbf{Z}_2 -lattice M be isometric to $\langle \epsilon \rangle \perp \langle 2\eta \rangle \perp \langle 2\epsilon \eta \alpha \rangle (\epsilon, \eta \in \mathbf{Z}_2^*)$. Then

$$S(\mathbf{Q}_2 M) = -(2, \alpha)(2, \epsilon)(\epsilon, \eta)$$

$$= \begin{cases} (2, \epsilon)(\epsilon, \eta) & (\alpha \equiv 3 \bmod 8) \\ -(2, \epsilon)(\epsilon, \eta) & (\alpha \equiv -1 \bmod 8), \end{cases}$$

where (*,*) denotes the Hilbert symbol over Q_2 .

Lemma 2.3. Let $M \cong \langle \epsilon \rangle \perp \langle 2\eta \rangle, \epsilon, \eta \in \mathbb{Z}_2^*$. If $(\epsilon, 2)(\epsilon, \eta) = 1$ then M represents 1 over \mathbb{Z}_2 .

Lemma 2.4. $\langle \epsilon_1 \rangle \perp \langle \epsilon_2 \rangle \perp \langle 2\eta \rangle$ represents 1 over \mathbb{Z}_2 , where $\epsilon_1, \epsilon_2, \eta \in \mathbb{Z}_2^*$.

Proof of Theorem 2.1. Note that \mathbb{Z}_2 -lattice \widehat{M} in the Theorem is isometric to M(0) or $M(0) \perp \mathbb{Z}_2 x$ with $x \in M(1)$ and $Q(x) \in 2\mathbb{Z}_2^*$.

First we prove the "if" part. By the assumption there exist sublattices \widehat{M} , \widehat{L} of M, L, respectively such that the condition in Theorem is hold. If we can take $\widehat{M}=M(0)$ then $\mathbf{Q}_2\widehat{M}\cong\mathbf{Q}_2\widehat{L}$ since rank $\widehat{M}=\mathrm{rank}\ \widehat{L}$. Then $\widehat{M}\cong\widehat{L}$ since both \widehat{M} and \widehat{L} are odd unimodular. Since $\perp_{rank\widehat{M}^{\perp}}H$ primitively represents \widehat{M}^{\perp} , L primitively represents M. So we assume

that $\widehat{M}=M(0)\perp \mathbf{Z}_2x$ with $x\in M(1)$ and $Q(x)\in 2\mathbf{Z}_2^*$. Note that $\mathrm{rank}\widehat{L}=\mathrm{rank}\widehat{M}+1$.

We use an induction on m(0). First assume m(0) = 1. Then we have $\operatorname{rank} \widehat{L} = 3$, $\operatorname{rank} \widehat{M} = 2$, and \widehat{M} is isometric to $\langle \epsilon \rangle \perp \langle 2\eta \rangle, \epsilon, \eta \in \mathbb{Z}_2$.

By scaling we may assume $\widehat{L}\cong \langle 1\rangle \perp E$, where E is a binary even unimodular \mathbb{Z}_2 -lattice. Then we have $d\widehat{L}=-1$ and $S(\mathbb{Q}_2\widehat{L})=-1$ (if E=H), or $d\widehat{L}=3$ and $S(\mathbb{Q}_2\widehat{L})=1$ (if E=A).

Note that $\mathbf{Q}_2\widehat{L}$ represents $\mathbf{Q}_2\widehat{M}$ if and only if $\mathbf{Q}_2\widehat{L}\cong \mathbf{Q}_2\widehat{M}\perp\langle d\widehat{L}d\widehat{M}\rangle$. Then we have $S(\mathbf{Q}_2(\widehat{M}\perp\langle d\widehat{L}d\widehat{M}\rangle))=-(2,d\widehat{L})(2,\epsilon)(\epsilon,\eta)=S(\mathbf{Q}_2\widehat{L})$ by Lemma 2.2 since $d\widehat{L}\equiv -1$ mod 4, and we obtain $(2,\epsilon)(\epsilon,\eta)=1$. Then $\widehat{M}\cong\langle\epsilon\rangle\perp\langle2\eta\rangle$ represents 1 by Lemma 2.3 and we have $\widehat{M}\cong\langle1\rangle\perp\langle2\eta'\rangle,\eta'\in\mathbf{Z}_2^*$. Then $\langle1\rangle$ in \widehat{M} is primitively represented by $\langle1\rangle$ in \widehat{L} and so is $\langle2\eta'\rangle$ by E by Theorem 1 in [J1]. Then \widehat{L} primitively represents \widehat{M} and so is for L and M, respectively. Now we proved for m(0)=1.

Suppose m(0) > 1. Since an odd unimodular \mathbb{Z}_2 -lattice has an orthogonal \mathbb{Z}_2 -basis, we have $\widehat{L} = \perp_i \langle \epsilon_i \rangle, \epsilon_i \in \mathbb{Z}_2^*$. Then by scaling, we may assume

$$\widehat{L} \cong \langle 1 \rangle \perp \widehat{L}'$$

where \widehat{L}' is an odd unimodular \mathbb{Z}_2 -lattice with rank $\widehat{L}' = \operatorname{rank} \widehat{L} - 1$.

