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SELF-DUAL CODES AND FINITE PROJECTIVE PLANES

STEVEN T. DOUGHERTY

ABSTRACT. We investigate self-dual codes from symmetric designs, specif-
ically for the case when these designs are finite projective planes. We
give a proof of the Bruck-Ryser-Chowla theorem in the case where a
prime sharply divides the order in a coding-theoretic setting. We give
constructions of self-dual codes arising from finite projective planes and
also study the weight enumerators of the codes formed from projective
planes.

1. INTRODUCTION

There have been many interesting and productive results from the ap-
plication of coding theory to the study of finite designs. See [1] for many
examples. In this paper, we consider self-dual codes formed from symmetric
designs and the weight enumerators formed by the codes of these designs.

In section 2 we give a coding-theory proof of a specific case of the Bruck-
Ryser-Chowla theorem when there exists a prime which sharply divides the
order of the design. In section 3 we give constructions for self-dual codes
from projective planes. In section 4 we investigate the complete weight enu-
merator of the codes formed from projective planes, and we place restrictions
on these weight enumerators.

A linear [n, k] code C over Fy, is a k-dimensional vector subspace of Fy,
where Fj, is the field with p elements, p prime. The elements of C are called
codewords and the Hamming weight wt(z) of a codeword z is the number
of its non-zero coordinates. Let C be a code over Fj,, p a prime, then the
complete weight enumerator is

—_ ag ..a1 ap-1
WC(:I:O,a:1,...,in—1) = E A(ao,al,...,ﬂp_l)xo Ty ”.xpil )

where there are A(qq,,..q,_,) vectors in C' with a; coordinates with i in
them, where ¢ € F;. The Hamming weight enumerator is

We(z,y) = ) ez iy,
where there are ¢; vectors in C of weight . The minimum weight of C is
defined by min{wt(z) | 0 # z € C}. When the minimum weight d is known
the code is referred to as an [n, k, d] code.
We attach the standard innerproduct to the ambient space, i.e.

[v,w] = Z v;W;

The author is grateful to Masaaki Harada for helpful conversations and to the referee
for useful suggestions.
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and define the dual as C+ = {z € Fllz-y=0forally € C}. Cis self-dual
if C = Ct and C is self-orthogonal if C C C+.

An incidence structure D = (P, B) is a t-(v, k, A) design where t, v, k, A are
non-negative integers, |P| = v, with P the set of points; every block b € B
is incident with precisely & points; and every ¢ distinct points are together
incident with precisely A blocks. Let Cy(D) denote the code generated by
characteristic function of blocks in D over the finite field F,.

A finite projective plane II of order n is a set of points P, a set of lines L,
and an incidence relation I between them, where |P| = |L| = n?+n+1. Any
two points are incident with a unique line, and any two lines are incident
with a unique point. Two planes are said to be isomorphic if there exists
a bijection between them preserving incidence. Let Cp(II) denote the code
generated by the characteristic functions of lines over F,. We have that
Cp(IT) C F;z"'”"'l. The Hull Hull,(II) of IT is the code Cp(II) N Cp(IT)L.
See {1] for many applications of the Hull.

2. SELF-DUAL CODES CONSTRUCTED FROM SYMMETRIC DESIGNS

The following lemma is by Klemm [7] and appears as Theorem 2.4.2 in [1].

Lemma 2.1. Let D = (P,B) be a 2-(v,k,\) design of order n and p a
prime dividing n. Then the rank of an incidence matriz of D over F is
bounded by
Bj+1

ranky(D) < %,

moreover, if p does not divide A and p* does not divide n, then
Cp(D)* C Gy(D),

and ranky(D) > §.

Lemma 2.2. Let D = (P, B) be a symmetric 2-(v,k, ) design of order n
with v odd and p a prime sharply dividing n and which does not divide X .
Then

ranky(D) = Lg] +1

and Cp(D)* is codimension 1 in Cp(D).

Proof. Since the design is symmetric we have that |B| = |P|. The
previous lemma gives that

1
g < ranky(D) < v;— .
Given that v is odd we have that ranky(D) = ¥}1. Then
1 -1
dim Cp(D)* = v — dim Cp(D) = v — 2 ’; = =dimG,(D) - 1,

giving the result, where dim Cy(D) denotes the dimension of Cp(D). O
Remark. A similar result is listed in Theorem 17.3.1 of Hall [6].
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Let D be a symmetric 2-(v, k, A) design of order n (where n = k — A) with
p a prime not dividing A and p sharply dividing n. We also assume v is odd.
Set H = Cp(D)l and C = Cp(D). The code H is a self-orthogonal code of
length v of codimension 1in C = H*. Hence C = (H,w) for some codeword
w. Let H; denote the coset H + iw in C for ¢ € Fp,. Since n = k — A for
a symmetric design and p divides n but does not divide A then p does not
divide k. Hence we can take w to be the characteristic function of a block
since no block will be self-orthogonal over F, and so not in Cp(D)L. Set
a = |w,w], i.e. a =k (mod p).

