Math. J. Okayama Univ. 39 (1997), 165-185

WARPED PRODUCTS AND RIEMANNIAN MANIFOLDS
ADMITTING A FUNCTION WHOSE GRADIENT IS
OF CONSTANT NORM

TAKASHI SAKAI

1. Introduction. Let (M,g) be a complete connected smooth
Riemannian manifold of dimension m and f: M — R a smooth function
satisfying

(L.1) VAl =1,

where V f denotes the gradient vector field of f. Then denoting by s, s €
R, the flow generated by Vf, the trajectories c¢: s — s(p) are geodesics
realizing the distance between levels of f. Namely, setting Z := f~1(0), the
map &: X = Rx Z — M defined by ®(s, z) := ¢,z is a diffecomorphism. In
the previous paper 7], we studied the metrical structure of such manifolds
under the condition that

(1.2) Ricp (VS VS) > —(m — 1)6,

where § is a nonnegative constant. Then for the Laplacian Af=—¢"V,;V; f
of f we have

(1.3) |Af] < (m —1)6.

Moreover, if § = 0, i.e., Ricps(Vf,Vf) > 0, then f is an affine function
and ®: X — M is an isometry, where Z := f~1(0) is endowed with the
totally geodesic induced Riemannian metric and X = R X Z means the
Riemannian direct product.

Next suppose d = 1 and |[Af| = m — 1. Then &: X — M is an
isometry, where X is endowed with a warped product metric R Xy Z with
1(t) = exp(£t) and the induced metric on Z. Moreover, f is a Busemann
function defined by asymptotic rays t — (¢,p)(or, t — (—t,p)).

Namely, standard warped product spaces appear as the extremal cases
of the inequality (1.3). In fact, in [7] we have assumed that Ricps >
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—(m — 1)¢ in stead of (1.2). However, the proof presented there works
under the assumption (1.2).

Now in [8], we considered the perturbed version of the above extremal
cases, and asked what happens for the case where Ricyy > —(m — 1)k
and Ricy(VSf,Vf) > —(m — 1), or the case where Ricyy > —(m —
1)k, Ricp(VS,Vf) > —(m —1)—6 and ||Af| — (m — 1)] < §, where
8, k are positive constants and 8 is sufficiently small. We set ¥ = &1, ie.,
(p) = (f(p),n(p)) with ws)(7(p)) = p, where m(p) = ¢_s(;)(p) is the
foot of the perpendicular of p on Z along a trajectory of Vf. Then ap-
plying Cheeger-Colding’s ideas ([5]) to our rather restricted situation, we
showed that for any R > 0, ¥ := ¥ |g a1yt Br(p; M) = X, restriction
of ¥ to a distance R-ball, satisfies

(1.4) |dar(z, 2') — dxx(¥(z), ¥(z'))| <,
namely, for the Gromov-Hausdorfl distance

(1.5) der(Br(p; M), Br(p;dx x)) < €

holds if we take x > 0 and § = §(¢, m, &, x, R) > 0 sufficiently small. Here,
d, denotes the distance on Z which is close to the distance obtained from
the induced Riemannian metric depending on the parameter x, and dx ,
denotes the warped product distance on X = R xy (Z;d,) with warping
function ¢(¢) = 1 or ¥(¢) = exp(=t) corresponding the above two cases, re-
spectively. In fact, we have (1.4), (1.5) under somewhat weaker conditions
(see (8] for details).

Now in the present paper, we consider a general warped product space
X = Rxy Z as a model space. Namely, let Z be a complete connected Rie-
mannian manifold of dimension m — 1, and ¥: R — R™* a positive smooth
function. Then the warped product metric with the warping function ¥ on
X =R xy Z is given by

ds% = dsk + ¢2ds%.

Note that the projection f: X — R onto the first factor gives an example
of functions satisfying (1.1). We may assume that #(0) = 1 in the fol-
lowing without loss of generality. In [5], Cheeger-Colding showed that if
for a Riemannian manifold M™ the volume or diameter is almost maxi-
mal compared with warped product manifolds (a,b) x4 N™~! relative to
the behaivor of the Ricci curvature, then it is close to (a,b) Xy Z in the
Gromov-Hausdorff topology.

In this note, first we generalize results in [7). For a given 1/ as above we

set k(t) := 1:;;—((:)1 We also consider ¥*: R — R defined by ¥*(t) := ¥(—t).
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Theorem 1.1. Let M be a complete connected Riemannien m-
manifold admitting a smooth function f with (1.1). Suppose

Ricar(Vf(z), VFi(z)) > —(m — 1 )ﬁ"(f(w))

(1.6) P(f(z))
| Tes —(m — M
resp 2 == D25 G @y

for any z € M. Then we have the following:

(1) If Af = —(m —1)ko f (resp., Af = (m — 1)k o (—f)) holds,
then ®: X =R x4y Z = M (resp., R xy. Z = M) is an isometry.

