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TENSOR PRODUCTS OF COMPLEXES

EpGcAR E. ENOCHS and J. R. GArcia ROZAS*

1. Preliminaries. In this note we introduce a new tensor product
functor in the category of complexes. We show that this tensor product
is left adjoint to the Hom functor properly modified. With this tensor
product we study flat complexes, pure exact sequences of complexes, pure
injective complexes and give a complete description of flat pure injective
complexes over a commutative noetherian ring. Also we define Gorenstein
flat complexes using this new tensor product and we prove that over a
commutative Gorenstein ring any complex has a Gorenstein flat cover.

In this article C will be the abelian category of complexes of left R-
modules. This category has enough projectives and injectives. This can be
seen from the fact that any complex of the form

e 0o M8 M S0

with M projective (injective) is projective (injective). For objects C and D
of C, Hom(C, D) is the abelian group of morphisms from C to D in C and
Ezt*(C, D) for ¢ > 0 will denote the groups we get from the right derived
functor of Hom (the definition of Hom(C, D) will be modified in the next
section).
A complex
N, £ ANl o SN

will be denoted C. We will use subscripts to distinguish complexes. So if
{Ci}ier is a family of complexes, C; will be

-1 0 1
.'._)Ci_léﬁ C?.J_)Cilé—).‘..
Given M a left R-module, we will denote by M the complex

---0—;0—)MﬁM—>O—>O---,

with the M’s in the —1 and 0-th position. Also we mean by M the complex
with M in the 0-th place and 0 in the other places. Given a complex C
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and an integer m, C[m] denotes the complex such that C[m]* = C™*" and
whose boundary operators are (—1)™§™ 1™,

We note that R is a subcomplex of the projective complex R with
quotient R[1]. An element of Horri(ﬁ, C) corresponds to an element z €
Z%(C) which will be a boundary of C if and only if the corresponding map
R — C can be extended to R — C. Hence Ext!(R[1],C) = H°(C). More
generally, Ezxt'(R[n],C) = H-"*1(0).

We will say that a complex C is finitely generated if, in case C =
zt'e ; Di. with D; € C subcomplexes of C, then there exists a finite subset
J € I'suchthat C =) ;. ;D;.

We will say that a complex C is finitely presented if C is finitely
generated and for any exact sequence of complexes0 - K - L — M — 0
with L finitely generated, K is also finitely generated.

Let (F,d) be a complex of left R-modules. We will say that F is a
flat complex if F' is a direct limit of projective complexes. We know that F'
is flat if and only if F is exact and Ker(8*) is flat for all i € Z ([5, Theorem
2.4]). Note that a flat complex F with F* finitely presented in R-Mod
for all i € Z (but F doesn’t have to be a finitely presented complex) is
projective

Let C be a complex of left R-modules (resp. of right R-modules) and
let D be a complex of left R-modules. We will denote by Hom'(C, D) (resp.
C ® D) the usual homomorphism complex (resp. tensor product) of the
complexes C and D.

Remember, [1], that a complex F' is called DG-flat if F" is flat Vn € Z
and for any exact complex E of right R-modules, the complex E ® F' is
exact. A complex D is called DG-injective (resp. DG-projective) if D"
is injective (resp. projective) Vn € Z and for any exact complex E, the
complex Hom'(E, D) is exact (resp. Hom' (D, E) is exact).

We say that a complex (C,d) is cotorsion if Ezt!(F,C) = 0 for any
flat complex F, and (C,d) is DG-cotorsion if C is exact and Ker(&') is
cotorsion in R-Mod for all < € Z.

2. Some canonical isomorphisms. Given two complexes C,
D, Hom(C, D) = Z°(Hom (C, D)). We now modify the definition and let
Hom(C,D) = Z(Hom (C, D)). We then see that Hom(C, D) can be made
into a complex with Hom(C, D)™ the abelian group of morphisms from C
to D[m] and with boundary operator given by: f € Hom(C, D)™, then
§™(f): C = D[m + 1] with 6™(f)" = (—-1)™dép o f", Vn € Z.

If C is a complex of right R-modules and D is a complex of left R-
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modules, let C ® D be the usual tensor product of the complexes. We

"D
define C ® D to be (Ce D)

m. Then with the maps

(C® D)* (C® D)"*!
B»(C® D)  B"'(C® D)’

t®y—dc(z)Qy

(C® D)*
B"(C ® D)
We note that the new functor Hom(C, D) will have right derived
functors whose values will be complexes. These values should certainly be

denoted Ezt'(C, D). It is not hard to see that Ezt'(C, D) is the complex

where z ® y is used to denote the coset in , wWe get a complex.