We set C' = U(w;, H;) where a vector in (w;, H;) is of the form (w;, h;)
with h; any vector in H;. To insure that the code C’ is linear once w; is
chosen then w; = iw;. We also want the new code to be self-orthogonal so
we need w? = —a. Then

[(wi, hi), (wj, hj)] = [wi, wj] + [h +iw, b + jw] = ij[wy, w1] + ija = 0.

If —a is a square in Fp, i.e. —a = 32 for some 8 € Fj, then set w; = §.
Then C' is a self-orthogonal linear code of length v + 1 with dimC’ =
dimH+1= -"—‘gt—l-, and therefore C’' is a self-dual code.

If —c is not a square in Fp then it is the sum of squares, say —a = y2+62.
Then set wy; = (7, 4,0). Let u = (a,b,¢,0,...,0). We want [u, (w;, h;)] =0
and [u,u] = 0. That is we need ay + b6 = 0 and a? + b% + ¢ = 0. To solve
the first choose a non-zero a and then b = %' Then

a2+ +c% = 0,
2.2
a
a2+—6’;’—+c2 = 0,
‘12(72‘*'52) 2
— e te =0

making ¢ = /a§.

When p = 3 (mod 4), if —« is not a square then a is a square and hence
a solution for ¢, but when p = 1 (mod 4) then if —« is not a square then
neither is a. We have that E = (u,C’) is a self-orthogonal linear code of
length v+ 3 with dimE =dimC+1 = ”—'}?i +1= ”2i3 and so E is a self-dual
code. This gives the following theorem.

Theorem 2.3. Let D be a symmetric 2-(v,k,\) design with p a prime
sharply dividing n but not dividing A\. Then if —k is a square in F, the
code C' is a self-dual code of length v+ 1. If —k is not a square in Fp, and
p = 3 (mod 4) then the code E is a self-dual code of length v + 3.

Theorem 2.3 is a generalization of a result in [2]. It is well known that if
p =3 (mod 4) then a self-dual code of length m exists if and only if m =0
(mod 4), giving the following:

Corollary 2.4. Let D be a symmetric 2-(v,k, A) design with p =3 (mod 4)
a prime sharply dividing n but not dividing A. If —k is not a square in F
then v = 1 (mod 4) and if —k is a square in F, then v =3 (mod 4).
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Notice that the Bruck-Ryser-Chowla theorem says that if a symmetric
2-(v,k, A) design exists then either v is even and n is a square or v is odd
and 2% = nz? + (—1)"2;1/\_1;2 has a non-trivial solution in integers z, v, z. The
first case requires n to be a square which means no prime sharply divides
it. If v is odd, assuming the conditions of Corollary 2.4, and if the above
equation has integer solutions then replacing A with £ — n and reading the
equation (meod p) gives:

22 = (-—l)Lglk (mod p).

This implies the conclusion of the corollary. See [10] and [11] for similar
arguments.

3. SELF-DuAL CoDES CONSTRUCTED FROM PROJECTIVE PLANES

For the specific case of a projective plane, using the results in previous
section we have the following:

Corollary 3.1. LetIl be a projective plane of order n with p a prime sharply
dividing n. If p = 3 (mod 4), then the code E = (C',w) described above is
a self-dual code of length n® +n + 4. If either p=2 or p = 1 (mod 4), then
the code C' = U(w;, H;) is a self-dual code of length n? + n + 2.

Thus the above corollary implies that n? 4+ n + 4 must be divisible by
4 when p = 3 (mod 4), which implies n? +n+1 =1 (mod4). If n = 1
or 2 (mod 4) then n2 + n + 1 is not 1 (mod 4) giving a special case of the
Bruck-Ryser theorem first shown in [3]:

Corollary 3.2. If n = 1 or 2 (mod 4) and p is a prime sharply dividing
n with p a prime and p = 3 (mod 4), then there does not erist a projective
plane of order n.