(2) If foo ,g(ss) = +00, then we get

(L.7)  Af(z) < —(m - 1Dk(f(z)) (resp.,Af(x) > (m — 1)k(-f(z)))

for any x € M.
(3) Iff —;zs— = +oc, then we get

(1.8)  Af(z) = —(m - Dk(f(z)) (resp,Af(z) < (m— )k(—f(z)))

foranyx € M.

Note that taking #(t) = 1 or ¥(t) = exp(£t), we get results given
in [7]. As another corollary we have the following rigidity result which
generalizes the nonnegative Ricci curvature case ([7]).

Corollary 1.2. Let M be a complete connected Riemannian m-
manifold admitting a function f with (1.1). Suppose

¥"(f(x))

where ¥: R — RT is a positive smooth function satisfying fo —T—) = +o00
and f

o ¢2(S) =+4oc. Then ®: X = E xy Z — M is an isometry.
Corollary 1.2 follows directly from (2), (3) and (1) of Theorem 1.

Next we consider the perturbed version of the above rigidity result
and get
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Theorem 1.3. Let M be a complete connected Riemannian manifold
of dimension m which admits a smooth function f with |Vf| = 1. Let
¥: R — RT be a positive smooth convez function, in the sense that 1" (s) >
0. Suppose that the Ricci curvature of M satisfies

Ipll o f

(1.9)  Ricyy > —(m—1)s, Ricy(Vf,VSf) > —(m— 1)—2/)0—]‘ -

on By(p; M), where k,6(< 1) are positive constants, and that

(1.10) |Af(z) + (m — Dk o f(z)|*dy, < 6%

i ).
vol BR(P; M) Bg(p;M)

holds for the Laplacian of f. Then for any (1 >)x > 0, > 0 and R > 0,
there exists T = 7(m,€,k,x, R) > 0 such that if (1.9), (1.10) hold for
(0 <)é < 7 with sufficiently large R compared with given R > 0, e.g., R =
30R, then we have the following :

There ezists a distance dy on Z = f~(0) defined by (4.21) which
is close to the distance on Z obtained from the induced metric. Let dx
be the distance on X which is the warped product distance R Xy (Z,dy)
defined by (4.22) with warping function . Then ¥ := ¥ |g_ .\ satisfies

(1.11) |dar(z, ') — dx 5 (¥(2), ¥(z"))] < ple] x | ¥, R)
and for any y € Br(p;(X,dx y)) there exists x € Br(p; M) such that

(1.12) dxx(y, ¥(z)) < ple| x| ¥, R).

In particular, for the Gromov-Housdorff distance we get

(1.13) der(Br(p; M), Br(p; (X,dx.x))) < (el x| ¥, R).

In the above (e | x | ¥, R) means that for fivred 1 and R > 0 we have
ele| x| ¥, R) 10 as x | 0 and taking e = ¢(x) 1 0.

In §2 we are concerned with some geometry of warped product space
X =R xy Z, and in §3, 4 we give proofs of Theorem 1.1 and Theorem 1.3,
respectively. We mainly use the Bochner formula and standard comparison
theorem for the proof of Theorem 1.1. Our proof of Theorem 1.2 essentially
follows the same strategy as in the previous paper [8], and much owes to
recent important Cheeger-Colding’s ideas ([5]).
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2. Preliminaries from the geometry of warped product
space. In this section we review some geometry of a warped prod-
uct space X = R x Z. Recall that the projection r = f: X — R onto the
first factor is a smooth function satisfying ||V f| = 1. B

2.1. First we recall a result which characterizes the warped product
spaces among Riemannian manifolds admitting a smooth function f with
V£l = 1. Note that the Hessian D% f of f defines the second fundamental
form when restricted to each level of f, and its mean curvature with respect
to the unit normal V f is given by —EA—_IT.

Lemma 2.1 ([8, Lemma 3.1]). Let (M,g) be a complete connected
Riemannian manifold admitting a function f with |Vf|| = 1. Let Z :=
f71(0) be endowed with the induced Riemannian metric. Then M is iso-
metric to a warped product manifold R xy Z with (0) = 1 so that f
corresponds to the canonical projection onto the first factor if and only if
there exists a smooth function k: R — R such that

(2.1) D*f = (ko f){g — df ®df},

where k,1 are related by k(s) = ﬂ(:)l or ¥(s) = exp(fot k(t)dt).

¥

Note that in this case we have
(2.2) kof=——=.

Therefore, each level of f is a totally umbilical hypersurface of X with
principal curvature ko f.