.-+ = Ezt'(C,D[n — 1)) = Ezt'(C,D[n]) = Ezt'(C,D[n+1]) = ---,

with boundary operator induced by the boundary operator of D.

For C a complex of left R-modules we have two functors —®C': Cp —
Cz and Hom(C,—): rC — Cgz, where Cg (resp. pC) denotes the category of
complexes of right R-modules (resp. left R-modules).

The following result shows that the above functors have similar prop-
erties to the functors defined for modules.

Proposition 2.1. Gwen complezes E, C, D, we have the following
isomorphisms of complezes:
1) Hom(C ® D, E) = Hom(C, Hom(D, E)).
2) If R is commutative, C® D = D Q C.
3) C(PRE)~(C®D)®E.
4) M[n]®C = M ®g C[n], VM € Mod — R.
5) (1i_1>n1l/I,-) ®C= l'i)n(.Mi ® C) where {M;} is a directed family of
complezes of right R-modules.
6) Hom(M|n),D) = Homg(M,D)[-1 — n] and

Hom(D, M([n]) = Homg(D, M)[-n]
for any M € R-Mod.

Proof. 1) We define an isomorphism of complex of abelian groups
in the following way. Given m € Z, we consider

¢™: Hom(C ® D,E)"™ — Hom(C, Hom(D, E))™,

f:C®D = Elm] — (f): C —» Hom(D, E)[m],
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for n € Z,
¢™(f)": C" — Hom(D,E)™" gz ¢™(f)"(z): D = E[m +n]
and for k € Z

(¢m(f)n($))k Dk N Em+n+k y - (_l)p(m,n,k)fn-l-k(l_@y)

where p(m,n, k) = k + ( n—;m)

2) For m € Z we define
y™: (C® D)™ > (D& C)™

as Pz ® y) = (—1)24y ® z where z € C?, y € D!, d+t = m, and

d t m+1
a(d,t)—(2)+(2)+( 9 )
3) Given m € Z, we take (z®y)®z € (C®D)QE)™ with z € C4, y € D,
z € E' and d+t+1 = m. We define h™: ((C®D)®E)™ — (C®(DX®E))™
as h™((z®@y) ®2) = (-1)!z ® (y ® 2).
Large calculations show that the maps defined in (1), (2) and (3) are iso-
morphisms of complexes.

(4) M ® C is formed from the diagram

MeC'—MeC!

MC'—MeC!

If we let D be the direct sum of all the bottom M ® C™’s from the way the
boundary of M ® C is defined we see that if 1@y € M ® C" (with M @ C™

from the top row), then for some k € Z,

t®y+BM®C)=(-1)z®dy)+BMeC)

with z ® 6(y) € M ® C™*! on the bottom row. Hence D — M ® C is
surjective. But again from the definition of the boundary in M ® C we see
that DN B(M ® C) = 0. Hence D — M ® C is bijective. But then the
way that we make M ® C into a complex, we see that with D as a complex
in the obvious way- D — M ® C is an isomorphism of complexes. Hence
M®C=MQrC
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(5) follows by (1) and the Freyd’s theorem about existence of adjoint func-
tors. '
(6) is easy to prove.

Lemma 2.2. Any complez is the direct limit of finitely presented
complezes

Proof. Given C any complex, C is a direct union of bounded com-
plexes. Hence we can suppose that C is bounded in order to prove the
result. Let

C= - 0-C'5-..5C">0---.

We consider F* — C' — 0 a free presentation of C* for i = 0,...,n. Then
D = @?:Dﬁ[——i] — C — 0 is a projective presentation of C' in C with D
exact, D7 free for all j.

We consider the pairs (G, S) where G C D is a finitely generated subcom-
plex with G7 free for all j and § C G a finitely generated subcomplex of
G. We order the family {(G,S)} by (G,S) < (G',8') & GC G, SCS.
Then G/S is finitely presented in C and li_r>nG /S=C.

Lemma 2.3. Let R and S be rings, L a complez of right S-modules,
K a complez of (R, S)-bimodules and P a complez of left R-modules. Sup-
pose that P is finitely presented and L is injective as complex of right
S-modules. Then

Hom(K,L)® P = Hom(Hom(P,K), L)

as complezes. This isomorphism 1is functorial in P, K and L.

