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ALGEBRAIC LOOPS ON FIBREWISE POINTED SPACES
Rusako FUJINO

1. Introduction. In ordinary homotopy theory, the set (K, X)
of homotopy classes of based maps from K to X is a group under certain
conditions on either K or X. For example, if X is a group-like space, then
7(K,X) is a group. On the other hand, if X is an H-space, then n(K, X)
is a group under some conditions on K, as the following shows.

Recall that an algebraic loop is a set M together with a binary oper-
ation, written multiplicatively, having the following two properties:

(i) there is a two-sided identity element e,
(ii) for every two elements a,b € M the equations
a-z=b, y-a=19,
admit unique solutions z,y in M. .
The following theorem was proved by James. (See [5, Theoreml.1].)

Theorem 1.1. Let K be a CW-space and let X be a path-connected
H-space. Then n(K,X) is an algebraic loop.

Recall that the Lusternik-Schnirelmann category, catX, of X is the
least number of open subsets, each contractible in X, required to cover X.
For example, catX = 1 if and only if X is contractible.

The following theorem was proved by O’Neill. (See [7, Theorem3.1].)

Theorem 1.2, Let K be a connected CW-space and let X be an
H-space. If catK < 3, then n(K, X) is a group.

Recall that a group T is said to be nilpotent if for some n > 1 there
exists a sequence
I'=T1>...00, ={e}

of subgroups such that the commutator of I' and T'; is contained in T;4;
for i = 1,...,m — 1. Such a sequence is called a central chain of length
n — 1 for the group I', and the minimum length of such chains is called the
nilpotency class of T'. ‘

The following theorem was proved by G. W. Whitehead.(See [10].)
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Theorem 1.3. ' Let K have finite Lusternik-Schnirelmann category
and let X be a path-connected group-like space. Then the group m(K,X) is
nilpotent of class less than catK.

The paper is organised as follows. The above three theorems are
generalized to the fibrewise pointed theory. In particular, in Section 2 we
introduce the basic concepts of fibrewise pointed theory. In Section 3 we
obtain the generalization of Theorem 1.1. In Section 4 we describe the
fibrewise pointed category, to which the Lusternik-Schnirelmann category
is generalized. In Section 5 we obtain the generalizations of Theorem 1.2
and Theorem 1.3.

2. Fibrewise pointed spaces. We work over a base space B. By
a fibrewise pointed space over B, we mean a space X together with maps

By x-%B

such that po s = 1g. We refer to s as the section and p the projection.
When p is a fibration we describe X as fibrant. We regard A x B, for any
pointed space A, as a fibrewise pointed space with section given by the
basepoint of A.

If X is a fibrewise pointed space over B, the section embeds B as a
subspace and one may refer to the pair (X, B).

If X;,7 = 1,2, is a fibrewise pointed space over B with section s;
and projection p;, a fibrewise pointed map ¢: X3 — X2 is a map such
that ¢ o s;7 = 82 and ps o ¢ = p;. The notion fibrewise pointed homotopy
is defined similarly and denoted by ~Z. A fibrewise pointed homotopy
into the fibrewise pointed constant map sp o p; is called a fibrewise pointed
nulhomotopy.

The fibrewise product X, X g Xo, defined in the usual way as the pull-
back of p; and po, is considered as a fibrewise pointed space with section
given by (s1,s2). The subspace

X1 XB SQ(B)Usl(B) xg X9 C X1 Xp Xo

is denoted by X; Vg X2 and called the fibrewise wedge.

The set of fibrewise pointed homotopy classes of fibrewise pointed
maps of X into Y is denoted by 75(X,Y). The operation of composition
for fibrewise pointed maps induces a map

mB(Y,Z) x nB(X,Y) = n5(X, Z)
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for fibrewise pointed spaces X,Y, Z over B. There is a natural equivalence
ﬂ'g(xayl XB }/:‘2) = WE(X,Yl) X Wg(XaYa)

for all fibrewise pointed spaces X, Y, Y2 over B.