2.2. Next we are concerned with Jacobi fields along radial geodesics
s — (s,p),p € Z in X. Since r = f: X — R is a Riemannian submersion,
for any vector field V on Z, we have

!
yor,

(2.3) V'{—?STV: wor )

where we set 3% = Vr = Vf (see e.g., [1]). Namely, E := # is a parallel
vector field along a radial geodesic. Conversely, for a parallel vector field
E with E(0) € T, Z along a radial geodesic v, Y (s) := 9¥(s)E(s) is a Jacobi
field satisfying the initial conditions Y'(0) € T,Z, VY (0) = k(0)Y (0), where

k(0) is the principal curvature of the totally umbilical hypersurface Z. Such
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a Jacobi field is called a Z-Jacobi field and may be characterized as the
variation vector field of a variation consisting of radial geodesics. Then
any Z-Jacobi field Y along y may be written in the form Y (s) = (s)E(s)
with a parallel F, and from the Jacobi equation we get

9,40 P'(s)
2.4 — )= =- E(s).
( ) R(E(S)) ar)ar w(s) (S)
In particular, we have RicM(%, %) = —(m — 1)%‘-’;I Since any radial

geodesic v is free of Z-focal points, such Z-Jacobi fields span the tangent
space T,,(s)i_l(s) to any level of f. Note also that VY (s) = k(s)Y(s).
Next we consider a Jacobi field Y along v in the form
Y(s) =y(s)¥(s),
where Y is a Z-Jacobi field. Then from the Jacobi equation VVY(s) +
R(Y (s), %)3’3; = 0, we obtain

(2.5) Y(s)y"(s) +2¢'(s)y'(s) = 0.

Solving this differential equation we get

(2:6) (5)=30)+5/0) [ =5
. y(s) = —.
o ¥%(s)
Note that Y(s) = 0 holds for s > 0 if and only if we have
0

——
Jo %6
Now let Z be a hypersuface perpendicular to a radial geodesic Ys
which is totally umbilical at p := v(0) € Z. Let X be the principal curvature
of Z at p with respect to the unit normal ¥(0) = Vip).

ds
. 52s)
point ¥(s) of Z at s > 0 if and only if A < k(0).

Lemma 2.2. Suppose fooc = +o00. Then there appears a focal

Proof. Suppose A < k(0). Then consider a Jacobi field along 7y given
by Y (s) := y(s)Y(s), where Y (s) is a nonzero Z-Jacobi field and y(0) = 1.
Then y(s) satisfies (2.6) and VY (0) = (4'(0) + k(0))Y/(0). Hence Y (s) is a
Z-Jacobi field if and only if

y(s)=1+(i—k(o>)/os¢—;i-—fs)
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by (2.6). Then we have y(s) = 0 for s > 0 satisfying the equation
(0) 3= fo 75 s), namely a focal point (s) of Z along v appears at s > 0.

Conversely, suppose Y(s) = O, s > 0 holds for a nonzero Z-Jacobi field ¥
along 7. Let Y, (i = 1,. - 1) be a basis for the space of Z-Jacobi
fields along . Then we may wrlte Y =Y. yi(8)Y;(s) with

5 ds
——} (=1
0 ¢2(3)} (
Therefore, Y (s) = 0 for s > 0 implies that A < &(0).

yi(s) = yi(0){L + (A — k(0)) m—1).

Remark 2.3. Suppose Z is a hypersurface through p := = v(s0) €
f~Y(s0) perpendicular to a radial geodesic 7, which is totally umbilical at

p with the principal cur\ ature A with respect to the unit normal 4(sp) =

Vf(p). Suppose fo w=(s) = +00. Then by the same argument as above
we see that there appears a focal point y(s) of Z for s > sq if and only if

X < k(sp) holds. Similarly, under the above situation, considering a radial
geodesic s — 7( s) reversing the orientation of 7, we have the following:

Suppose f o —r) = +o0. Then there appears a focal point y(s) of Z for
s < so along the reversed radial geodesic if and only if A > k(sg) holds.
2.3. Next we are concerned with geodesics and distance function of

the warped product space X = R Xy Z. Let v be a geodesic parametrized
by arclength in X. We set

(27) U(s) = £(x(s)).
Then we have

U'(s) = (Vf,?(S)),

U'(s) = D*f(3(s),4(s)) = (ko f){g — df ® df}('Y(S) ¥(s))-
Therefore, U satisfies the differential equation
(2.8) U'"(s) + kU(s)(U'(5)* = 1) = 0.
Now set F(t) := fot ¥(s)ds, which is strictly monotone increasing, and we
consider the inverse function G := F~1. Setting y(s) := F(U(s)) we obtain
(2.9) y'=H(y) with H:=¢'oG.

This means that y(s) and consequently U(s) admit first integrals.
We assume that 1"(s) > 0 in the following. Now the next result is
given in [5].
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Lemma 2.4. Suppose ¥"(s) > 0. Then the boundary value prob-
lem for (2.8) has a unique solution. Namely, for fized U(0) and I, the
map U'(0) — U(l) defines a smooth strictly monotone increasing map
B: (-1,1) = (=1 + ro,l + 7o), and therefore B! is smooth and stricly
monotone increasing.

