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NILPOTENT DERIVATIONS and COMMUTATIVITY

HOWARD E. BELL*, ABRAHAM A. KLEIN, AND JASON LUCIER

Several years ago, Lee and Lee [3] proved the following interesting result:

Theorem 0.1. Let R be a prime ring with center Z, let I be a nonzero ideal
of R, and let n be a positive integer. If d is a derivation on R such that
d*(I) C Z, then either d® = 0 or R is commutative.

At about the same time, Trzepizur [6], as part of a slightly more general
study, proved a related theorem.

Theorem 0.2. Let n be a nonnegative integer, let R be a prime ring with
char R = 0 or char R > n + 1, and let Z be the center of R. Ifd is a
derivation on R and S a subring of R such that d(S) C S and d"(S) C Z,
then either d*(S) = {0} or S C Z.

It is our purpose to continue the study of derivations on prime rings sat-
isfying the condition d"(S) C Z, where d is a derivation and S a suitably-
chosen subring. Our first section contains results which are essentially appli-
cations of the Lee and Lee result; the second presents a theorem extending
Theorem 0.2; the final section deals with the d*(S) C Z condition in prime
rings with unrestricted characteristic.

Henceforth, R will always be a prime ring unless there is a statement to
the contrary, and Z will be the center. It will be important to note that
the center of a prime ring R contains no nonzero elements which are zero
divisors in R. Of course, for z,y € R, the symbol [z,y] will denote the
commutator zy — yz; and Cgr(S) will be the centralizer of the subset S of R.
Not surprisingly, we shall make use of Leibniz’ formula for higher derivatives

n

*) d*(zy) = Z (?)d'(z)d**(y) for all z,y € R.
i=0
We shall also use the elementary fact that a group cannot be the union
of two proper subgroups, which we call Property G.

1. SOME RESULTS FOR SPECIAL SUBRINGS.
We begin with two useful results on ideals contained in subrings.

Lemma 1.1 (4). Let R be an arbitrary ring and S a subring of finite index
in R. Then S contains an ideal of R which is of finite indezx in R.
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Lemma 1.2 (2). Let R be an arbitrary ring. If d is a derivation on R such
that d® # 0, then the subring generated by d(R) contains a nonzero ideal of
R.

We return to our blanket assumption that R is prime.

Theorem 1.3. Let R be infinite, and let S be a subring of finite indez. If
d is a derivation on R and d™(S) C Z for some positive integer n, then R
ts commautative or d* = 0.

Proof. By Lemma 1.1, S contains an ideal I of finite index in R; and since
R is infinite, I # {0}. Our result now follows by Theorem 0.1.

Theorem 1.4. Let n be a positive integer. Let d be a derivation on R, let
K be the subring of R generated by d(R), and suppose that d"(K) C Z.
Suppose also that one of the following holds: (i) n > 3; (i) n = 1 and
char R # 2; (iii) n = 2, char R # 2, and d(Z) # {0}. Then either R is

commutative or d™ = 0.

Proof. (i) If d® = 0, we are finished; hence we assume d3 # 0. By Lemma
1.2, K contains a nonzero ideal; and our conclusion follows by Theorem 0.1.
(ii) We have d?(R) C Z, so by Theorem 0.1, either R is commutative or
d? = 0. In the latter case, the fact that char R # 2 yields d = 0.

(iii) Since d3(R) C Z, either R is commutative or d> = 0, by Theorem 0.1;
therefore, we may assume d® = 0. Since d?(d(z)d(y)) € Z for all z,y € R,
we have 2d?(z)d?(y) € Z, hence

(1.1) d*(x)d*(y) € Z for all z,y € R.
Similarly, the fact that d?(d(z)d(y)d?(w)) € Z yields
d*(z)d*(y)d*(w) € Z for all z,y,w € R.

It follows from (1.1) that either d?(R) C Z or d?(z)d?(y) = 0 for all
z,y € R. In the first case, we are finished by Theorem 0.1; hence we assume
that

(1.2) d*(z)d*(y) =0 forall z,y € R.

Taking y = ¢ € Z and noting that Z contains no nonzero nilpotent
elements, we get d?(Z) = {0}. But for z € Z such that d(z) # 0, we then
have d?(22) = 2d(z)? # 0; hence (1.2) cannot hold, and we are finished.