Given a fibrewise pointed space X over B, a fibrewise pointed map
m: X xg X — X is called a fibrewise multiplication. If m is fibrewise
pointed homotopic to mot, where t: X xg X — X xg X switches factors,
we say that m is fibrewise homotopy-commutative. If the two maps

mo(mx1lyx), mo(lxy xm): X xp X xgX =+ X

are fibrewise pointed homotopic, we say that m is fibrewise homotopy-
associative. If the two maps

mo(ly xc)oA, mo(ecx1x)oA: X - X

are fibrewise pointed homotopic to 1x, where c is a fibrewise pointed con-
stant map, we say that m is a fibrewise Hopf structure on X and that
X, with this structure, is a fibrewise H-space. A fibrewise homotopy right
inverse for a fibrewise multiplication m on X is a fibrewise pointed map
o: X — X such that mo (1x x o) o A: X — X is fibrewise pointed nul-
homotopic. Fibrewise homotopy left inverses are defined similarly. When
m is fibrewise homotopy-associative, a fibrewise homotopy right inverse is
also a fibrewise homotopy left inverse, and the term fibrewise homotopy
tnverse may be used.

A fibrewise homotopy-associative fibrewise H-space for which the fi-
brewise multiplication admits a fibrewise homotopy inverse is called a fi-
brewise group-like space.

A fibrewise multiplication on the fibrewise pointed space Y over B
determines a multiplication on the pointed set ﬁg (X,Y) for all fibrewise
pointed spaces X over B. If the former is a fibrewise Hopf structure on Y,
then the latter has the following property:

[£1-lel = [f] =[] - [£]-

If the former is fibrewise homotopy-commutative, then the latter is com-
mutative, and similarly for the other conditions mentioned above. Thus
78(X,Y) is a group if Y is fibrewise group-like.
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3. Generalization of Theorem 1.1. In this section, we prove
the following theorem which is a generalization of Theorem 1.1.

Theorem 3.1. Let B be a CW-space, K a fibrant fibrewise pointed
space over B with CW-fibres, and X a fibrant fibrewise H-space over B
such that X, as a space, is path-connected. Then ﬂg(K,X) 15 an algebraic
loop.

Note that a fibrant fibrewise pointed space over a CW-space is also a
CW-space if the fibre is a CW-space.(See [3].)

The following proposition is a somewhat stronger version of Proposi-
tion 9.1 of [3].

Proposition 3.2. Let B be a CW-space, (K, L) a fibrant fibrewise
pointed pair over B with CW-fibres, and (X,Y) a fibrant fibrewise pointed
pair over B such that both X and Y, as spaces, are path-connected. If
m(X,Y) =0 and for alln > 1, (X,Y) is n-simple and

H"(K,L;m,(X,Y)) =0,
then every fibrewise pointed map f: (K,L) — (X,Y) is compressed into Y
by a fibrewise pointed homotopy.

The following proposition is also a stronger version of Theorem 9.2 of
[3]-

Proposition 3.3. Let B be a CW-space, K a fibrant fibrewise
pointed space over B with CW-fibres, and X,Y fibrant fibrewise H-spaces
over B such that both X and Y, as spaces, are path-connected. Let f: X —
Y be an n-connected fibrewise pointed map. Then the induced map

fo: TB(K,X) - n3(K,Y)

is injective when dim K < n, and surjective when dim K < n.

In particular, we have

Corollary 3.4. Let B be a CW-space, K a fibrant fibrewise pointed
space over B with CW-fibres, and X,Y fibrant fibrewise H-spaces over B
such that both X aendY, as spaces, are path-connected. Let f: X — Y bea
weak homotopy equivalence fibrewise pointed map. Then the induced map

fo:mB(K, X) > mB(K,Y)
15 bijective.

We use these results to prove Theorem 3.1.



ALGEBRAIC LOOPS ON FIBREWISE POINTED SPACES 139

Proof of Theorem 3.1. The class of fibrewise pointed constant maps
is a two-sided identity of 73(K,X). We now show that for every two
elements a, 8 € 78 (K, X), the equations

ﬂ’a:/i O!'€=ﬁ

admit unique solutions 7,£ in wg(K,X). Let m: X xg X — X be a
fibrewise Hopf structure on X. Then the fibrewise pointed map

p:XXBX—)XXBX,
defined by p(z,y) = (m(z,y),y), for z,y € X, induces a map
pe: TH(K, X xg X) - n5(K,X xp X),

given by p.(e,3) = (a- 3,0) for a,83 € wg(K,X), since we can identify
TB(K,X xp X) with 7B(K, X) x nB(K,X). Since X is fibrant, X xp X
is also fibrant.