Proof. Since (2.8) depends only on k = %, we may consider Y(s) in
a particular warped product space Xj := R x4 R, which is an Hadamard
2-manifold by the assumption ¢”(s) > 0. Take zp € Xo with f(zo) =
U(0) =: ry, and a geodesic Yoo emanating from zy in X parametrized by
arclength with A(jao((]), Vf(zp)) =ao (0 < ap < m). Then we consider
a family of geodesics I 0<a<mw containing 7y _ ) which emanate from

zo and are parametrized by arclength with Z(¥_(0),Vf(z0)) = a. Then
the map

B:u=cosa:=U(0) € (-1,1) = U(l) = f(y, (1) € (—+ro,l + o)
is a smooth map with derivative

1

sin o

Oy
B'(v) = —(Vf(x, 1), B )

Now if 3 (u) = 0, then the Jacobi field s — é%;j(s) along y  vanishes at s =
I, which is a contradiction. Hence 3'(u) # 0 everywhere and the assertion

of the lemma follows. Note that 8'(£1) = —2& |a=o,r (VI (1), %(!)).

Remark 2.5. (1) If 4'(0) = £1, then the corresponding geodesic
in X is a radial (or reversed radial) geodesic, and we have U(s) = +s+ry.

(2) From the above lemma, for given ! > 0 and rg,7; € R with
|r1 — 70| < ! we have a unique U(s) satisfying (2.8) and the boundary
conditions U(0) = ro,U(!) =, which will be denoted by

(2.10) U(s) =: U(s;To, 71, 1)-
Note that 4 depends smoothly on parameters. We may also write
(2.11) U'(s) =:cosB(s) with 0(s)=:8(s;re,71,1),

where 6(s) equals the angle Z(%(s), Vf(y(s))) between V f and the corre-
sponding geodesic y in X.



WARPED PRODUCTS AND RIEMANNIAN MANIFOLDS 173

Then we get the following by arguing as in the last part of §2 of [5]:
Let dx (resp. dz) denotes the distance on X (resp. Z) defined from the
Riemannian metric g (resp. induced metric on Z). First suppose z,y, €
X (¢ = 1,2) satisfy n(z,) = n(y,), n(z,) = n(y,). Then we may write the
distance function dx in the form

(212) dX(Ql,QZ) = Q(f(&l): f(g1)1£(§2)3 E(yz): dx (_321 7&2))'

Next considering the case where z1,z2 € Z and letting 3 — z; we
get a formula representing dx in terms of dz. Namely, we have a function
p: R x R x R* — R* by which we may write

(2.13) dx((r1,21), (2, 22)) = p(r1,72,dz(21, 22)).

For instance, if 21,20 € Z we have

dx(21,22)
dy(z1, 22) = / exp(~U(s)\/1 - U'(s)2ds,
0

where we set U(s) := U(s;0,0,dx(z1,22)). Then the above formulas de-
termine the warped product distance on X with warping function 1, once
a distance is given on Z. Note that for fixed rg,rn, {v;})Y, there exist
r{1,... ,7N_1 such that

N-1 N
> p(risrist, vig1) = plro, TN, Y vi)-
i=0 i=1

We also remark that setting w(v) := p(0,0,v), which is strictly monotone
increasing, we have w(v) < v, w(0) = 0 and w'(0) = 1, and that by the
first variation formula %%(0, r,0,7',v) > 0.

3. Proof of Theorem 1.1. First suppose we have Af = —(m —
1)k o f under the assumption (1.6) on the Ricci curvature. Then applying
the Bochner formula

(3.1) %Auwu? — (Vu, VAu) — Rica(Va, V) — || D22,

to our function f, and noting that ||[Vf|| = 1and VAf = —(m—1)(k'of)Vf

with k(s) = 7((5—)—, we obtain

| D?f||> = —Ricp (VF, V) + (VAF, V)

Yiof —(m— l)k:' of,

<(m—1)¢ o7
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and therefore

ID*f — (ko f){g — df ® df}|®

= |D*f|I> + 2(ko f)Af + (m—1)k%o f
<(m—1)'fp"f (m— ko f—(m—1)kof
(m—l){ ;‘ k%f—k%f}

It follows that

(3.2) D*f — (ko f){g — df ®df} =0

and (1) of Theorem 1.1 follows from Lemma 2.1.

Now we turn to the proof of (2). Suppose Af(z) > —(m — 1)k(f(z))
at some ¢ € M. Set so := f(z) and recall that the second fundamental
form of the level Zs, := f~!(sp) with respect to the unit normal V f(z)
is given by D?f(z). Let v be a radial geodesic through z with v(0) =
z, f(7(s)) = s+ so, which is a trajectory of Vf, and we consider Zg,-
Jacobi fields along y. Next, in the model space X := R xy, Zs,, where
Pi(s) == 9Y(s + so) and Z,, is endowed with the induced metric, take a
hypersurface Z through ®;(z) := (0,z) € X, which is perpendicular to
the radial geodesic v: s + (s,z) in X emanating from ®;(z) and is totally

umbilical at ®(z) with principal curvature ——%f_—) with respect to ¥(0).

