NOTE ON SCHREIER SEMIGROUP RINGS

RYÛKI MATSUDA

Lemma 1 ([2]). Let D be an integrally closed domain, and let T be a multiplicative system of D generated by completely primal elements. If the quotient ring D_T is a Schreier ring, then D is a Schreier ring.

For elements s, t of a g-monoid S, if t = s + s' for some $s' \in S$, then s is called a divisor of t. For elements s, t_1, \dots, t_n of S, if s is a divisor of t_1, \dots, t_n , then s is called a common divisor of t_1, \dots, t_n . The group $\{s_1 - s_2 \mid s_1, s_2 \in S\}$ is called the quotient group of S, and is denoted by q(S). We note that q(S) is a totally ordered abelian group ([3, COROLLARY 3.4]). An element x of q(S) is called integral over S, if $nx \in S$ for some $n \in \mathbb{N}$. If every integral element of q(S) is contained in S, then S is called an integrally closed semigroup. Let G be a torsionfree abelian (additive) group, and Γ a totally ordered abelian group. A homomorphism v of G to Γ is called a valuation on G. The semigroup $\{x \in G \mid v(s) > 0\}$ is called the valuation semigroup of G associated with v. A valuation semigroup of q(S) which contains S is called a valuation oversemigroup of S. Let c be an element of S. Assume that, if c is a divisor of $a_1 + a_2$ (for $a_1, a_2 \in S$), then c is a sum of a divisor of a_1 and a divisor of a_2 . Then c is called a primal element of S. S is called a Schreier semigroup if S is an integrally closed semigroup in which every element is primal. We

consider the following condition:

- (*) For every finite subsets $\{s_1, \dots, s_n\}, \{t_1, \dots, t_m\}$ of S and an element s of S, if s is a common divisor of $s_1+t_1, s_1+t_2, \dots, s_i+t_j, \dots, s_n+t_m$, then s is a sum of a common divisor of s_1, \dots, s_n , and a common divisor of t_1, \dots, t_m .
- If S is integrally closed and satisfies the condition (*), then S is a Schreier semigroup.
- **Lemma 2** ([3, THEOREM 12.8]). S is integrally closed if and only if S is the intersection of all the valuation oversemigroups of S.
- Let v be a valuation on q(S). Let $f = \sum_{i=1}^{n} a_i X^{s_i}$ be an element of D[X; S], where each $a_i \neq 0$ and $s_i \neq s_j$ for $i \neq j$. We set $v^*(f) = \inf_i v(s_i)$.
- **Lemma 3.** (1)([3, THEOREM 15.7]) v^* naturally induces a valuation on q(D[X;S]).
- (2)([3, COROLLARY 12.11]) D[X; S] is integrally closed if and only if D is integrally closed and S is integrally closed.
- **Lemma 4.** (1)([4, (4.5)PROPOSITION]) Let G be a torsion-free abelian group. Then D[X;G] is a Schreier ring if and only if D is a Schreier ring.
- (2)([4, (4.6)PROPOSITION]) D[X; S] is a Schreier ring if and only if D and K[X; S] are Schreier rings and S is a Schreier semigroup, where K = q(D).
- **Lemma 5.** Let k be a field. If k[X; S] is a Schreier ring, then S satisfies the condition (*).
- *Proof.* Let $s, s_1, \dots, s_n, t_1, \dots, t_m$ be a finite number of elements of S such that s is a common divisor of $s_1 + t_1, s_1 + t_2, \dots, s_i + t_j, \dots, s_n + t_m$. Set $f = X^{s_1} + \dots + X^{s_n}$ and $g = X^{t_1} + \dots + X^{t_m}$. Then X^s is a divisor of fg in k[X;S]. Hence there exist a divisor f_1 of f and a divisor g_1 of g such that $X^s = f_1g_1$. Noting that S is a subsemigroup of a totally ordered abelian group g(S), we may assume that $f_1 = X^a$ and $g_1 = X^b$ for $a, b \in S$. It follows that a is a common divisor of s_1, \dots, s_n , and b is a common divisor of t_1, \dots, t_m , and a + b = s. Therefore S satisfies the condition (*).

Lemma 6. Let k be a field, and let S be an integrally closed semi-group which satisfies the condition (*). Then k[X;S] is a Scheier ring.

Proof. By Lemma 3(2), k[X;S] is integrally closed. Let $s \in S$. We will show that X^s is a primal element of k[X;S]. Thus let f,g be nonzero elements of k[X;S] such that $fg = X^s h$ for some $h \in k[X;S]$. Set $f = \sum_{1}^{n} a_i X^{s_i}, g = \sum_{1}^{m} b_i X^{t_i}$, where each a_i and b_j are non-zero elements of $k, s_i \neq s_j$ for $i \neq j$, and $t_k \neq t_l$ for $k \neq l$. Let $1 \leq k \leq n$, and $1 \leq l \leq m$. Let V be a valuation oversemigroup of S, and let v be the valuation on g(S) associated with V. Then we have

$$v(s_k) + v(t_l) \ge v^*(f) + v^*(g) = v^*(X^s h) = v(s) + v^*(h).$$

It follows that $v(s_k+t_l)\geq 0$, and hence $s_k+t_l-s\in V$. Since V is arbitrary, $s_k+t_l-s\in S$ by Lemma 2. Hence s is a divisor of s_k+t_l . Since k and l are arbitrary, s is a common divisor of $s_1+t_1, s_1+t_2, \cdots, s_i+t_j, \cdots, s_n+t_m$. Hence there exist a common divisor a of s_1, \cdots, s_n , and a common divisor b of t_1, \cdots, t_m such that s=a+b. Then X^a is a divisor of f, X^b is a divisor of g, and $X^aX^b=X^s$. Therefore X^s is a primal element of k[X;S]. Since s is arbitrary, we see that, for every element s of s, s is a completely primal element of s, s is a completely primal element of s, s is a completely primal element of s, s is a completely primal element, and we have s is a completely primal element, and we have s is a Schreier ring. By Lemma 1, s is a Schreier ring.

Lemmas 5 and 6 imply the following,

Proposition 7. Let k be a field. Then k[X;S] is a Schreier ring if and only if S is an integrally closed semigroup which satisfies the condition (*).

Lemma 4 (2) and Proposition 7 imply the following,

Theorem 8. D[X;S] is a Schreier ring if and only if D is a Schreier ring, S is an integrally closed semigroup which satisfies the condition (*).

REFERENCES

- L. CHOUINARD: Krull semigroups and divisor class groups, Can. J. Math. 33 (1981), 1459-1468.
- [2] P. Cohn: Bezout rings and their subrings, Proc. Camb. Phil. Soc. 64 (1968), 251-264.

- [3] R. GILMER: Commutative Semigroup Rings, The Univ. Chicago Press, 1983.
- [4] R. MATSUDA: Note on torsion-free abelian semigroup rings, Bull. Fac. Sci. Ibaraki Univ. 20 (1988), 51-59.
- [5] R. MATSUDA: Commutative Ring Theory, Lecture Notes on Pure and Appl. Math. 185, Marcel Dekker, 1997, 387-399.
- [6] D. NORTHCOTT: Lessons on Rings, Modules and Multiplicities, Camb. Univ. Press, 1968.

DEPARTMENT OF MATHEMATICAL SCIENCES
IBARAKI UNIVERSITY
MITO, IBARAKI 310-8512, JAPAN

(Received November 28, 1997)