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CHARACTERIZATIONS OF
HEREDITARY MODULES AND V-MODULES

Dedicated to the memory of Professor Hisao Tominaga

WEIMIN XUE

In this paper R is an associative ring with identity and all modules
are unitary right R-modules. We freely use the terminology and notation
of Andrson and Fuller [1] and Wisbauer [13], and let Mod-R denote the
category of all right R-modules.

This paper consists of three sections. In the first section, we charac-
terize semisimple modules, hereditary modules, and cohereditary modules
using endomorphisms of modules which are related to injective modules
and projective modules. These generalize some results of Nicholson and
Varadarajan [8] and Shrikhande [11].

Let M be a module. An M-generated module is a module which is
isomorphic to a factor module of MD for some index set I, where M0 is
the direct sum of |I|-copies of M. We denote by o[M] the full subcategory
of Mod-R whose objects are all submodules of Af-generated modules. Fol-
lowing Hirano [5] and Tominaga [12] we call M a V-module if every proper
submodule of M is an intersection of maximal submodules, equivalently
if every simple module (in o[M] or Mod-R) is M-injective (see [5, Propo-
sition 3.1] or {13, p.190, 23.1]). V-modules are called “co-semisimple” by
Fuller [4] and Wisbauer {13, p.190]. In Section 2, we establish the equiv-
alences of the following statements: (1) M is a V-module; (2) The cat-
egory o[M] has a semisimple module W which cogenerated every cyclic
module in o[M]; (In this case W is a cogenerator in o[M].) (3) Every
proper submodule of M maximal with respect to exclusion of some non-
zero element of M is a maximal submodule. These results generalize the
main theorem of Faith and Menal 3] and some of Wu and Hu [14] and
Faith [2].

In Section 3 the final section, we apply a theorem of Liu [6] to give
characterizations of noetherian V-modules, right hereditary rings, right
perfect rings, and semisimple rings using their modules. These improve
some results of Liu [6, 7], and Xue [15].
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1. Characterizations of semisimple and hereditary modules.
Recently, Nicholson and Varadarajan [8] give interesting characterizations
of semisimple rings and hereditary rings using endomorphisms of injective
modules and projective modules. Using their idea we are able to char-
acterize semisimple modules, (semi-)hereditary modules, and cohereditary
modules via endomorphisms of modules which are related to injective mod-
ules and projective modules.

The injective envelope of a module X is denoted by E(X).

Theorem 1.1. The following are equivalent for a module M:
(a) M is semisimple;
(b) If U is an injective module and f € End(U), then Ker(f) is
M -injective;
(c) If P is a projective module and f € End(P), then P/Im(f) is
M -projective.

Proof. (a)=(b) and (a)=(c). These are obvious.
(b)=(a). Let N < M. To show N is a summand of M, we prove that N is
M-injective. Take the injective module U = E(N) ® E(E(N)/N) and let

f € End(U) via f: (z,y) — (0,z + N).

Then Ker(f) = N @ E(E(N)/N), which is M-injective by the assumption
of (b). Hence N is M-injective.

(¢)=>(a). Let N < M. To show N is a summand of M, it suffices to
show that M/N is M-projective. Let P be a projective module with an
epimorphism P — M. Let P' < P such that P/P' = M/N. Let Q be a
projective module with an epimorphism h: @ — P’. Define

fE€EEnd(P®Q) via f: (p,q) — (h(q),0).
Then Im(f) = P' 0 and
(PoQ)/Im(f)= (P/P)®Q

which is M-projective by the hypothesis of (c).
Hence P/P' is M-projective, so is M/N.

The next corollary follows immediately from Theorem 1.1. Note that
the condition (c) of this corollary is weaker than the condition (3) of [8,
Theorem 1].
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Corollary 1.2 (Cf. [8, Theorem 1]).  The following are equivalent
for the ring R:
(a) R is semisimple;
(b) For each injective module U and f € End(U), Ker(f) is injec-
tive;
(c) For each projective module P and f € End(P), P/Im(f) is
R-projective.

