THE TWISTOR SPACE OF DISTRIBUTIONS

GRADIMIR MILJOJKOVIC

- 1. Introduction. In this paper a naturally defined kind of distributions on the twistor spase of distributions over some manifold N is established. It is defined by an ordered pair (D,ω) of a distribution D on the base manifold N and a linear connection ω on it. Concerning integrability of this distribution (denoted by D^{ω}) it is shown that cases dim $D^{\omega} = 2$ and dim $D^{\omega} = \dim N$ are distinguished. Nevertheless D^{ω} is integrable very rare in any case (see theorems 2.2 and 2.4). Moreover consequences of induced action of a gauge transformation on this distribution are also considered. One works in the C^{∞} category.
- **2.** Constructions. Let $\pi_L : L(N) \to N$ be the principal $\mathrm{GL}(n; \mathbb{R})$ bundle of linear frames over an n = p + q-dimensional manifold N. The twistor space of p-dimensional distributions over N is constructed as follows: for the subgroup

$$(2.1) \qquad G = \left\{ \left(\begin{array}{cc} A & B \\ O & C \end{array} \right) \in \operatorname{GL}(n;\mathbb{R}) \,\middle|\, A \in \operatorname{GL}(p;\mathbb{R}), \, C \in \operatorname{GL}(q;\mathbb{R}) \right\}$$

any reduced G-subbundle $Q \subset L(N)$ corresponds to some p-dimensional distribution $D \subset TN$ on the manifold N, [3]. There exists a 1:1 correspondence between such subbundles and the set of sections of a fiber bundle associated with L(N) whose standard fiber is the space $\mathrm{GL}(n;\mathbb{R})/G$. This fiber bundle can be naturally identified with the quotient L(N)/G; and this quotient represents the twistor space Z of p-dimensional distributions over manifold N. This generalized framework is considered in [1] and [4] in another setting.

Fibrations are exposed by

(2.2)
$$L(N) \xrightarrow{\pi_z} Z = L(N)/G \xrightarrow{\pi} N.$$

Thus any p-dimensional distribution $D \subset TN$ on N uniquely determines a global section (also denoted by) $D: N \to Z$ which further defines a reduced G-subbundle $Q := \pi_Z^{-1}(D(N))$. By definition some linear connection ω

on L(N) is reducible to Q iff its horizontal distribution $H^{\omega} \subset TL(N)$ is tangent to Q. Equivalently, ω is reducible to Q iff

$$(2.3) (\pi_Z)_*(H^\omega|_Q) = D_*(TN)$$

holds. In the same manner a horizontal distribution on the space Z is defined by

$$(2.4) (\pi_Z)_*(H^\omega) \subset TZ.$$

Here ω need not be reducible to Q. Consequently if $D^H \subset H^{\omega}$ is the horizontal lift of a distribution $D \subset TN$ defined by the connection ω on L(N), then a distribution $D^{\omega} \subset TZ$ is defined on the space Z as

(2.5)
$$D^{\omega} := (\pi_Z)_*(D^H).$$

Before considering the question of integrability of this distribution first will be proved the following very useful

Lemma 2.1. Let B_i be the standard horizontal vector fields on bundle L(N) defined by a connection ω and basis vectors $u_i \in \mathbb{R}^n$ ($i = 1, \ldots, n$), [2]. Denote by Ω and T the curvature and the torsion of ω respectively (viewed on L(N)). Then the following commutator formula holds.

(2.6)
$$[B_i, B_j] = -T^k(B_i, B_j)B_k - \Omega_l^k(B_i, B_j)E_k^l.$$

Here (E_k^l) is the standard basis in $\mathfrak{gl}(n;\mathbb{R})$, and one identifies (i.e., uses the same letter) elements from $\mathfrak{gl}(n;\mathbb{R})$ and corresponding fundamental fields on L(N) (a convention is $v_1 \wedge v_2 := v_1 \otimes v_2 - v_2 \otimes v_1$).