Remark. For the n = 2 case, the final step of the proof shows that
the possibility d2 = 0 cannot occur, hence R must in fact be commutative.
Moreover, the hypothesis that d (Z) # {0} cannot be deleted, as we see by
letting R be the ring of 2 x 2 matrices over a field of characteristic different
from 2 and letting d be the inner derivation induced by the matrix eps.

We now consider the commutator subring - i.e. the subring generated by
all commutators in R. We have the following lemma.
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Lemma 1.5 (5, p. 344, ex. 12). Let R be noncommutative. Then the com-
mutator subring H contains a nonzero ideal of R.

The final theorem of this section is immediate from Theorem 0.1 and
Lemma 1.5.

Theorem 1.6. Let H be the commutator subring of R. If d is a derivation
on R and d"(H) C Z for some positive integer n, then R is commutative or
d" =0.

2. SOME RESULTS FOR PRIME RINGS WITH RESTRICTED CHARACTERISTIC.

Theorem 2.1. Let S be a subring of R. If there exists a derivation d on R
such that {0} # d(S) C Z, then S is commutative. Moreover, if char R # 2,
then S C Z.

Proof. For all s,t € S we have [d(st),s] = 0 = [d(s)t,s] + [sd(t),s] =
d(s)[t,s). Thus, for fixed s € S, either d(s) =0 or [t,s] =0 for all ¢t € S.
By Property G and our hypothesis that d(S) # {0}, we conclude that S is
commutative.

Now suppose that char R # 2. Forall s € S, we have d(s%) = 2sd(s) € Z,
hence 2[s,z]d(s) = 0 = [s,z]d(s) for all z € R. As before, we see that for
fixed s € S, either d(s) = 0 or s € Z; and by Property G, § C Z.

Remark. If char R = 2, then d(S) C Z does not imply § C Z. Indeed,
let R be the ring of 2 x 2 matrices over GF(2), let S = {0,e21} and let d
be the inner derivation determined by e;2. Then d(S) = {0,1} = Z, but
clearly S ¢ Z.

We come now to the main theorem of this section.

Theorem 2.2. Let n be a positive integer, and let char R = 0 or char
R > n. Ifd is a derivation on R and S is a subring of R such that d(S) C S
and d*(S) C Z, then either S is commutative or d*(S) = {0}. Moreover, if
d*(S) #0 and char R>n+1, then S C Z.

Proof. We need only establish that either S is commutative or d"(S) = {0};
the rest follows from Theorem 0.2. .

For n = 1, the result is part of Theorem 2.1. Proceeding from n — 1 to
n, we assume d*(S) € Z and d*"!(S) € Z. If char R > n + 1, our result is
included in Theorem 0.2, so we may assume that charR = n + 1, in which
case n+ 1 is prime and d"*! is a derivation. By applying Theorem 2.1 with
d™*! in place of d, we see that if d"*1(S) # {0}, then S is commutative.
Therefore we may assume that

(2.1) d"t1(S) = {0}.
Of course d"(zy) € Z for all z,y € S, so by (*) we have

n . .
> (H)d*H(z)d'(y) € Z for all z,y € S.

i=
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Commuting with y gives

T O @ E @l + T ()0 d6) + mad) =0

i=1
for all z,y € S. Substituting d®~!(y) for y, we now get
n [d*~(z),d"(y)] d*(y) = 0 for all z,y € S.

Thus, for each y € S, either d*(y) = 0 or [d"~!(z),d"~!(y)] = 0 for all
z € S; and by Property G, either d*(5) = {0} or [d""!(z),d"(y)] = 0 for
all z,y € S.

If the first of these conditions holds, we are finished; hence, we assume
the second holds. Two applications of the following lemma will complete
the proof.

Lemma 2.3. If R satisfies the hypotheses of Theorem 2.2 and d"(S) # {0},
then

Cr(d"™'(8)) C Cr(S).

Proof. Let y € Cg (d"~!(S)). Then [d"}(zw),y| = 0 for all z,w € S; and
applying (*) to d"~!(xw) and performing standard commutator calculations,
we get

n i . n-1 X ,
Z}) ("7 () [di(w), y] + ZO (*71) [ (=), y] d(w) = 0
1= 1=
forall z,w € S.
In this equation, we replace = by d*~!(z),d""?(z),...,d(z) in turn and
use (2.1), thereby obtaining n — 1 equations, the j-th of which has the form

("7 (=) [>T (w), y] + £5 =0,

where f; = f;j(z,w,y,d) is a sum of products each having a factor [dt(u), y]
witht > n—1—j. Since R is ("J 1)-torsion-free and since d"(S) # {0},

a backward induction shows at once that [w,y] = 0 for all w € S; hence
y € Cr(S).