Proof. We define
Ap: Hom(K,L)® P — Hom(Hom(P,K),L) f®p— Ap(f @p)
in the following way. For m € Z, we consider

AE: (Hom(K,L) ® P)™ — (Hom(Hom(P, K),L))™

f&p— Ap(f ®p): Hom(P,K) — L[m)].
Suppose f € Hom(K, L)%, p € Pt with d +t = m. Take n € Z, then

T(f@p)": Hom(P,K)" — L™™ g (—1)Aldtn)(frtt o gty(p),
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where 3(d,t,n) = dt + ( n+;+1
that Ap is a map of complexes.

If we take P = R, it is easy to see that Ag is an isomorphism. Similarly
if P is any finitely generated exact complex with all Z¥(P) free. Since P
is finitely presented we can find a sequence H - F — P — 0 with H and
F finitely generated exact complexes with all Z*¥(H), Z*(F) free. Since
Ay and Ap are isomorphism, standard arguments show that Ap is also an
isomorphism.

) . Big calculations (but easy) show

Proposition 2.4. Let (F,4) be a complez of left R-modules. Then
F is a flat complez if and only if — ® F is an ezact functor.

Proof. Suppose F is flat. Then F = li_r)an- with P; projective
complexes. Hence —@F = li_I)n(—®Pz-). Since P; is a direct sum of complexes
Q[n] with Q projective in R-Mod and — ® Q[n] = (- ®g Q)[n] it follows
that — ® F is an exact functor.

Conversely suppose — ® F' is exact. We only have to prove that F* =

Hom(F,Q/Z) is an injective complex. Given0 - A - B - C - 0inC
we have the commutative diagram

Hom(B,F+*)——~Hom(A,F*)

(B F)* (AR F)*

where the vertical arrows are isomorphisms. Therefore

0

Hom(B,F*) — Hom(A,F™)

is an epimorphism.

Theorem 2.5. The following conditions are equivalent for a short
ezact sequence 0 > S - C — C/S — 0 in C.

(1) Hom(P,C) — Hom(P,C/S) — 0 is ezact for any finitely pre-
sented complez P.
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(2) 0>DQ®S — DQC is exact for any compler D or any finitely
presented complex D.

(3) 0> (C/S)T®P - Ct*®P — STQ®P — 0 is ezact for any
finitely presented complex or the sequence splits.

(4) 05 S8 — C — C/S— 0 isa direct limit of splitting short ezact
sequences.

Proof. Taking account of Proposition 2.1, Lemma 2.2 and Lemma 2.3,
the proof follows by the same argument as in the case of modules (see for
example [15, pg. 287]).

Definition 2.6. a) We will say that a short exact sequence in C is
pure if it verifies one of the equivalent conditions in Theorem 2.5

b) We will say that a complex is pure injective if it is injective relative
'to any pure sequence.

Proposition 2.7.

1) If N - M is pure monomorphism in R-Mod then N — M and
N — M are pure monomorphisms in C.

2) If a complex (E,d) is pure injective then E™ and Ker(6™) are
pure injective in R-Mod for all n € Z.

3) C7 is pure injective for any complez C.

4) The evaluation map C — C* is a pure monomorphism.

5) For a short ezact ezact sequence

(%) 0-8S—-C—-C/S—->0

the following conditions are equivalent,

(i) (%) s pure;
(ii) every pure injective complex is injective with respect to ().
(i) F* s injective with respect to (x) for any complez of right
R-modules F'.
(iv) ST+ is injective with respect to (x).

Proof. 1) Mt — N* splits in R-Mod, then M — N and M+ —
N split in C. Now the conclusion follows by Theorem 2.5.
2) follows by (1).
3), 4) and 5) are proved as in the case of modules.
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Remark 2.8. It is easy to see that the inclusion R C R is not a pure
monomorphism. As a consequence of this and (5) in Proposition above we
have that there are pure injective complexes which are not exact.

3. Pure injective and cotorsion envelopes. Let A be a class
of objects in an abelian category C. We recall the definition introduced in

[3).