Proof. Let M be a manifold and (e_{α}) and (ε^{α}) some frame with corresponding coframe on M respectively. Then holds the following relations ([5, p. 26])

(2.7)
$$[e_{\alpha}, e_{\beta}] = C^{\gamma}_{\alpha\beta} e_{\gamma},$$

$$d\varepsilon^{\gamma} = -\frac{1}{2} C^{\gamma}_{\alpha\beta} \varepsilon^{\alpha} \wedge \varepsilon^{\beta}.$$

Here C-symbols are defined by the choice of frame (e_{α}) . Let

(2.8)
$$d\theta^{i} = -\omega_{j}^{i} \wedge \theta^{j} + \frac{1}{2} T_{jk}^{i} \theta^{j} \wedge \theta^{k}$$
$$d\omega_{j}^{i} = -\omega_{k}^{i} \wedge \omega_{j}^{k} + \frac{1}{2} \Omega_{jkl}^{i} \theta^{k} \wedge \theta^{l}$$

be the structure equations of the connection ω . Here $\Omega^i_{jkl} := \Omega^i_j(B_k, B_l)$, $T^i_{jk} := T^i(B_j, B_k)$, and (θ^i) are components of the canonical 1-form on L(N). Because $(\theta^i; \omega^i_j)$ is a (global) coframe on L(N) which corresponds to the frame $(B_i; E^i_j)$, by comparing (2.7) and (2.8) one obtains (2.6).

Let X^{ω} , Y^{ω} and $[X,Y]^{\omega}$ be horizontal lifts to L(N) of vector fields X, Y and [X,Y] on N respectively which are defined by the connection ω on L(N). Then by using (2.6) one finds the following relation

$$(2.9) [X^{\omega}, Y^{\omega}] = [X, Y]^{\omega} - T^k(X^{\omega}, Y^{\omega})B_k - \Omega(X^{\omega}, Y^{\omega}).$$

By this formula one is able to prove the following

Theorem 2.2. Let $D \subset TN$ be a p-dimensional foliation on a manifold N endowed with a torsionfree connection ω by which the distribution $D^{\omega} \subset TZ$ introduced in (2.5) is defined. Suppose that vector fields Y_1 and Y_2 take value in D while Y_3 is any vector field on N. Then the distribution D^{ω} will be integrable if

$$(2.10) R(Y_1, Y_2)Y_3 = fY_3$$

holds. Here R is the curvature tensor of ω while f is a function on N which does not depend on Y_3 .

Proof. From (2.9) it follows that D^{ω} will be integrable iff $\Omega(X^{\omega}, Y^{\omega})$ takes value in \Im , the Lie algebra of G, when X and Y take value in D. But fields X^{ω} and Y^{ω} are right $GL(n; \mathbb{R})$ -invariant, consequently

(2.11)
$$\Omega_{pq}(X^{\omega}, Y^{\omega}) = \operatorname{Ad}(g^{-1})\Omega_{p}(X^{\omega}, Y^{\omega})$$

holds for all $p \in L(N)$, $g \in GL(n; \mathbb{R})$. Thus in order that D^{ω} is integrable $\Omega(X^{\omega}, Y^{\omega})$ must take value in an ideal of $\mathfrak{gl}(n; \mathbb{R})$ which is contained in \mathfrak{F} , e.g.,

(2.12)
$$\Omega(X^{\omega}, Y^{\omega}) = \hat{f}I$$

can hold. where $\hat{f} \in C^{\infty}(L(N))$. This condition is expressed on the level of N in a form given in (2.10).

Because it is supposed that ω is a torsionfree connection, the first Bianchi identity

$$(2.13) R(Y_1, Y_2)Y_3 + R(Y_2, Y_3)Y_1 + R(Y_3, Y_1)Y_2 = 0$$

holds. Hence if in (2.10) also $Y_3 \in D$ and moreover Y_1 , Y_2 , Y_3 are linearly independent, then from (2.13) it follows that $f \equiv 0$. Thus in the setting of Theorem 2.2 we have

Corollary 2.3. If dim D > 2, then D^{ω} is integrable if ω is flat.