According to [11], a module P is called hereditary in case every sub-
module of P is projective. Using [11, Theorem 3.2], we are able to generalize
it as follows.

Theorem 1.3. The following are equivalent for a projective mod-
ule P:

(a) P is hereditary;

(b) If U is a P-injective module and f € End(U), then Im(f) is
P-injective;

(c) If U is an injective module and f € End(U), then Im(f) is
P-injective.

Proof. (a)=(b). Since f: U — Im(f) is an epimorphism, Im(f) is
P-injective by [11, Theorem 3.2).
(b)=(c). This is obvious.
(c)=(a). Let U be an injective module and V' < U. We want to prove that
U/V is P-injective. (Then P is hereditary by [11, Theorem 3.2].) Define

f€End(Uea E(U/V)) via f: (u,z)— (0,u+V).

Since U & E(U/V) is injective, Im(f) = 0 ® (U/V) is P-injective by the
assumption of (c¢). Hence U/V is P-injective.

Recall that a module P is called semihereditary [11] in case every
finitely generated submodule of P is projective. A module U is called
weakly P-injective [13] in case every homomorphism from a finitely gener-
ated submodule of PU) to U can be extended to one from P!Y) to U where
I is any index set. Modifying the above proof and using (13, p.331, 39.4],
we have the following analogous result.

Theorem 1.4. The following are equivalent for a projective mod-
ule P:

(a) P is semihereditary;
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(b) IfU is a weakly P-injective module and f € End(U), then Im(f)
is weakly P-injective;

(¢) If U is an injective module and f € End(U), then Im(f) is
weakly P-injective.

A weakly R-injective module is called FP-injective [13].

Corollary 1.5. The following are equivalent for the ring R:
(a) R 1is right semihereditary;
(b) If U is an FP-injective module and f € End(U), then Im(f) is
FP-injective;
(¢) If U is an injective module and f € End(U), then Im(f) is
FP-injective.

A module U is called cohereditary [11] in case every factor module
of U is injective. It is well-known that R is right hereditary if and only if
every injective module is cohereditary. Dualizing the proof of Theorem 1.3
and using [11, Theorem 3.2'], we have the following generalization of [11,
Theorem 3.2'].

Theorem 1.6. The following are equivalent for an injective mod-
ule U:
(a) U is cohereditary;
(b) If P is an U-projective module and f € End(P), then Im(f) is
U -projective;
(c) If P is a projective module and f € End(P), then Im(f) ts
U -projective.

According to [9, Theorem], R is semisimple if and only if every
cyclic module is injective. Hence right cohereditary rings are precisely
the semisimple rings.

A module U is called semi-cohereditary [11] in case every finitely
cogenerated factor module of U is injective. A dual result of Theorem 1.4
can be obtained to characterize semi-cohereditary modules. Recall that R
is a right V-ring in case every simple module is injective. It follows from [11,
Proposition 4.6] that right semi-cohereditary rings are precisely the right
V-rings. We shall study V-modules and V-rings in the next section.

2. Characterizations of V-Modules. In this section we obtain
some new characterizations of ¥-module as stated in the introduction. The
M-injective envelope of a module X € o[M] is denoted by Ep(X).
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Theorem 2.1. The following are equivalent for a module M:
(a) M s a V-module; '
(b) o[M] has a semisimple cogenerator;
(c) o[M] has a semisimple module which cogenerates every cyclic
module in o[M];
(d) o[M] has a semisimple module W which cogenerates every cyclic

module in o[M] with simple essential socle. (In this case W is a cogener-
ator in o[M])

Proof. (a)e(b). This is in [13, p.190, 23.1].

(b)=(c)=(d). These are obvious.

(d)=(a). Let T be any simple module in o[M]. To show Ey(T) =T we
suppose 0 # z € Ep(T). Since o[M] has a cyclic module zR with sim-
ple essential socle T, W cogenerates zR by (d). By [1, Corollary 10.3], W
finitely cogenerates ¢ R, hence zR must be semisimple (since W is semisim-
ple). Therefore Eps(T) is semisimple. But Ep(T') has a simple essential
socle T. Hence we have Ep(T) = T.