Definition 3.1. Let X be an object of C. We say that F in Aisa
A-preenvelope if there is exist an homomorphism ¢: X — E such that the
triangle

X_¢. E

B

can be completed for each homomorphism X — E' with F’ in A.
If the triangle

X _¢.E

E
can be completed only by automorphisms, we say that ¢: X — E is a
A-envelope.
An A-preenvelope ¢: X — F is said to be special (or a special preen-
velope) if Ext'(Coker(¢),E') =0 for all E' € A.
Dually we have the concepts of A-precover, A-cover and special A-
precover.

Theorem 3.2. Any complezx has a pure injective envelope.

Proof. Let C be a complex. By (3) and (4) in Proposition 2.7,
we know that the evaluation 0 - C — C*+ — L — 0 is a pure injective
preenvelope. Also we know that direct limit of pure sequences in C are pure
(because, by Theorem 2.5, any pure sequence is a direct limit of splitting
short exact sequences). Consider M the class of pure short exact sequences
in € in the form 0 - C — K — N — 0. Since this class has a generator,
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that means, the sequence 0 - C — C** — L — 0 is such that for any
0—-C—>K—T—0in M there is a commutative diagram

0 o K T 0
0 C ct+ L 0

But then by [8] or by an easy modification of the proof of [16, Section
2.2] we have guaranteed the existence of a minimal generator in M, i.e., a
generator 0 - C — V — W — 0 such that for any commutative diagram

0 c v w 0

| oy

C v w 0

g is an automorphism.

If0 - C -V — W — 0 is such minimal generator, it can be show that
V' is pure injective (in fact is a direct summand of C**) andso C — V is
a pure injective envelope.

Let D be a class of complexes. We let D+ = {C | Ezt'(D,C) =
0VD € D} and *D = {C | Eazt'(C,D) = 0 VD € D}. We use analogous
notation for any class of modules.

Lemma 3.3. Let F be a class of left R-modules such that L(F)* =
F. Let (F,8) be an ezact compler with F*, Ker(6%) € F and let (C,7) be
an ezact complez with C*, Ker(y') € FL. Then Ext'(F,C) =0 in C.

Proof. Given (¥*) 0 - C — X — F — 0 be an extension in C, we
have that () splits at the module level, hence this sequence is isomorphic
to (¥x) 0 - C — M(f) - F — 0 where M(f) is the mapping cone
associated to a map of complexes f: F — C[1]. By the hypothesis it is
easy to prove that f is homotopic to zero. Therefore we have that (¥x)
split and so (*) also splits.

Proposition 3.4. Let R be a right coherent ring. The following
conditions are equivalent.

(1) C is a pure injective and flat complez.

(2) C is ezact and Z¥(C) are pure injective and flat in R-Mod for
all k € Z.
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Proof. (1) = (2) Since C is a flat complex then C is exact and
Z¥(C) are flat for all & € Z ([5, Theorem 2.4]). By Proposition 2.7, the
Z*(C) are pure injective for all k € Z.

(2) = (1) Since R is right coherent, if E € R-Mod is injective then EV is
flat. So if M € R-Mod is flat then M*+* is also flat. Then ZK(C*t) =
Z¥(C)*+ and C*¥*1 are flat. On the other hand, the sequences 0 —
Z¥(C) = C* — Z¥*t1(C) — 0 split, hence the C* are pure injective and
flat.

Now the sequences

0— Z*(C) = Z¥(Cc™) - ZF (et /C) =0

0= CksCctth o (/0 =0

split in R-Mod and therefore Z¥(C**/C) and (C*t*+/C)* are flat for all
k € Z. Hence, by Lemma 3.3, the sequence

0= C—Ctt S Ctt/C—0

splits in C and so C is pure injective and flat.

Proposition 3.5. Let R be a right coherent ring.
1) If F is a flat complex then the pure injective envelope of F,
PE(F), and PE(F)/F are flat complezes.
2) A complex is flat and cotorsion if and only if it is flat and pure
tnjective.

Proof. 1) The sequence 0 - F — F*t —» L — 0 has F, F** and
L flat in C. We consider the commutative diagram

0 ——F —PE(F)—~D——0

i

0 F Ft+ L 0
Then f is a splitting monomorphism, hence PE(F') is flat. Then it is clear
that D is also flat.

2) If F is flat and cotorsion then the sequence 0 - F — PE(F)— D — 0
has D flat, so the sequence split, therefore F' is pure injective.
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Theorem 3.6. Let R be o commutative noetherian ring with finite
Krull dimension. Then any complez C has a cotorsion envelope.