If p = 2 and n necessarily congruent to 2 (mod 4) this code must be
doubly-even since the generators are self-orthogonal and have weight n + 2
which is divisible by 4 in this case. A binary self-dual code is doubly-even if
all codewords have weight divisible by four. This construction was discovered
very early in the study of codes and planes and was used in the study of the
possible plane of order 10 (cf. [5] and [8]). In [2], this is used to prove the
following:

Corollary 3.3. Ifn=6 (mod 8) then there exists no plane of order n.
Proof. Follows from the previous corollary. Note that if a doubly-even
code of length n exists then n must be divisible by eight. O

Theorem 3.4. Let Il be a projective plane of order n with p a prime sharply
dividing n, and W (zo,z1,...,Zp_1) the complete weight enumerator of
Hullp(IT). If p # 3 (mod 4) then the code C' is a self-dual code of length
n? + n + 2 with complete weight enumerator

p—-1

Z $iW(5¢(o+(p—i)), L(14+(p—i))r+ - ,fc(p—1+(p—i))),
i=0
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where the variable subscripts are read mod p. If p = 3 (mod 4) then the
code E described above is a self-dual code of length n? + n + 4 with complete
weight enumerator

p—1
> wor(zo, 21, -, Tp-1)W (0, 71, - ., Tp-1)
k=0
p—1
+ Z wl,k(-TO, Tlyeuny .’l:p_l)VV(iL'p_l, g,... ,(Bp_z)
k=0
p—1
ot Z wp_1,k(T0, T1,...,Tp—1)W(z1,22,...,Z0),
k=0
where w; (o, ..., Tp—1) is the weight enumerator of the vector kw + w;.

Proof. The weight enumerator for p # 3 (mod 4) is simply the sum
of the weight enumerators of (w;, H;). For p = 3 (mod 4), it is the sum
of the weight enumerators of Zﬁ;t aw + (w;, H;), with w and w; as given
above. O

Example 1. Let IT be the projective plane of order 3, i.e. II = PG4(F3).
Let W(z,y, z) be the complete weight enumerator of Hull3(IT). Using The-
orem 4.4 we find that W(z,y,2) = z!3 + 78xy828 + 132%2° + 23424320 +
234z%y%23 + 132%y° + 15627y%23. Let C' be the code as given in Corollary
3.1, with v; = (1,1,0) and then E = (C',w) with w = (1,2,1). Then E is a
self-dual code of length 16 and Wg(z,y,2) = (z° + y?z + y22)W(z,y,2) +
(zy? + zyz + 222)W (2, z,9) + (z2% + zy® + zy2)W(y, 2, ).

We shall show how to construct other self-dual codes from the codes of
a plane and how they are related to the self-dual codes already produced.
We take II to be a projective plane with p a prime sharply dividing n. Let
o be any point in II; let K4 be the code that is formed from Hull,(II) by
taking codewords that are 0 on the coordinate corresponding to «, and let
G, be K, with the coordinate corresponding to a removed. That is, take
the subcode of Hullp(II) that is orthogonal to the vector (0,0,...,1,...,0)
where the 1 is in the coordinate corresponding to a to form K, and then
disregard that coordinate to form G,. The code G is the shortened code
at a. Notice that G, has length n? + n, is self-orthogonal, and dim G, =
dim Hullp(IT) — 1. Denote the all one vector of length n? +n by j. Let w =
(1,1,...,1,0,1,1,...,1), i.e. wisj with a 0 in the coordinate corresponding
to a. If j € G, then w € Hully(IT). Take a line L of II not incident with a,
then [w, L] = 1 # 0 and so w ¢ Hully(IT) and then j ¢ G,. Let G, = (Ga, j)-

Theorem 3.5. If a is any point in o projective plane II of order n with p
a prime sharply dividing n, then G, is a self-dual code of length n? + n.

Proof. G, is a self-orthogonal code, and [j, j] = n?+n = 0 and the all one
vector of length n? +n+1 is in Hull,(TI)* and so if a codeword in Hull,(IT)
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is 0 on the coordinate corresponding to a then it is orthogonal to j. Hence
G, is self-orthogonal and dim G, = dimG, + 1 = dim Hullp(IT) = P—%“L—",
giving that G/, is a self-dual code. O

For p =1 (mod 4) or p = 2, with a the element of the field with % = —1,
then the matrix

[0 0 My
0 0 My,
00 1".[3,,:
00 ]\I%_u
a 1 j

\ 01 v /

is the generator for the self-dual code C’'. Note also that C’ is the self-dual
code formed from the shadows of the code GJ,. In the notation of [4], we
have C' = ®(G,,,v). Note that the second coordinate is the coordinate that
was deleted from Hully(IT) to form G,.