Let W = @;; T; be a direct sum of simple modules. Since W co-
generates every simple module in o[M], {T;}:cs is a representative set of
the simple modules in o[M]. By (a), each T; is M-injective, so W is a
cogenerator in o[M] by (13, p.143, 17.12].

Faith and Menal [3] said that a module W satisfies the double an-
nihilator condition (= d.a.c.) with respect to right ideals provided that
I = rplw(I) for each right ideal I of R. By [1, Lemma 24.4(2)], we see
that W satisfies the d.a.c. with respect to right ideals if and only if W
cogenerates every cyclic module. Hence the equivalence (a)<(c) of the fol-
lowing corollary is the V-Ring Theorem established in [3], where the ring R
is a right V-ring if R is a V-module when considered as a right module over
itself, i.e., every simple module is injective.

Corollary 2.2. The following are equivalent for the ring R:

(a) R is a right V -ring;

(b) Mod-R has a semisimple cogenerator;

(¢) Mod-R has semisimple module which cogenerates every cyclic
module;

(d) Mod-R has a semisimple module W which cogenerates every

cyclic module with simple essential socle. (In this case W is a cogenerator
in Mod-R.)
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Recall that a module M is a V-module if and only if every proper
submodule of M is an intersection of maximal submodules.

Theorem 2.3. A module M is a V-module if and only if every
proper submodule of M mazimal with respect to exclusion of some non-
zero element of M is a mazimal submodule.

Proof. Let N be a proper submodule of M.
(=). Suppose N is maximal with respect to exclusion of some non-zero
element m € M. Then (N 4+ mR)/N must be a simple module and it is
M-injective. So there is a module homomorphism

f: M — (N+mR)/N
such that
f|(N+mR): N+ mR — (N +mR)/N

is the natural epimorphism. Hence f is an epimorphism, N C Ker(f), and
m & Ker(f). By the maximality of N we have N = Ker(f). Hence

M/N = M/Ker(f) = (N + mR)/N

which is simple. So NN is a maximal submodule of M.
(«). For each m € M \ N, the Zorn’s lemma asserts that

(LIN<SL<M,m¢gL)}

has a maximal member, say L,,. By the assumption, each L,, is a maximal
submodule. Since N C (¢ pn\n Lm and m & Ly, for each m € M \ N, we
must have the equality

N= () Lnm
MmEM\N

which is an intersection of the maximal submodules L,,’s.

Corollary 2.4 ([14]). The ring R is a right V-ring if and only if
every proper right ideal of R mazimal with respect to exclusion of some
non-zero element of R is a mazimal Tight tdeal.
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A module is a Bass module [2] if every proper submodule is contained
in a maximal submodule. Since every proper submodule of a V-module is
an intersection of maximal submodules, a V-module is a Bass module.

Let {T;};cr be a minimal representative set of the simple modules
in o[M] and W = @;;T;- Then Ep(W) is the minimal M-injective
cogenerator in o[M] (see [13, p.143]).

Modifying the proofs of [2, Theorem 8.2], we generalize it as follows.

Theorem 2.5. Let S = End(EM(I/V)). If Exr(W) is a Bass module
and J(S) =0, then M is a V-module (and Ep(W) =W is semisimple).

Proof. If Ep(W) = W then every submodule of Ep (W) is a direct
summand, hence is M-injective. So M is a V-module.
We assume Ep (W) # W. Since Ep (W) is a Bass module, W is contained
in a maximal submodule V of Ep(W). The monomorphism Ep(W)/V
< W induces an endomorphism s of Epr(W) such that Ker(s) = V. Since
the M-injective module Ea (W) € o[M], Ep (W) is Epr(W)-injective by [1,
Proposition 16.13]. Since V' is an essential submodule of Ep (W), we have
s € J(S) by [13, p.185, 22.1(1)], contradicting the J(S) = 0 assumption.