Proof. The proof of this result follows that of {16, Theorem 3.4.6].
We will give it for completeness.
By [5, Theorem 4.6}, we know that any complex over this ring has a flat
cover. Given C € C we consider0 - C - F(C) > L —>0and F - L —0
a flat cover of L. We form the pull-back diagram

0 0
v
K:K
0 c X F 0
0 C ) L 0
0 0

Then K is cotorsion. Note also that E(C) is cotorsion, hence X is cotorsion.
Therefore 0 = C — X — F — 0 gives a special cotorsion preenvelope.
Since the class of short exact sequence

{0-C—-V —>H—0| C fixed and H flat}

is closed under direct limits and it has a generator, we can find a minimal
generator of this class and this gives a cotorsion envelope of C.

Corollary 3.7. Let R be a commutative noetherian ring with finite
Krull dimension.
a) If D is the class of cotorsion complezes and F is the class of
flat complezes then +D = F.
b) If F is a flat complez then the cotorsion envelope and the pure
injective envelope of F coincide.
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Proof. a)Let X € 1Dand0 - L - F — X — 0 a short exact
sequence with F' — X a flat cover of X. The L is cotorsion. Therefore the
sequence splits and so X is flat. The other inclusion (F C J~’D) is clear.
b) Let 0 - F — C(F) - D — 0 where F — C(F) is the cotorsion
envelope of F'. Then D is flat. Then diagram

0 - F C(F) D 0

0—-—F—>P(jﬁ “

F)—L—+0
gives af and Ba isomorphisms.

Theorem 3.8. Let R be a commutative noetherian ring. Then any
pure injective and flat complez is a direct product of complezes Tp[n] where
p 1s any prime ideal, n is any integer and T}, is the completion of some free
Ry,-module.

Proof.  Given C a flat pure injective complex then C = @;czD;]i]
where D; is a pure injective and flat module for all ¢ € Z. By [16, Theorem
4.1.15], D; is isomorphic in a unique way to a direct product of completions
of free Ry-modules, where p is a prime ideal and R, the localization of R

in p, for different prime ideals p, i.e., D; = ]_[pi R, " ), Now the conclusion
is clear.

4. Gorenstein flat complexes. Since —® C: Cgr — zC is a right
exact functor between abelian categories with enough projectives, we can
construct right derived functors which we denote by Tor;(—,C).

Example 4.1. a) If M and N are R-modules then Torf(M,N) =
Tor (M, N).
b) Let M be a R-module and C a complex. Then Tor;(M,C) is the
complex
oo = Tor® (M, CY) = TorB(M,C*) 5 ... .

c) Let
L= 0-A-5B—>C—=>0

M= 0-P—-Q—->D—0
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be two short exact sequences in R-Mod with A, B, P and @ projec-
tives R-modules. If we consider L and M as complexes with B and Q
the degree zero components of L and M respectively, then Tor;(M,L) =
Tor®(D, C)[-1].

Lemma 4.2.
a) A complez F is flat if and only if

Tor (F,C) =0 (Tori(F,C) =0VYi > 0)

for any complez C.

b) A complez D has finite flat dimension < d if and only if D is
ezact and Z*(D) has finite flat dimension < d for all k € Z.

c) A complez G is DG-flat if and only if Tor;(E,G) = 0 for any
ezact complex E and all ¢ > 0.

Proof. a) Suppose F is flat. Take a projective presentation of F,
0 - K — P — F — 0. By Theorem 2.5 this sequence is pure in C. Also by
properties of right derived functors Tori(P,C) = 0. Hence if we develop
the long exact sequence of — ® C we get the result.
Conversely, by standard arguments we prove that F'®— is an exact functor.
Therefore by Proposition 2.4 F is an flat complex.
b) Suppose that D has finite flat dimension < d. Let 0 = Fy — -+ —
F, — Fy — D — 0 be a flat resolution of D. Then, since F; are flat, F; are
exact so D is also exact. On the other hand we have the exact sequences

0= Z*¥(Fy) = - = ZMEF) = ZMEF) — Z¥(D) - 0

with Z*(F;) flat modules. Hence Z*(D) has finite flat dimension < d.
Conversely suppose D has flat dimension > d and let --- - F} = Fy —
D — 0 be a flat resolution. Since D is exact we have the resolutions of
flat modules --- — Z¥(F}) — Z*¥(Fy) — Z¥(D) — 0 Vk € Z. Then these
sequences have, by hypothesis, length < d a contradiction.