For p = 3 (mod 4), if z,y are the elements of the field with 2 + 3% = —1
and a, b, c are the elements with az + by = 0 and a? + b + c2 = 0 as in the
proof of Corollary 3.1, then matrix

/[0 0 0 0 My \
00 00 My
0000 M

0 0 0 0 21,
z y 01 j
0 0 01 v
\ach 0)

is the generator of E. Set w = (a,b,¢,0,...,0) then in the notation of [4],
E = &(G,,v,w). That is, F is formed from the shadows of G, with the
vector w. Note that the fourth coordinate is the coordinate that was deleted
from Hully(IT) to form G,.

Example 2. To continue Example 1, let G, be the code formed from
Hulls(PG2(F3)) with o any point in the plane. Then Wg, (z,y,2) =
x'? + 84x8y323 + 7223y023 4+ 72234325 + 42%2° + 423y + 64528, and the self-
dual code Gy, has complete weight enumerator Wg: (z,y, z) = We, (z,y,2)+
WGQ (Z, z, y) + WGa (ya 2, :L‘)

4. WEIGHT ENUMERATORS OF CODES OF PROJECTIVE PLANES

We shall examine further the weight enumerators of the projective planes
considered previously. The following two results can be found in [1]. We
denote both the line and its characteristic function by L depending on the
context.
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Theorem 4.1. Let I1 be a projective plane of order n and let p be a prime
dividing n. If k is the dimension of Cp(I), then Hull,(I1)* is an [n? +n +
1,n?+n+2—k,n+1] code. The minimum weight vectors of Hull,(TI)* are
precisely the vectors of the form aL, where a is a non-zero scalar and L is the
characteristic function of a line L in I1. Moreover, Hull,(II) = (L — M | L
and M are lines of IT) and

Cp(II) = (Hullp(11), j),
where j is the all one vector.

Corollary 4.2. For a plane II of order n with p a prime dividing n, the
minimum weight of Hull,(IT) is at least n + 2.

In addition, we know that if p sharply divides n, then dim C,(II) = _7&"2"_+2
and then, by the previous theorem, we have that Cp(IT) = Hull,(IT)L.

We shall give restrictions on the possible weight enumerators of the codes
of projective planes of order n over the finite field F},, with p a prime dividing
n.

Lemma 4.3. LetII be a projective plane of order n, with p a prime dividing
n, where the complete weight enumerator of Hull,(IT) is given as:

Wty (my(T0, T15 -+, Tpo1) = Y Afagar,ap_1)T0TT - 2307
then the following conditions hold for all nonzero coefficients A, .
(1) Sai=n’+n+1,
(2) Zia‘i =0 (mOd p))
(3) Y i%a; =0 (mod p),
(4) if E#O a; #0 then 2#0 a; >n+2 and
(5) Afao,a1,map-1) = Alaao,aarnen Ga(p-1)) fora € Fp.

Proof. The first assertion follows immediately from the fact that the
ambient space is F' *™+1. We know j € Cy(I1) C Hull,(II)*, and hence
if v € Hullp(II) then [v,j] = 0, giving the second assertion. Hully(IT) is
self-orthogonal which gives the third assertion. The fourth follows from
Corollary 4.2, which states that the minimum weight is at least n + 2. The
fifth assertion is a consequence of the linearity of the code. O

.,a,,_l):

Theorem 4.4. Let 1l be a projective plane of order n with p a prime sharply
dividing n, where W and Wy represent the complete weight enumerator of
Cp(II) and Hullp(IT) respectively, then for w a p-th root of unity, we have:
WC(£01 Tiyeen, xp—l)
= Wu(zo,...,Zp-1) + WrH(Zp-1,T0,21,...,Tp-2)
+---+ Wg(z1,T2,...,20)
_ 1
 |Hullp(1D)]
rgt+wz +--+ w”—l.'zp_l, cey T+ WPy e + wzp_1),

WH(:I:Q +z1 4+ Tp,
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and

I’VC(:E, y:y,---,y)
= I/VH(xayayw"’y)+I/VH(yazay)"'$y)+°"+VVH(y3y>""$)

= m‘vh{(x"'(p_ Dy, z -y, —y,...,T —Y).

Proof. In the first statement the complete weight enumerator is calcu-
lated first by using the fact that Cp(I1) = (Hull,(IT), j), and second by using
the MacWilliams relations for complete weight enumerators and the fact that
for p sharply dividing n, we have Hull,(II)* = Cp(II). The second statement
does the same as the first except that it uses the MacWilliams equations for
the Hamming weight enumerator instead of the complete weight enumera-
tor. O

The value of the second part of the previous theorem is that the com-
putation involved is substantially smaller. Even though the second part
used the MacWilliams relations for Hamming weight enumerators, it still
incorporates the coefficients of the complete weight enumerator; so that it is
possible to obtain the complete weight enumerator using only the relations
for the Hamming weight enumerator.