3. Characterizations of rings by their modules. Let ¢ be
any cardinal. A module M is called c¢-limited [6] in case every direct sum
of non-zero submodules of M contains at most ¢ direct summands. E.g.,
every module M is |M|-limited. A module is called an ES-module [6] in
case it has an essential socle. E.g., every finitely cogenerated module is an
ES-module. In this final section we apply the following interesting theorem
of [6, Theorem 1] to characterize noetherian V-modules, right hereditary
rings, right perfect rings, and semisimple rings using their modules.

Theorem 3.1 ([6, Theorem 1]). Let P and Q be properties of mod-
ules such that P is preserved by direct sums and @ is inherited by direct
summands. If there ezxists a cardinel c such that every module with prop-
erty P is the direct sum of a module with property @ and o c-limited ES-
module, then every module with property P has property Q.

According to [10, Corollary 1.4], we know that a module M is a
noetherian V-module if and only if every semisimple module is M-injective.
If we let P denote the property of being a semisimple module and Q denote
the property of being an A -injective module, then by Theorem 3.1 we have
the following result.
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Theorem 3.2. A module M is a noetherian V -module if and only
if there exists a cardinal ¢ such that every semisimple module is the direct
sum of an M-injective module and a c-limited module.

Proof. If M is a semisimple module and M = U @ N where U is
M -injective and N is c¢-limited, then N is a semisimple module which is
automatically an ES-module.

A module M is called direct-projective [13, 15] in case given any
summand N of M with the projection p: M — N and any epimorphism
f: M — N, there exists g € End(M) such that fg = p. E.g., every
quasi-projective module is direct-projective, but the converse is false [15,
Example A]. Recently, the author [15, Theorem 4] has proved that R is right
hereditary if every submodule of a projective module is direct-projective.
Using this and Theorem 3.1 we can generalize [7, Theorem 2.1] as follows.

Theorem 3.3. The ring R is right hereditary if and only if there
exists a cardinal c such that every submodule of a projective module is the
direct sum of a direct-projective module and o c-limited ES-module.

Proof. (=). This is obvious.
(«). Using Theorem 3.1, we let P denote the property of being a submod-
ule of a projective module and @) denote the property of being a direct-
projective module. Clearly, P is preserved by direct sums and @ is inherited
by direct summands [13]. It follows from Theorem 3.1 that every submod-
ule of a projective module is direct-projective. Hence R is right hereditary
by [15, Theorem 4].

Recall that R is right perfect if and only if every flat module is pro-
jective. A generalization of [6, Corollary 3] is given as follows.

Theorem 3.4. The ring R is right perfect if and only if there
erists a cardinal ¢ such that every flat module is the direct sum of a direct-
projective module and a c-limited ES-module.

Proof. (=). This is obvious.
(«<). If we let P denote the property of being a flat module and Q de-
note the property of being a direct-projective module, then it follows from
Theorem 3.1 that every flat module is direct-projective. Now let M be a
flat module. Choose a projective module P with an epimorphism P — M.
Since P @ M is flat, it is direct-projective by the above proof. It follows
from [15, Lemma 1] that M is a projective module.
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As the dual of direct-projectivity, we call a module M direct-injective
(13, 15] in case given any summand N of M with the injection i: N — M
and any monomorphism f: N — M, there exists g € End(M) such that
gf = i. E.g., every quasi-injective module is direct-injective, but the con-
verse is false [15, Example B|. By [15, Theorem 9], the ring R is semisimple
if every module is direct-projective (direct-injective). Using [15, lemmas
1 and 2] and modifying the proof of [6, Corollary 6] and Theorem 3.4 we
have our concluding theorem, which partially generalize [6, Corollary 6]
and [15, Theorem 9].

Theorem 3.5. The following are equivelent for the ring R:
(a) R is semisimple;
(b) There ezists a cardinal ¢ such that every module is the direct
sum of a direct-projective module and a c-limited ES-module;
(c) There exists a cardinal ¢ such that every module is the direct
sum of a direct-injective module and a c-limited ES-module.
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