Recall that —enf—ﬁ] is the mean curvature of Z;, at z in M. On the other
hand, the mean curvature of Z;, in X at ®;(z) with respect to the unit
normal %(0) is given by k1(0) = k(s¢). By applying Lemma 2.2 with

A= —Mﬂ it follows that along the radlal geodesic v in X there appears

a focal pomt y(s1) of Z at s, > 0 with ( - 031 d(ss)

Now we apply the Heintze-Karcher comparisozl theorem (see e.g., [9],
p-147-148) to Zs,-Jacobi fields along v in M and Z-Jacobi fields along y
in X. Recall that we have

Ricam (7(s), 4(s)) = Ricar(V £, V£)(7(s))
¥'(s + 50) 1) _ Ric (4] 5
> —(m = 1) Zo=5 = —lm = )7t = Riex (4(9), 3(6)

Since —M is the mean curvature of Z, in M, and Z is totally umbilical

at y(so) Wlth the same mean curvature as Z in X, the above comparison
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theorem implies that there also appears a focal point y(s) of Z;, at some
s1 = s > 0. In fact, the comparison theorem given in the reference [9]
is stated in the case where Ricx(¥(s),¥(s)) is bounded below by a con-
stant. However, the same proof works for the present case, and we have
a contradiction. Hence Af(z) < —(m — 1)k(f(z)) for any z € M. The
assertion (3) may be proved by the same manner considering the reversed
radial geodesics and noting Remark 2.3. Then the alternate assertions in
(2), (3) follow considering 9* in stead of .

4. Proof of Theorem 1.3. Let (AM,g) be a complete connected
Riemannian manifold of dimension m admitting a function f: M — R with
IVf|l = 1. Here we are concerned with the perturbed version of Theorem
1.1 (1). Under the assumption on the Ricci curvature and the Laplacian
of f compared with those of the warped product space X = R xy Z with
warping function 1, where Z = f~1(0) is endowed with some appropriate
distance, we want to show that, when restricted to distance balls, M is
close in the Gromov-Hausdorff topology to X = R x, Z. We begin with
the following lemma.

Suppose that the Ricci curvature of M satisfies

(4.1) Ricpyr > —(m — Dk Ricy (V£ VS) > —(m - 1)’!’” of 5

Yof
on Bygr(p; M), where «,8(< 1) are positive constants, and that
1

4.2 _—
(4.2) vol Bag(p; M)

/ |Af(z) + (m — ko f(z)|*dv, < §°.
Bar(piM)

Lemma 4.1. There ezsists C = C(m,v¥,k,R) > 0 such that for
p € M if we assume that (4.1) and (4.2) hold on Bop(p; M) then we have

1

4.3 _
(43) vol Br(p) JBr(p)

ID?f — (ko f){g — df ® df}||*dv, < CS.

Proof. Take a function f such that Af = —(m —1)ko f on Bsg(p).
Then we get

A(f-f)=Af+(m—1kof

and

(V,VAf) = (VF.V(Af ~ Af)) = (m = 1)K o f.
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Now from the Bochner formula we obtain

|D?f|> = —Ricp(Vf, VS) + (VAF, V)

3 ,(,b”of
Ty

+(VAf,Vf)+4.

It follows that

A 2

1D%f + — - — (9 - df ®df)|” = ID*f|]* - Eni)l
2
= —Ricy(VS, V) +(VAS, V) - SnAf)l

" 2
<m-n2L B wanvn 4o
—m-n & vop - LI

= Lm0 f — (AfP} 4 (VS V(AT ~ A) +5.

+(VF,V(Af - Af) +

On the other hand we get from the assumption

[ |(m — 1)k o f — Af[Pdu,, / |Af 2dv,
Byr(p;M) Bar(p:M)

< {262 + ¢(m, R, ¥)}vol Bap(p; M).
Now take a cut off function ¢: M — [0, 1] such that
(4.4) ¢ | Br(p) = 1, supp ¢ C Bar(p). [V4ll,|A¢| < c(m.«, R)

(see [5], Theorem 6.33). Then we have

H(VF,V(Af — Af))
= div(dA(f — /)VF) = A(f — VS, VF) + dAFA(f — f).

It follows from the above using Green theorem and Cauchy-Schwarz in-
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equality that
A
[+ =g - g e anitay,
Br(p)
2 Af 2
< ¢l D°f + j(g — df ® df)||*dv,
Bar(p m = ‘

S 5c1(m, 1/)1 R)"'Ol BZR(p) +

f SV, V(A — Af))dv,
Bar(p)

vol Byr(p)

< dca(m, &, %, R)vol Bag(p) < dca(m, k5,9, R) vol Bgr(p)

vol Bg(p)

< bca(m, k., R) ‘_"((2 R))\OlBR(P)

S CSC(‘)TL, K, 1:01 R)VOI BR(p)a

where v™,_(R) denotes the volume of a distance R-ball in the simply con-
nected space form of constant curvature x, and we have used the Bishop-
Gromov volume comparison theorem. On the other hand, note that

|D?f — (ko £){g — df @ df}|?