Lemma 4.5. Let I be a projective plene of order n, with p a prime dividing
n, where the complete weight enumerator of Hull,(II) is given as:

7 — ag ..a1 Gp—1
WHuu,(n)(ﬂ?o,ﬂfl,---,xp—l) = E A(ao.al,...,a,,_l)xo Tyl

Suppose A(qq,...a,_,) # 0. Then each a; < n?, and if some a; = n?, then
necessarily i # 0, a0 =n+1 and Ay a,, .0, ;) = n?+n+1.

Proof. With p a prime dividing n, Cp(II) C Hully(II)* and hence
the minimum weight of this code is n + 1 and all minimum weight vectors
are scalar multiples of lines, as proven in Theorem 4.1. Any monomial
with an a; greater than n? represents vectors v such that v + 3j will have
weight less than n + 1 for some 8 € F,. In the second case if i were 0 it
would represent a weight n.+ 1 vector which is impossible. For ¢ # 0, since
Cp(I1) = (Hull,(IT), j} given a vector with a; = n? for some B € F,, v + §j
will have weight n + 1 and hence this corresponds to a constant weight n + 1
vector in Cp(IT), making some a; = n + 1. If some a; = n + 1 and all others
are 0, we know that in? + s(n + 1) = 0 (mod p). Therefore since p divides
n, s = 0. The last assertion follows from the fact that there are n? + n + 1
lines in II a

A projective plane II is said to be tame at p if Hull,(IT) has minimum
weight 2n and the minimum weight vectors are precisely the scalar multiples
of the vectors of the form L — M where L and M are lines of II.

For a full explanation of the importance of the preceding definition as
well as proofs of the results mentioned here see [1]. All desarguesian planes
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are tame but there are planes that are not tame, for example the non-
desarguesian translation plane of order 9 is not tame at 3. It is also conceiv-
able that a plane is tame at one prime and not at another. The importance
of this definition is that tame planes might possible provide a class of planes,
containing the desarguesian planes that can be dealt with more easily.

Lemma 4.6. Let II be a projective plane of order n and p a prime dividing
n, where the complete weight enumerator of Hully(II) is

Vs — ag .G Gp-1
Wttt (m) (20, T1s -, Tp=1) = 3 Afosarap_1) T TS - T2

The projective plane Il is tame at p if and only if the following conditions
hold:

(1) Ifo< Z#O a; < 2n then A(gyq,,....ap_) = 0,

(2) If 3 ;40 ai = 2n then there exists j such that aj = n and ap_j = n and
A(ao,al,___,ap_l) = (n?+n+1)(n?+n) for p # 2 and (n?+n+1)(n2+n)/2
forp=2,andn#2. Ifn=p=2 then Az 4 = T.

Proof. It follows from the definition, noting that there are (n? + n +
1)(n® +n) ways of choosing two lines when j # n — j, namely when p is odd,
and (n? +n + 1)(n? + n)/2 ways of choosing two lines when j = —j, that is
when p = 2. The case n = 2 is an anomaly because different differences of
parallel lines can produce the same vector. [

The following computational approach is then used. Take a linear com-
bination of all possible monomials satisfying the appropriate lemmas of this
section with variable coefficients. This represents all possible weight enu-
merators of Hull,(IT) for any plane IT of a given order n. Apply Theorem
4.4 to this polynomial, and set these two polynomials equal. This gives a
system of linear equations in the number of unknowns involved in the possi-
ble weight enumerators of the Hull. If this has no solution or if any possible
solution has at least one value which is not a non-negative integer then no
plane of this order can exist.

At n = p = 2 there is a unique solution. At n = p = 3 using either
form of Theorem 4.4 there is a unique solution. Note that the complete
weight enumerator of C3(PG2(F3)) is obtained using only the Hamming
weight enumerator relations and the complete weight enumerator is given in
Example 1.

For n =6, p =2 or p = 3 there is no solution to the system of equations.
With n = 10, p = 2 there is a solution with three degrees of freedom,
which is well know to be the case for possible weight enumerators of planes
of order 10. If one assumes that the plane of order 10 is tame then the
weight enumerator has both negative and non-integer coeflicients and hence
a plane of order 10 (known not to exist) could not be tame at 2. Note that

no combinatorial information was needed to rule out a tame plane of order
10.
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