We now consider the homotopy exact sequences of fibrations:

see —)7ri+1(B)—)7Ti(Xb X Xb)—->7l'i(X XB X)—)'iri(B)—Hri_l(Xb x Xb)—) e

|| l(lebxxb)' lp, “ l(plxbxxb).

-+ 2 mip1(B) = 7i(Xp X Xp)—=mi(X xp X)—=mi(B)omi—1(Xp x Xp)— -

The induced map
(p bexxb)*: TFi(Xb X Xb) — Tri(Xb X Xb), where b € B,
is bijective if ¢ > 1, and injective if ¢ = 0. Thus

p.:’)‘ri(X XBX)—)W;_(X XBX)

is an isomorphism for all z > 0, that is, p is a weak homotopy equivalence.
By Corollary 3.4, we see that

pe: TS (K, X xp X) > 75(K, X xp X)

is a bijection. Hence for the element (3, a) € 7B(K,X xp X), there exists
a unique element v = (n,w) € 75(K,X xp X) such that p.(y) = (8, ),
then - w = @ and w = a. Hence there exists a unique solution 7 of
n-a = . A similarly argument shows that there exists a unique solution

Eofa-£=0.
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4. Fibrewise pointed category. In this section we recall some
results from [6].

We describe a subset U of a fibrewise pointed space X over B as
fibrewise pointed categorical if U contains the section and the inclusion
U — X is fibrewise pointed nulhomotopic.

The fibrewise pointed category, cath , of a fibrewise pointed space
X over B is defined to be the least number of fibrewise pointed categorical
open sets required to cover X. For example, cath = 1if and only if X is
fibrewise pointed contractible.

Definition 4.1. The fibrewise pointed space X over B is a fibrewise
absolute neighbourhood retract (fibrewise ANR for short) if X can be fi-
brewise pointed embedded as an open subspace of A x B for some absolute
retract A.

Of course, an open subspace of a fibrewise ANR is again a fibrewise
ANR. We shall be using the following property of fibrewise ANRs. Let F
be a fibrewise pointed space such that E x I” is normal, as a space, for
r =0,1,.... Let us call such a fibrewise pointed space fully normal. Let F
be a closed subspace of £. If ¢: E — X is a fibrewise pointed map and
Yi: ' — X is a fibrewise pointed homotopy such that ¥y = ¢ | F, then
¥; can be extended to a fibrewise pointed homotopy ¢;: E — X such that
¢ = ¢.

If X is a fibrewise pointed space such that X is normal, as a space,
then any open covering of X by fibrewise pointed categorical subsets can
be shrunk to a closed covering. If, moreover, X is a fibrewise ANR, then
any closed covering of X by fibrewise pointed categorical subsets can be
expanded to an open covering of X by fibrewise pointed categorical sub-
sets, and so we may replace the word “open” by the word “closed” in the
definition of fibrewise pointed category.

We now show that under certain conditions, fibrewise pointed cate-
gories can be characterised in terms of the compressibility of the diagonal.
Specifically, consider the fibrewise topological products Il X,n = 1,2,...,
of the fibrewise pointed space X with itself. Let I} (X, B) C [T X denote
the subspace for which the fibre over each point b € B is the fat wedge

" (p~'(b), s(b)).

Then IT% X contains the diagonal AX of X, while IT} (X, B) contains the
diagonal AB of B. In other words, the pair (I3 X,II3(X, B)) contains the
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diagonal (AX, AB). Note that

H%+1X — p* %X,
%t (X, B) = p*IT(X, B) UTTE X x5 B.

Proposition 4.2 ([6, Proposition 6.1]). Let X be a fibrewise pointed
space over B. Suppose that X admits a fibrewise pointed categorical neigh-
bourhood of B. If, for some n > 1, the diagonal

A X 5 IIEX

can be compressed into IIy(X,B) by a fibrewise pointed homotopy, then
cath <n.

Proposition 4.3 ([6, Proposition 6.2]). Let X be a fibrewise pointed
space over B with a closed section such that X, as a space, is fully normal.
If cath < n for somen > 1, then the diagonal

A X »TIgX
can be compressed into II}(X, B) by a fibrewise pointed homotopy.