——(g - df 9 df)I" + (m - 1)(— +ko f)2

Then integrating the above as before the lemma easily follows.

Remark 4.2. Assume the following rather strong condition for f
(4.5) |Af(z)+(m—Dko f(z)| <8, VF(Af)+(m—1)k'of <.
Then under the Ricci condition
,lpll o f
Yof

we have the following by the same argument as in Propositions 2.1, 3.2 of
[8]: Suppose M and f with ||V f|| = 1 satisfy (4.5) and (4.6). Then for
any € > 0 and any R > 0 there exists 7 = 7(¢, m, %, R) > 0 such that if
0 < 4§ < 7, then for @ restricted to Br(p; X) C X, p € Z we have

(4.6) Ricp(VF,Vf) 2 —(m — 1)

_.(j,

(4.7) (1= e)dx(z,y) < du(®(2),2(y)) < (1 +€)dx(z,y),
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where X = R xy Z is a warped product metric with warping finction 9
and the induced metric on Z. Furthermore, levels of f are almost totally
umbilical in the sense that we have for a positive constant C = C(m, ¥, R)

(4.8) ID?f — (ko f){g —df ® df}I|* < C4.

In fact, it suffices to assume that (4.5) and (4.6) hold on a larger
concentric distance ball e.g, Bor(p; X).

Now for y1,y2 € Bagr,(p; M) let ¥ = <y,,y, be a minimal geodesic
joining y; to y» in M parametrized by arclength. As in (2.7) we set U(s) =
U(s;y1,y2) := f(7(s)), and get

U'(s) = (V,4(s)), U"(s) = D*f(3(s), 7(s))-

We want to compare U(s) with the corresponding U(s) satisfying the
same boundary condition in the model space X = R x4 Z, where Z =
f71(0) is endowed with a Riemannian metric. Namely, we compare U(s) =
U(s;y1,y2) with U(s) = U(s;ro,mi,l) setting 7o = f(y) = U(0),7 =

f(y2) =U(l),1 = d(y1,92)-
First we assume that

!
(4.9) /0 U (3) + KQU(S)) (U (5))? — D)lds < ea.

Setting b(s) := U"(s) + k(U(s))((U'(s))* — 1) and y(s) := FU(s)),y(s) :=
F(U(s)) (see (2.9)) we have

y"(s) = H(y(s)) + ¥(G(y(s))b(s). y"(s) = H(y(s)),

y(0) = y(0), y(l) = y(D).
Note that G(y(s)) = U(s). Since [U'(s)|,|U4'(s)| < 1 we have a uniform
bound |U(s)|, [U(s)] < C(l,70);0 < s <I. Now we set z = y — y and get

2"(s) = H(y(s)) — H(y(s)) + a(s)
= H'(y(s) +6(y(s) - y(s)))2(s) + als),
where we set a(s) = (U(s))b(s). Note that z(0) = z({) = 0 and H' =
% oG > 0. It follows from (4.9) that

! !
0= /O (2/()2(s)}'ds = /0 {2(s)? + 2"(s)2(s)}ds
{ 4
2/0 2'(s) ds—+-/0 a(s)z(s)ds.
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Hence

{ 1
(4.10) /(;z'(s)zd.sg /;a(s)z(s)ds < C(Ry,¢)es.

From the above we easily see that |z(s)| is small enough and |2/(s)—2'(0)| <
w(e2 | ¥, R1) for 0 < s < I. Considering the boundary condition 2(0) =
z(1) = 0, it follows that |2'(s)| is also small, namely,

(411)  U'(s) U (S, [U(s) —U(s) < plez | ¥, R1) (0< s <),

where (€2 | 9, R1) means that for given 1, R; we have ¢(ez | ¥,R;) | 0
as €3 | 0.

Now to compare U(s) with U(s) for general ~,,,, we appeal to [5],
Theorem 2.11, which is first given in [2] and has many important applica-
tions (see [3, 4]), and get

Lemma 4.3. Suppose that Ricps > —(m — 1)k on Byg, (p) and

1

(4.12) B Bam(p)

/ IDf — (ko f){g - df ® df}|ldv, < 1.
Bar,(p)

Then there ezists C = C(m,k,Ry) > 0 such that

(4.13)
4
BT o oy 598y 10+ KU =

< CE]
holds, where we set U(s) = U(s;y1,y2) and | = dpr(y1, y2)-

Note that from Lemma 4.2 and Cauchy-Schwarz inequality, (4.12) holds
for any 4R; > 0 taking 6 = d(m, s,¥, R;) in (4.1), (4.2) with 2R = 8R;
sufficiently small. This lemma roughly means that for any es > 0 we have