¢) Let E be an exact complex. Since (E® G)T = Hom' (E,G*) we have
that G is DG-flat if and only if GT is DG-injective. Then

Tori(E,G) =0 ifand only if 0= (Tori(E,G))* = Ext'(E,G").

Now apply [7, Proposition 3.4]. If we take 0 - K — P — G — 0 with
G DG-flat and P projective then K is also DG-flat. Hence we get the
sequence

«+-0= Tory(E,P) — Tora(E,G) — Tory(E,K)=0---,
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therefore Tory(E,G) = 0. By induction the result follows.

In the next result we will suppose that R is a commutative Gorenstein
ring. We will denote by £ the class of complexes with finite injective
dimension. By [4] and the Lemma above, it can be proved that this class
coincides with the class of complexes of finite projective dimension and
with the class of complexes of finite flat dimension. In [16] the existence of
Gorenstein flat covers of R-modules over a Gorenstein ring is proved. We
extend this result to the category of complexes.

Theorem 4.3. Let R be a Gorenstein ring and C o complez of
R-modules. The following conditions are equivalent.
(1) There is an ezact sequence

(%) s PR BF S F,

with F; flat, C = Ker(8y) and (*) remains exact when E ® — is applied
for any injective complez E.

(2) Tor1(L,C) =0 for every L € L.
(3) CT is a Gorenstein injective complez.
(4) C™ is Gorenstein flat in R-Mod for all n € Z.
(5) C is a direct limit of Gorenstein projective complezes.
(6) For each finitely generated complex K and any map K — C
there is a factorization K — P — C where P is a finitely generated
Gorenstein projective complex.

Proof. (1) = (2) We only need to prove that Tor;(E,M) = 0 for all
t <1 and all F injective complex. Since the sequence

0-EQC—FEQ®Fy>EQ®F 1 >EQ®F 5—.--

remains exact for any injective complex, we have the result.

(2) = (1) Since R is coherent, any R-module has a pure injective flat
envelope (see [6]). Let C* — F' be a pure injective flat envelope Vi € Z.
Then it is not hard to see that C — @®;ezF[—i] is a pure injective flat
preenvelope of C' in C. So we can construct a pure injective flat resolution

0+C—oFy—>F 1=
in C. Let E be an injective complex. In order to show that

0 EQC—SEQFy-FERF 11— ---
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is exact, it is enough to show that
0 (EQF_ )" = (E®F_ )t -
is exact. But (E ® F;)* = Hom(F;, E*) for all 4,
Hom(F_1,E*) = Hom(C,E™)
and the sequence
..o = Hom(F_,,E%) —» Hom(Fy, ET) — Hom(C,E*) - 0

is exact because E7T is pure injective flat. So if we take

e B R >C—-0

a flat resolvent (see [5] for the existence of such a resolvent) we get the
result.

(2) & (3) This is clear since by [4] we know that G € C is Gorenstein
injective if and only if Ezt'(L,G) = 0 for all L € £ and Tor,(L,C)* =
Bet'(L,CY).

(1) = (4) For any k € Z we have an exact sequence of flat modules

'Sk
o> FF S FF3FE S FF,

with C* = Ker(6f) and for any injective module E, the sequence remains
exact when we apply EQp — =E ® —.

(4) = (3) and (5) = (3) are easy to prove.

(4) = (6) and (6) = (5) follows by the same arguments that of [5, Theorem
2.4] (by using [10, Theorem 2.1)).

Definition 4.4. We will say that a complex G is Gorenstein flat if
G verifies one of the equivalent conditions of Theorem above.

Corollary 4.5. If C is e Gorenstein projective complezx then C is
Gorenstein flat.

Proof. Follow by (4) of above Theorem and [4, Theorem 2.7].

4.1. Existence of Gorenstein flat covers. Let R be a commu-
tative Gorenstein ring. Let D € R-Mod be an injective cogenerator. Then
D is an injective cogenerator in C.
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Remark 4.6. Following [16, Lemma 5.7.1], let K be a pure injective
flat complex (this is the same as DG-cotorsion flat) then K is a direct
summand of K+ = Hom(Hom(K, D), D). Since Kt and D are injective
complexes, Hom(—, K) leaves a sequence exact if Hom(—, Hom(E1, E>))
leaves the sequence exact whenever E) and E5 are injectives complexes.
But Hom(—, Hom(En, E;)) and Hom(E, ® —, F») are isomorphic functors.