5. Generalizations of Theorem 1.2 and Theorem 1.3. We
first prove the following theorem which is a generalization of Theorem 1.2.

Theorem 5.1. Let B a CW-space, K a fibrant fibrewise pointed
space over B with CW-fibres and a closed section such that K, as a space,
is fully normal, and X a fibrant fibrewise H-space over B such that X, as
a space, is path-connected. If cath <3, then ﬁg(K,X) is a group.

For example, wg(K ,X) is commutative whenever cath < 2. (See
[6, Section 5].)

Proof. By Theorem 3.1, the set WE(K ,X) is an algebraic loop and
hence it suffices to show that 75 (K, X) is associative. Let i: I (K, B) —
I3 K and j: I3(X, B) —» I3 X be the inclusion maps, and let A: K —
I3 K be the diagonal map. By Proposition 4.3, there exists a fibrewise
pointed map k: K — II34(K, B) such that A ~ {0 k. By the assumption,
X is a fibrewise H-space over B. Let m: X xg X — X be its fibrewise
multiplication. Then we have

mo(ly Xxm)oj~mo(mx lx)oj.
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Let f, g, h: K — X be any three fibrewise pointed maps and denote by
IT%(f,9,h): I5(K, B) — II3(X, B) the fibrewise pointed map induced by
fxgxh:I3K — % X. Consider the element [f]-([g] - [A]) € n5(K, X).
We have

[f]-(lg] - [B)) = [mo (1x x m)o (f x g x k) o A]
=[mo(ly xm)o(f xgxh)oiok]
=[mo(lx XM)OJ'OH?I’B(f:gah)Ok]
:[mo('mx 1X)ojoH%(f,g,h)°k]
= ([£]-[g]) - [A]-

Therefore, 75 (K, X) is associative, and this proves the theorem.

The following proposition is a generalization of Theorem 1.3.

Proposition 5.2 ([6, Proposition 5.1]). Let X be a fibrewise group-
like space over B. Let K be a fibrewise pointed space over B with a closed
section. Suppose that K is a fibrewise ANR and, as a space, is fully normal.
Then the group mB(K, X) is nilpotent of class less than catS K.

We now consider the nilpotency class of 75 (K, X) which is an alge-
braic loop.

Definition 5.3. Let I' be an algebraic loop.
(i) If z,y € T, their commutator is the element

[z.9) = (z-9) - (y-2)7",
where (y-z)~! is the right inverse of (y-z), that is, (y-z)-(y-z)"! = e.
(ii) T is said to be nilpotent if for some n > 1 there exists a sequence
I'=T12..0T 41 ={e}

of subloops such that the commutator of I' and I'; is contained in
T;4q for i = 1,...,n. The least such number n is called the nilpotency

class of .

Let B be a CW-space and X a fibrant fibrewise H-space over B with
CW-fibres such that X, as a space, is path-connected. By Theorem 3.1, the
set 75 (X, X) is an algebraic loop. Let [0] € 75(X, X) be a right inverse
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of [1x]. Then o is a fibrewise homotopy right inverse for m and we denote
z7! = o(z). Let m: X xg X — X be a fibrewise Hopf structure on X.
We define the commutator map

Cm:XXBX—)X

by Cm(z,y) = (zy)(yz) ™! = m(m(z,y), o(m(y,z)))-
Then we have

Lemma 5.4. Let B be a CW-space and X a fibrant fibrewise H-
space over B with CW-fibres and a closed section such that X, as a space,
is path-connected. Then the restriction Cpn |xvgx 1s fibrewise pointed nul-
homotopic.

Definition 5.5. Let K and X be fibrewise pointed spaces over B. If
f.g: K — X are fibrewise pointed maps, their commutator is the element

[f,9]=Cm0(f><g)0A:K—)X.

Remark 5.6. If o is a fibrewise pointed right inverse, for every
element [f] € wg(K ,X), where K and X are fibrewise pointed spaces over
B, the element [0 o f] is a right inverse of [f]. Thus the commutator
[[#],[g]] of the homotopy classes [f] and [g] in the algebraic loop 75 (K, X)
as defined in Definition 5.3 is the same as the fibrewise pointed homotopy
class of the commutator [f,g] of the fibrewise pointed maps f and g as
defined in Definition 5.5.