3. SOME RESULTS FOR PRIME RINGS OF ARBITRARY CHARACTERISTIC.

If R is a prime ring with center Z # {0}, localizing at Z \ {0} yields a
prime ring R with center Z equal to the quotient field of Z. Clearly R may
be regarded as a vector space over Z. We call R small (resp. big) if R is
finite (resp. infinite) dimensional over Z.

If S is a (not necessarily prime) subring of R with ZS C S, we give S the
obvious meaning and define S to be a small or big subring of R according
as S is a finite-dimensional or infinite-dimensional subspace of R. In a big
ring, big subrings are not hard to find, as the next theorem shows.

Theorem 3.1. A nonzero left ideal of a big ring R is big.
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Proof. Let L be a nonzero left ideal of the big ring R. Let _ﬁ, Z,and L
be as usual. Suppose L is a finite-dimensional subspace of R with basis
n

{v1,v2, ...,v,}. Then for any T € R, Tv; € L, hence Zv; = Y, ai;v;. Thus
i=1

we have a representation R — M, (Z) given by T — [a;;]. Since R is big,
the kernel K of the representation is a nonzero ideal of R with K L = {0},
contradicting the fact that R is prime. Therefore L is infinite-dimensional

and L is big.
We come now to our major result on big subrings.

Theorem 3.2. Let R be a big ring with center Z # {0}, and let S be a
big subring of R. If there exists a derivation d on R such that d(S) C S
and d*(S) C Z for some positive integer n, then either d*(S) = {0} or S is
commutative.

Proof. Again we use induction on n. If n = 1, the result is included in
Theorem 2.1; hence we proceed on the assumption that d"(S) C Z and
d"~1(S) € Z. Following the argument used in the first four paragraphs of
the proof of Theorem 1 of [3], with R replaced by S whenever necessary, we
obtain d(Z) = {0}.

Now we localize R at Z\{0}, obtaining R, _Z_ S a above. Since
d(Z) = {0}, we can define a derivation d on R by d ) forallz € R
and z € Z\{0}; and we have d(S) CSandd(S)C Z. Therefore, d'(5)
has dimension at most 1 over Z.

Proceeding as in the sixth paragraph of the proof of Theorem 1 of [3],

we show that if E’“(s ) is finite-dimensional over Z, then either Ek_l(g ) is
finite-dimensional or d"(S) = {0}. Hence either S is finite-dimensional or
d"(S) = {0}. But the first of these alternatives is ruled out by our hypothesis
that S is big, hence d (S) = {0}; and it follows that d(S) = {0}.

If char R # 2, then by Theorem 2.1 the n = 1 case yields the stronger
conclusion that S C Z or d(S) = {0}; and the assumption that S is big rules
out the possibility that § C Z. Thus the same inductive argument that we
have just used gives

Corollary 3.3. Let R be a big ring with char R # 2 and center Z # {0},
and let S be a big subring of R. If there exists a derivation d on R such that
d(S) C S and d*(S) C Z for some positive integer n, then d*(S) = {0}.

A
IN Sis

Of course, Theorem 3.1 yields an interesting application of Theorem 3.2.
However, this result is a special case of our final theorem.

Theorem 3.4. Let R be an arbitrary prime ring. Let L be a left ideal of
R. If d is a derivation on R such that d*(L) C Z for some positive integer
n, then either R is commutative or d"(L) = {0}.

Proof. We may assume that Z # {0} and L # {0}. Moreover, by replacing
L by L+d(L)+d?(L)+... if necessary, we may assume d(L) C L. Repeating
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the first two paragraphs of the proof of Theorem 3.2 with L in place of S,
we obtain d (L) C Z; and since d (L) C L, we have d (L) C LNZ. Now
Z is a field, hence LN Z = {0} or L = R; therefore either d (L) = {0} or
d"(R) C Z, and our result follows from Theorem 0.1.

Corollary 3.5. Let R be an arbitrary prime ring, and let L be a nonzero
left ideal of R. If d is a derivation on R such that d*(L) C Z for some
positive integer n, then either R is commutative or d®"~! = 0.

Proof. In [1], Chung and Luh proved that if d*(L) = {0}, then d?*~! = 0.
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