Lemma 4.7. If the sequence in C
o Py By F g -

is an exact sequence of flat complezes such that E ® — leaves the sequence
ezact for every E injective complez and K is DG-cotorsion and with finite
flat dimension, then Hom(—, K) leaves the sequence exact.

Proof. By the Remark above if K is flat and DG-cotorsion then
Hom(—, K') leaves the sequence exact. Now we consider K with finite flat
dimension and DG-cotorsion. Let

O—+Hn—5---—+H1i$H0£’>K—>O

be exact in C with H; — Ker(f;—1) flat covers. Then the H; are DG-
cotorsion for all i = 0,...,n since K is DG-cotorsion. Since Hom(—, H;)
leaves the sequence exact we see that Hom(—, K) leaves the sequence exact.

Corollary 4.8. If X € C is Gorenstein flat and K is DG-cotorsion
with finite flat dimension then Ezt'(X,K) =0 for alli > 1.

Theorem 4.9. Every compler over a commutative Gorenstein ring
has a Gorenstein flat cover.

Proof. Since the functor Tor;(X,—) preserves direct limits for
any X € C it follows that the class of Gorenstein flat complexes is closed
under direct limits. So we only have to find Gorenstein flat precovers. Let
C € C. We have an exact sequence 0 - K — P — C — 0 such that P is
Gorenstein projective and K € L, (see [5, Lemma 4.7]). By [5, Theorem
4.10], we can find an exact sequence in C 0 = V — G — K — 0 with
G — K a flat cover. Then V € L and V is DG-cotorsion (since K is
exact). By Corollary above Ezt'(H,V) = 0 for every H Gorenstein flat
complex and all 7 > 0. We consider the pushout diagram
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0 0
where G — PE(G) is the pure injective envelope of G. Note that PE(G)
and F are flat because G is flat. Since PE(G) is pure injective and flat
it follows that Ezt'(H, X) = 0 for all Gorenstein flat complex H and all
i>0.
Now we take the pushout diagram

0 0
where Y is Gorenstein flat since P and F' are Gorenstein flat. Since X
verifies Ext'(H, X) = 0 for every H Gorenstein flat complexes we conclude
that ¥ — C is a Gorenstein flat precover.

5. DG-pure sequences. Given a DG-flat complex G any sequence
inC,0 > C —- D — G — 0, verifies that for every exact complex E,
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0> E®C—>E®D — EQG — 0is exact. In this section we study some
important properties of this kind of sequence. We will denote by £ the
class of exact complexes. Remember, (7], that any complex has an exact
cover and a special exact preenvelope.

Definition 5.1. Let (x) 0 &= A — B — C — 0 be a short exact
sequence in C.

a) We will say that () is £-pure (resp. DG-pure) if Hom(E,B) —
Hom(E,C) — 0 (resp. 0 » E® A - E® B) is exact for all E € £.

b) We will say that X € C is £-pure injective (resp. DG-pure injective)
if X is injective respect to any £-pure sequence (resp. DG-pure sequence).

Proposition 5.2. Let (x) 0 > N - L — K — 0 be a short ezact
sequence in C. The following conditions are equivalent.

(1) (%) is E-pure.

(2) a) (%) s naturally isomorphic to a mapping cone short exact
sequence 0 —» D[—1] —» M(f)[-1] = C — 0 with f: C — D, and

b) for every E € £ and every map h: E — C, the composition

Ehchpis homotopic to 0. (or the ezact cover of C, E — C, verifies
that the composition E — C — D is homotopic to 0).

(3) (2. a) and if p: E - C, q: V — D are the ezact covers of C and
D respectively then the induced map g: E — V given by the commutative
diagram

E_g.V
Pt
C_f. D

is homotopic to 0.
(4) (2. a) and in the commutative diagram

0 ——V[-1]—M(g)[-1] E 0
id (. q) k
0 ——D[-1]—M(f)[-1] o 0

the top row splits.
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Proof. (1) = (2) Since for every M € R-Mod the sequence
Hom(M,L) - Hom(M,K) — 0

is exact, the sequence (*) splits at the module level. Then () is isomorphic
to a short exact sequence