Theorem 5.7. Let B be a CW-space, K a fibrant fibrewise pointed
space over B with CW-fibres and a closed section, and X a fibrant fibrewise
H-space over B with CW-fibres and a closed section such that X, as a space,
is path-connected. Suppose that K is a fibrewise ANR and, as a space, is
fully normal. Then the algebraic loop w5(K,X) is nilpotent of class less
than cath.

Proof. Since K is normal, we can define the fibrewise pointed
category in terms of closed, rather than open, fibrewise pointed categorical
coverings. Let {Ai,...., Ay} be such a covering, where n:cath and let

I'; = Ker{Res: wg(K,X) B4 u.. U4, X)) fori=1,...,n,



144 R. FUJINO

where Res is the map induced by the inclusion 4; U...U 4; — K. The
fibrewise Hopf suructure m determines a binary operation on wg(Al U
..U 4;,X) and the class of fibrewise pointed constant maps is a two-
sided identity. The map Res is a homomorphism, that is, Res(a,3) =
Res(a) - Res(8), Res(e) = e so that I'; is a subloop of I' = n5(K, X).
Since A; U ...U A, = X, we have I', = {e}. Let [f] be any element of T,
p a projection of K and s,t sections of K, X, respectively. Since 4, is a
fibrewise pointed categorical subset, we have

i:gsoplz‘h

where i: A; = K is the inclusion map. Therefore

fla,=foi~F fosop|a=top|a,

that is, f |4, is fibrewise pointed nulhomotopic, which shows that [f] € I';
and so I' =TI';. An analogous argument proves that

I'= Ker{Res: (K, X) — wg(Ai,X)}

forany i =2,...,n.
For i < n, let [f] and [g] be elements of ' and I';, respectively. By the
assumption, there exists an element f' € I' with f' = sop on A;4; such
that f ~8 ' and an element ¢’ € T; with ¢’ = sop on A; U...U 4; such
that g ~8 ¢’. Then the commutator [f,g] is fibrewise pointed homotopic
to [f',4'], that is, to the following composition:
K -2 Kxpk 229 xxpx %= x
Since the composition (f' x g') o A maps A; U...U 4;4, into X Vg X, by
Lemma 5.4, we have
[f,g] =B sop on 43 U...4;41.
Therefore
(f,gl ~B sopon A; U...Ai41.
Hence the commutator [[f], [¢]] lies in I';41. This proves the theorem.

Acknowledgement. The present paper is the English version of
the author’s Master thesis written at the Osaka City University under the
supervision of Professor H. Oshima, to whom the author is deeply grateful.



—_——
[
—_——

[4]
(5]
[6]
(7]
(o]

(10]

ALGEBRAIC LOOPS ON FIBREWISE POINTED SPACES 145

REFERENCES

I. M. JaMEs: Fibrewise Topology, Cambridge Univ. Press, Cambridge, 1990.

1. M. JaMes: General Topology and Homotopy Theory, Springer-Verlag, New York
Berlin Heidelberg Tokyo, 1984.

1. M. JaMmEs: Introduction to Fibrewise Homotopy Theory, Chapter 4 of Handbook
of Algebraic Topology, North-Holland, 1995.

I. M. JAMES: On category, in the sense of Lusternik-Schnirelmann, Topology 17
(1978), 331-348.

I. M. JAMES: On H-spaces and their homotopy groups, Quart. J. Math. Oxford
Ser.(2) 11 (1960), 161-179.

I. M. JaMmes AND J. R. Morris: Fibrewise category, Proc. Roy. Soc. Edinburgh
199A (1991), 177-190.

R. C. O’NEILL: On H-spaces that are CW-complexes I, Illinois J. Math. 8 (1964),
280-290.

E. H. SpaNIER: Algebraic Topology, McGraw-Hill, 1966.

M. MiMURA-H. Topa: Homotopy Theory, Kinokuniya-shoten, 1975, (in
Japanese).

G. W. WHITEHEAD: Elements of Homotopy Theory, Springer-Verlag, New York
Heidelberg Berlin, 1978.

DEPARTMENT OF MATHEMATICAL SCIENCE

THE GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY

OKAYAMA UNIVERSITY
OKAYAMA 700-8530
JAPAN
E-mail: rfujino@math.okayama-u.ac.jp

(Received June 23, 1998)