By the assumption, \widehat{M} has an orthogonal component $\langle \epsilon_1 \rangle \perp \langle \epsilon_2 \rangle \perp \langle 2\eta \rangle (\epsilon_1, \epsilon_2, \eta \in \mathbf{Z}_2^*)$. By Lemma 2.4 this orthogonal component represents 1 and we can write \widehat{M} as

$$\widehat{M}\cong\langle 1\rangle\perp\widehat{M}',$$

where \widehat{M}' is an odd \mathbb{Z}_2 -lattice with $\operatorname{rank}\widehat{M}' = \operatorname{rank}\widehat{M} - 1$ and $\widehat{M}'(1) \cong \langle 2\delta \rangle, \delta \in \mathbb{Z}_2^*$.

If $\mathbf{Q}_2\widehat{L}$ represents $\mathbf{Q}_2\widehat{M}$ then $\mathbf{Q}_2\widehat{L}'$ represents $\mathbf{Q}_2\widehat{M}'$, however, by the assumption of induction, \widehat{L}' primitively represents \widehat{M}' . Thus \widehat{L} primitively represents \widehat{M} so is for L and M. Thus we have proved for $\widehat{M} \cong M(0) \perp \langle 2\eta \rangle$ and proved the "if" part.

Next we prove the "only if" part. We assume that L primitively represents M in the following. We use an induction on m(0).

Suppose m(0) = 1. By scaling, we may assume

$$L\cong\langle 1\rangle\perp E^{'},$$

where $E^{'}$ is an even unimodular \mathbf{Z}_{2} -lattice. M is isometric to $\langle \epsilon \rangle \perp M(1)$ $(\epsilon \in \mathbf{Z}_{2}^{*})$.

It is obtained that

(1)
$$L \cong \langle 1 \rangle \perp (\perp_{m(1)-1} H) \perp E$$

$$(2) \hspace{1cm} \cong \hspace{.1cm} \langle \epsilon \rangle \perp \langle \begin{pmatrix} 1 - \epsilon & 1 \\ 1 & \gamma \end{pmatrix} \rangle \perp (\perp H) \perp E$$

for some $\gamma \in \mathbf{Z}_2^*$, and $E \cong H$ or A.

If $\epsilon \equiv 1 \mod 8$ then splitting off $\langle 1 \rangle$ from M and L in (1)(2), we may assume that E = H or there exists $x \in M(1)$ such that $Q(x) \in 2\mathbb{Z}_2^*$ by applying Theorem 1 and Proposition 4 in [J1]. Put $\widehat{M} = \widehat{L} = \langle 1 \rangle$ if E = H, or $\widehat{M} = \langle 1 \rangle \perp \langle Q(x) \rangle$ and $L = \langle 1 \rangle \perp E$ if there exists $x \in M(1)$ such that $Q(x) \in 2\mathbb{Z}_2^*$. Then it is easily shown that these \widehat{M} and \widehat{L} satisfy the condition in Theorem.

Suppose that $\epsilon \not\equiv 1 \mod 8$. Splitting off $\langle \epsilon \rangle$ from M and L in (2), M(1) is primitively represented by $\langle \epsilon \rangle^{\perp}$ in $L \cong \langle \epsilon \rangle \perp \langle \begin{pmatrix} 1 - \epsilon & 1 \\ 1 & \gamma \end{pmatrix} \rangle \perp (\perp H) \perp E$. Noting that $1 - \epsilon \not\in 8\mathbf{Z}_2$, there exists $x_1 \in M(1)$ with $Q(x_1) \equiv 1 - \epsilon \mod 8$ by applying Theorem 8 in [J1]. Then $\langle \epsilon \rangle \perp \langle Q(x_1) \rangle$ is a submodule of M and since $\epsilon + Q(x_1) \equiv 1 \mod 8$, M is isometric to $\langle 1 \rangle \perp M(1)$. So we can apply the case of $\epsilon \equiv 1 \mod 8$. Thus we have proved "only if" part for m(0) = 1.

Suppose m(0) > 1. Then we may assume that there exists a decomposition $M = \langle \epsilon \rangle \perp M'$, where M' is an odd \mathbb{Z}_2 -lattice with rank m-1. Then splitting $\langle \epsilon \rangle$ off from M and L, since $L' = (\langle \epsilon \rangle^{\perp} \text{ in } L)$ is an odd unimodular with rank n-1 by the assumption, there exist submodules \widehat{M}' and \widehat{L}' of M' and L', respectively such that the conditions in Theorem are hold by applying the assumption of induction on m(0).

Put $\widehat{L} = \langle \epsilon \rangle \perp \widehat{L}'$ and $\widehat{M} = \langle \epsilon \rangle \perp \widehat{M}'$. Then these lattices satisfy the conditions in Theorem for L and M.

Thus we have proved for m(0) > 1 and complete the proof of the "only if" part. \square

REFERENCES

- [J1] D.G.James, Primitive representations by unimodular quadratic forms, J. Number Theory 44, 356-366, 1993.
- [J2] D.G.James, Representations by unimodular quadratic Z-lattices, Math.Z.215, no.3, 465-475, 1994.
- [K] Y.Kitaoka, Arithmetic of quadratic forms, Cambridge University Press, 1993.

HIDEYO SASAKI
THE GRADUATE SCHOOL OF SCIENCE AND TECHNOLOGY
KOBE UNIVERSITY
1-1 ROKKODAI-CHO NADA-KU
KOBE 657-8501, JAPAN
e-mail address: hsasaki@math.kobe-u.ac.jp
(Received June 7, 1999)