0— D[-1] = M(f)[-1] B c =0

with f: C — D. Let E € £ and h: E — C. Then there is a map v: £ —
M(f)[-1] such that k o v = h. For each n € Z consider the canonical
projections I": M(f)[-1]" = C™ @ D"! - D"~1 and the sequence

(%) 0 — D[-1] = M(fR)[-1] 5 E — 0.
Define s: E — M(fh)[—1] as
s:E" 5 E"@ DMz ((—1)"z, M0 (2))).
Then it is not hard to see that s is a map of complexes and tos = 1. Hence

the sequence (xx) splits in C and so f c h is homotopic to 0.
(2) = (1) Consider the commutative diagram

0 D[-1]—M(fh)[-1] E 0
(h,1)
0 D[-1]—M(f)I-1_%, C 0

Since M(fh)[—1] — E splits in C, we find v: E — M(f)[—1] such that
kov=h.

(2) = (4) Let 0 —» D[-1] - M(f)[-1]] 2 C - 0and E - C,V - D
exact covers. We form the commutative diagram

0 H E_—_p ., C 0
0 U -V 9 . D 0

which induces a mapping cone diagram
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0 0 0

0 U[-1] M(e)[-1] H 0

0 V{-1] M(g)[-1] _w, E 0
(p,q) iV

0 D[-1] MH-1] k. C 0
0 0 0

Then M(g)[—1] — M(f)[—1] is a special exact precover. By hypothesis,
there is a v: E — M(f)[—1] such that ko v = p. Then thereisa t: £ —
M (g)[—1] such that (p,q) ot = v. Hence powot =ko(p,g)ot =kov=p.
Therefore w o t is an automorphism and so w splits.

(4) = (3) and (3) = (2) are easy to prove.

Lemma 5.3.

a) Given M € R-Mod, the sequence 0 — M — M — M[1] — 0 is
E-pure if and only if M is injective in R-Mod. As a consequence, if pR
is injective then any &-pure injective complex is ezact.

b) E € C is ezact if and only if 0 - E®@ R — E ® R is ezact.
As a consequence, 0 - R — R — R[1] — 0 is always DG-pure and any
DG-pure injective complex is ezact.

Proof. a) If M is injective then M is DG-injective. Therefore
Ezt!(E, M) = 0 for any exact complex E.
Conversely,let H= 0 - L - T — K — 0 be exact in R-Mod and L — M
a map. If we consider H as a complex we can induce a map from H to
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M]1). Since H is exact this map factorizes through M. This factorization
gives an extension " — M such that the triangle

L —T

»

M
is commutative.

b) It is not hard to check that the kernel of E® R — E ® R is precisely
the homology complex of E.

Proposition 5.4. Let (x) 0 > A = B — C — 0 be a short exact
sequence in C. If (¥) is DG-pure then 0 - Ct — Bt — A* — 0 is £-pure.

Proof. Let E be an exact complex. We consider the diagram

Hom(E, BY) Hom(E, A%)

1%
1

(E®B)* (Ee®A)* 0

where the bottom row is an epimorphism by hypothesis. Then Hom(E, Bt)
— Hom(E, A%) is an epimorphism.

Proposition 5.5. The following conditions are equivalent for a com-
plex D.

(a) D is DG-pure injective.
(b) D is pure injective and ezact.

Proof. (a)=(b) follows by (b) in Lemma 5.3.
(b)=(a) Let 0 - A - B — C — 0 be a DG-pure sequence. We form the
commutative diagram
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Hom(B, D**)—Hom(A, D**)

1
1%

(B®D*)* (A® D*)* 0

where the botton row is an epimorphism because D1 is exact. Hence
Hom(B,D*") — Hom(A,D*™)

is an epimorphism. Since, by hypothesis, the evaluation map D — D+
is a splitting monomorphism, it is not hard to see that Hom(B,D) —
Hom(A, D) is also an epimorphism.

Theorem 5.6. Any complex C has a DG-pure injective envelope.

Proof. Let (¥x) 0 > C — D — P — 0 be an exact sequence with
C — D a special exact preenvelope, hence P is DG-projective and so DG-
flat. Then (x) is DG-pure. If we consider the evaluation D — D**, it is
easy to see that the composition C — D — D% is a DG-pure injective
preenvelope and it is a DG-pure monomorphism. Now, since the class of
DG-pure sequence is closed under direct limits, we can apply the same
argument as in the proof of Theorem 3.2 to get the result.
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