On the other hand, from (2.13) and (2.10) it does not follows that there are no nontrivial examples (i.e., ω is not flat) of integrable D^{ω} in case of dim D=2. Important special case is dim $D=\dim N$, i.e., $D^{\omega}=(\pi_Z)_*H^{\omega}$ from (2.4): here there is no need to impose condition that a connection ω is torsionfree because the term $T^k(X^{\omega},Y^{\omega})B_k$ in (2.9) is not troublesome at all now. Consequently the first Bianchi identity does not make restrictions so that the following holds.

Theorem 2.4. The horizontal distribution D^{ω} on the twistor space Z which is introduced in (2.4) is integrable if

$$(2.14) R(Y_1, Y_2)Y_3 = fY_3$$

holds for any vector fields Y_i on N. Here the function f on N does not depend on Y_3 .

One can notice that if ω is a torsionfree connection on L(N) which is reducible to a G-subbundle $Q \subset L(N)$ defined by a foliation $D \subset TN$, then the distribution $D^{\omega}|_{D(N)}$ on the submanifold D(N) is integrable.

3. On gauge-action upon distributions. Let $f: L(N) \to L(N)$ be any gauge-transformation in the bundle L(N). Because its fiber-preserving action commutes with the right action of the group $\mathrm{GL}(n;\mathbb{R})$ on L(N), it follows that f induces in a natural manner a transformation (also denoted by f) on the twistor space Z. Consequently f maps any distribution $D: N \to Z$ into another fD. Then fD = D holds iff f preserves the G-structure $Q \subset L(N)$ which corresponds to D. On the other hand f acts naturally upon TL(N) and further upon TZ. In this setting we have

Theorem 3.1. If the subbundle $Q \subset L(N)$ which corresponds to a distribution $D \subset TN$ is left invariant by a gauge-transformation f, and some connection ω on L(N) is reducible to Q, then the distribution $D^{\omega}|_{D(N)} \subset TD(N)$ is preserved under the action of f upon TZ.

Proof. A sufficient condition that f preserves the distribution $D^H \subset TL(N)$ is that it preserves the connection ω , i.e., its horizontal distribution (if $D^H \equiv H^{\omega}$, i.e., $D \equiv TN$, this condition is also necessary). But if fD = D and ω is reducible to Q then $f^*\omega$ is also reducible to Q. Consequently by (2.3)

$$(\pi_Z)_*(H^{\omega}|_Q) = (\pi_Z)_*(H^{f^*\omega}|_Q)$$

where from follows the statement of the theorem.

From this Theorem it follows that if fQ = Q and ω is reducible to Q, then

$$D^{f^*\omega}|_{D(N)}=D^\omega|_{D(N)}.$$

From this does not follows that $D^{f^*\omega} = D^{\omega}$ on the whole space Z. A sufficient condition for it is, say, that $f^*\omega - \omega$ take value in the center $\{cI \mid c \in \mathbb{R}\}$ of $\mathfrak{gl}(n;\mathbb{R})$.

REFERENCES

- L. B. BERGERY and T. OCHIAI: On some generalization of the construction of twistor spaces, L.M.S. Symposium on Global Riemannian Geometry, Durham, 1982.
- [2] S. KOBAYASHI and K. NOMIZU: Foundations of Differential Geometry, vol. I and II, Interscience Publ., 1963-1969.
- [3] S. KOBAYASHI: Transformation Groups in Differential Geometry, Springer-Verlag, 1972.
- [4] N. O'BRIAN and J. RAWNSLEY: Twistor spaces, Annals of Global Analysis and Geometry 3 (1985), 29-58.
- [5] K. YANO and M. KON: Structures on Manifolds, World Scientific, 1984.

BAR GIORA 47, HAIFA ISRAEL

(Received March 17, 1997)