[
/0 U (s) + kU(s)) (@' (3))? = 1)ds < e

for almost all (namely, except for a set of very small volume) y; € Bapg, (p)
and y2 € Bap, (p), where we set U(s) := U(s; y1,y2). To be more precise, we
denote by De,(y1), y1 € Bar,(p), the set of points y2 € Bag, (p) such that
there exists a unique minimal geodesic 7y,,, joining y, to y» parametrized
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by arclength, and that [} [U"(s) + k(U(s))(U'(s))? — 1)lds < e holds for
U(s) :=U(s;y1,¥2), 1 := d(y1, y2). Note that vy, C Bsg,(p). Next we set

Qe, = {y1 € Bap,(p) | vol De,(y1) > (1 — €2)vol Byg, (p) }-

Then for any ea > 0 there exists 7 = 7(e3, m,x,R;) > 0 such that if
0<e€ <7and

1

vol Byg, (p) /Bm,(p) |D°f —ko f(g—df ®df)|dyy < e

holds, we have
(4.14) volQe, > (1 — €2)vol Bag, (p).
Note that for y; € Qe,, ¥2 € D, (y1) we have
U(s) —U(s)l, [U'(s) —U'(s)] < p(ea | 9, Ra)

for U(s) := U(s;y1,y2) by (4.11). Therefore, for any fixed y € Q.,,

U (d(y, 2);y, 2) — U'(dly, 2); F(y), (2), d(y, 2))| < (e | ¥, R1)
holds for almost all z € Byg, (p). Namely, we get

1

(4.15) m-/zeBgﬂl(p) U (Ly, z) = U' (5 f(y), f(2),1)|dy,

< Lp(fz | '(/):Rl)a

where we set | = d(y, z).
Proof of the next lemma is essentially the same as in Proposition 2.80
of [5], and Lemmas 2.5, 3.5 of [8]. See §§2.3 for the definition of Q.

Lemma 4.4. For any € > 0 there ezists ( = ((e,m,k,¥,R1) > 0
such that if

1

_— D%f — (ko f){g—df @ df}||dv, < € 4.12))
VOlB4R1 (p) /1-3431(13) H ( { f}“ g ' ((
holds for 0 < €, < (, then we have

(4'16) |dﬂ'f(y1a y2) - Q(f(ml)! f(yl)a f(:l:?)a f(y2)7dﬂ1($11 1'2))| <e€

for any z;,y; € Br, (p) with f(y:) — f(z:) = d(zi,4:) (i = 1,2).
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We give a sketch of proof. Indeed, considering a minimal geodesic
Yz1y2» Which is contained in Bag, (p; M), it suffices to show our claim in
the case of £, = y; = z. We may assume that d(z2,y2) > 7 for a fixed
sufficiently small n > 0. Taking ez > 0 sufficiently small we may choose
y € Bpa(z) N Qps,q € Bys(z2),w € Bys(y2) N Dys(q) by virtue of (4.14)
and the Bishop-Gromov volume comparison theorem. Set

A= Yqw> l(S) = d(y,/\(s)), d= d(Qaw)'

Now again applying Theorem 2.11 of [5] to (4.15) as in Lemma 4.3 we may
assume in the above that

d
(4.17) [ﬂwmwyum—MM$ﬂmﬂumﬂawwmi
where

U'(I(s); f(y), F(A(5)),1(s)) = cos 8(L(s); £(y), F(A(s)),1(s))

(see (2.11)). On the other hand, since w € D,s(q), noting that d(z2,y2) > 7
and (4.11), we have

(418) { |f(/\(3)) - (f($2) + .S')I < (P(€27n | ¢) Rl)

11— (A(s), VA < ¢lez,n | %, Ra).
Now we set a(s) := é("yy,\(s)(l(s)),i(s)). Then we get I'(s) = cosa(s)
for almost all s by the first variation formula. Note that |cosa(s) —

U1(s);y, A(s))| < wle2,m | ¥, R1) holds by (4.18). Then it follows from
(4.17), (4.18) that

d
/[; I(s)| cos a(s) — cos B(I(s); f(y), f(z2) + s,1(s))|ds

< (19(62777 l ¢1 Rl)'

(4.19)

Now consider y,g,w in Xo satisfying the same conditions as above, and
define A, I(s), a etc. with {(0) = [(0) in the same manner. Then we get

d
Aﬂmwmw—wwu)ﬂwﬂmhwﬂmm

< p(e2,n | ¥, Ry).

(4.20)
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It follows that for 0 < s<d
S126) = @)l < [ W) - Lo o)
= /0 H(s) cos a(s) — I(s) cosa(s)|ds

< [ lts)cosa(s) £u) £(a2) + 1651
~ I(s) cos8(1(s); £y), £ (w2) + 5, (s))lds + lez,n | ¥ By)
<5 [ 16~ Lolds + Fotean | 0. R0),

where C = C(¥, R1) is a positive constant. Now set ¢ := ﬁm

for the last p(ea,n | ¥, R1). We may assume that {(d) + I(d) > ;. First
suppose that [(s) + I(s) > ¢1 for 0 < s < d. Then we get

12(s) - 22(s)] < i—‘f /0 C102(s) — (s)lds + (e | %, Ry).

Now we note the following fact: If |k(s)| < C f; |k(s)|ds + € holds,
then we have |k(s)| < eexp(Cs).

Applying the above to our case it follows that

12(d) — 2(d)| < 9% (2,7 | ¥, R1)-

In general, we set sp := sup{s € [0,d) | I(s) + I(s) < ¢1} and apply the
above argument to the interval [sg,d]. Summing up we get |I?(d) — 1*(d)|
is small, namely

l(d) — ld)| < p(e2,m | ¥, R1),
where (€2, | ¥, R1) merely means that for fixed ¢ and R > 0 we have
ole | x| ¥,R) | 0 as x | 0 and taking € = €(x) | 0. Then recalling
that l(d) = dM(y: w)a!(d) = dXo(ga w) and Id(va) - d(-’ﬂ,yg)l,ld(g,_ﬂl) -
Q(f(z), f(z), f(z2), f(y2),dar(z,z2))| < 272, Lemma 4.4 follows. Note also
that the assertion of Lemma 4.4 holds under the assumption that |f(y;) —

f(zi)| = d(zi, yi) (t = 1,2).
Now for small (1 >)x > 0 we define a distance d, on Z by

N;-1

dy(z,2') := inf{ Z dz(zizi41) | 1€ Z(i =0,... ,N; — 1),

(4.21) ar

20 = 2,2N, = z',Jz(Zi,Zi+1) < X},
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where dz is the induced distance on Z, i.e., Jz(z,z') := dpr(2,2'). Next
noting (2.13), we define a distance dxy on X by

(4.22) dxx((r,2),(r', 7)) := p(r,7", dy (2, 2)),

which is in fact a warped product distance with warping function . Here
note that Q(0,7,0,7',dz(z,2')) = p(r,v,w™'(dz(z,2'))) and therefore

p(r, T’, d-Z(Z; zl)) < Q(O, 7, 03 'rla JZ(Z, zl))

(4.23) 3 -
< P(r’ 7',7 dZ(Z, Z’)) + C(T, T'u d))dz(zs zl)2

holds if dz(z, 2") < 1 with some positive constant C(r,r',v) (see §§2.3).
Now our aim is to show that

(4.24) |da(z,2') — dx x (¥(2), ¥(z))| < @le| x | ¢, R)

for z,z' € Br(p; M), where € > 0 in (4.16) may be arbitrary small, if we
choose sufficiently small § in (4.1), (4.2) for large concentric distance ball,
e.g., of radius R = 30R. For that purpose we take a minimal geodesic
¥ = gz of M parametrized by arclength and a subdivision {v(s;);s; =
;G,i = 0,...,N} of v, where we set | = d(z,z'). Note that (s;) €
Bsr(p; I\I), 7(v(s;)) € Bsr(p; M). Then applying Lemma 4.4 with R; =
4R, we obtain

|ldae (m(v(si))ym(v(si+1)))
- Q(f(7(si))’0> f(7(5i+1)):07dM(7(si)37(si+l)))l <€

Taking a sufficiently large positive integer N := N(x, %, R) it follows that

(4.25) da (m(v(s:)), m(¥(si+1))) < x-
Then from Lemma 4.4 and (4.25), we obtain as in (8]

N-1
dp(z,@') = Y dar(v(s:), ¥(si1)) > dx x(¥(z), ¥(a')) — N,

1=0
where e N may be arbitrarily small if we take € > 0 sufficiently small.
On the other hand, for z,z' € Br(p; M) we may assume that there
exist points (r;,2;)) E R x Z (¢ =0,...,N;) such that
Ny—1
dx (¥ (z), ¥(z")) Z dx (¥ (:), ¥(zis1)
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with

N;—-1
> dy(z, zi41) = dy(w(2), 7(z")),  dm(zi, 2i41) < X5
i=0

where we set x; = ®(r;, z;), namely, (r;,z;) = ¥(z;). Note that |r;| <
2R + %,2; € Byr(p; M), z; € Brr(p; M). Then Lemma 4.4 with (4.23)
implies that

dpr (@i, Tig1) — dx iy (70, 20), (i1, 2i1)) < €+ CXF,
where C = C(%, R) is a positive constant. Since
dy (2i, 2i41) + dx(2i41, 2i42) 2 X
we see that N} < —Ci(%ﬁ. It follows that

Ny-1
dy(z,2’) < Y dy(@izin) < dxx(¥(x), ¥(z')) + Nie + xCCy
i=0

< dx x(¥(z), ¥(z)) + (e | x | ¥, R),

where for fixed R > 0, p(e | x | ¥, R) becomes arbitrary small if we take
first x > 0 small and then choose € = ¢(x) further small. We may proceed
with the remaining argument as in [8], proof of Theorem 1.1, Theorem 1.2.
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