JORDAN LEFT DERIVATIONS ON SEMIPRIME RINGS

Joso VUKMAN

Throughout, R will represent an associative ring. As usual we write [x,y] = xy - yx for all $x,y \in R$. Let $D: R \to R$ be an additive mapping. D is called a derivation (resp. a left derivation) if D(xy) = D(x)y + xD(y)(resp. D(xy) = xD(y) + yD(x)) holds for all $x, y \in R$. And D is called a Jordan derivation (resp. a left Jordan derivation) in case $D(x^2) = D(x)x +$ xD(x) (resp. $D(x^2) = 2xD(x)$) for all $x \in R$. Obviously, every derivation is a Jordan derivation. But in general, the converse is not true. A well known result of Herstein [6] states that every Jordan derivation on a prime ring R of char $\neq 2$ is a derivation. A brief proof of this result can be found in [1]. Cusack has generalized this result to 2-torsion free semiprime rings [4](see also [2]). One can easily prove that in a noncommutative prime ring any left derivation is zero. Moreover, Brešar and the author have proved that the existence of a nonzero Jordan left derivation on a prime ring R of char $\neq 2$, 3 forces R to be commutative. This result can be considered as an extension of the well known result of Posner [9]. It should be mentioned that the result of [3] concerning Jordan left derivations has been improved by Deng [5]. In [3] one can find an example which shows that in a noncommutative semiprime ring there exists a nonzero Jordan left derivation.

In [8], Giambruno and Herstein have proved that if D is a derivation on a semiprime ring R such that for some positive integer n the relation $D(x)^n = 0$ holds for all $x \in R$, then D = 0. It is well known that if D and G are derivations on a 2-torsion free semiprime ring R, such that $D^2(x) = G(x)$ holds for all $x \in R$, then D = 0.

Our present objective is to prove the following theorems which modify the results noting about to Jordan left derivations on semiprime rings.

Theorem 1. Let R be a 2-torsion free semiprime ring and D: $R \to R$ a Jordan left derivation. If there exists a positive integer n such that $D(x)^n = 0$ for all $x \in R$, then D = 0.

Theorem 2. Let R be a 2-torsion free and 3-torsion free semiprime ring. If R admits Jordan derivations D and $G: R \to R$ such that $D^2(x) =$

This research has been supported by the Reserch Council of Slovenia.

J. VUKMAN

G(x) for all $x \in R$, then D = 0.

In preparation for proving our theorems, we state the following three lemmas.

Lemma 3. Let R be a 2-torsion free ring. If $D: R \to R$ is a Jordan left derivation then for all $x, y \in R$:

- (a) D(xy + yx) = 2xD(y) + 2yD(x),
- (b) $D(xyx) = x^2D(y) + 3xyD(x) yxD(x)$.

Proof. A special case of Proposition 1.1 in [3].

Lemma 4. Let R be a 2-torsion free and 3-torsion free ring, and $D: R \to R$ a Jordan left derivation. If D([[D(x), x], x]) = 0 holds for all $x \in R$, then [D(x), x]D(x) = 0 is fulfilled for all $x \in R$.

Proof. Using Lemma 3 we obtain

$$0 = D([D(x), x], x])$$

$$= D(D(x)x^{2} + x^{2}D(x)) - 2D(xD(x)x)$$

$$= 4D(x)xD(x) + 2x^{2}D^{2}(x) - 2x^{2}D^{2}(x) - 6xD(x)^{2} + 2xD(x)^{2}$$

$$= 6[D(x), x]D(x).$$

Thus we have 6[D(x),x]D(x)=0, which completes the proof, since R is 2-torsion free and 3-torsion free.

Lemma 5. Let R a noncommutative prime ring of characteristic defferent from two, and let $D \colon R \to R$ be a left Jordan derivation. In this case D = 0.

Proof. A special case of Theorem 1 in [5].

Proof of Theorem 1. Since R is semiprime, $\bigcap P = (0)$ where the intersection runs over all prime ideals of R. We intend to prove that $D(P) \subset P$ for every prime ideal P of R. Let $a \in P$, $x \in R$; then

$$0 = D(ax + xa)^{n} = 2^{n} (aD(x) + xD(a))^{n},$$

which gives

$$(aD(x) + xD(a))^n = 0,$$

since R is 2-torsion free. In other words

$$(xD(a))^n \equiv 0 \bmod P.$$

Thus, in the prime ring R' = R/P, we have

$$(x'D(a)')^n = 0$$
 for all $x' \in R'$.

By a well known result of Levitzki (see Lemma 1.1 in [7]) we have x'D(a)' = 0 for all $x' \in R'$, whence it follows D(a)' = 0 since R' is prime. In other words $D(a) \in P$, and so $D(P) \subset P$. Therefore $D(P) \subset P$ for all prime ideals P of R, and so D induces a left Jordan derivation D' on the prime ring R' = R/P. Let us first assume that R' is commutative. In this case D' is derivation and we have also $D'(x')^n = 0$, whence it follows D' = 0. In case R' is noncommutative it follows by Lemma 5 that D' = 0. Thus, in any case D'(R') = (0), that is, $D(R) \subset P$ for all prime ideals P of R. Since $\bigcap P = (0)$, we obtain D(R) = (0), hence D = 0. The proof of the theorem is complete.

Proof of Theorem 2. Putting x^2 for x in $D^2(x) = G(x)$ we obtain

(1)
$$D(xD(x)) = xG(x), \quad x \in R.$$

Let us prove that for all $x \in R$,

(2)
$$D(D(x)x) = 2D(x)^2 + xG(x).$$

Using Lemma 3 and (1) we obtain

$$D(D(x)x) = D(D(x)x + xD(x)) - D(xD(x))$$

= $2D(x)^2 + 2xD^2(x) - xG(x)$
= $2D(x)^2 + xG(x)$.

From (1) and (2) we obtain

(3)
$$D([D(x), x]) = 2D(x)^2, x \in R.$$

The linearization of (3) gives

$$D([D(x), y] + [D(y), x]) = 2D(x)D(y) + 2D(y)D(x), \quad x, y \in R.$$

Putting in the above relation $y = x^2$, using Lemma 3 and (3), we obtain

$$\begin{split} 0 &= D(\left[D(x), x^2\right] + \left[D(x^2), x\right]) - 2D(x)D(x^2) - 2D(x^2)D(x) \\ &= D(\left(\left[D(x), x\right]x + x\left[D(x), x\right]\right) \\ &+ 2D\left(x\left[D(x), x\right]\right) - 4D(x)xD(x) - 4xD(x)^2 \\ &= 2\left[D(x), x\right]D(x) + 2xD\left(\left[D(x), x\right]\right) \\ &+ 2D\left(x\left[D(x), x\right]\right) - 4D(x)xD(x) - 4xD(x)^2 \\ &= 2D(x)xD(x) - 2xD(x)^2 + 4xD(x)^2 \\ &+ 2D\left(x\left[D(x), x\right]\right) - 4D(x)xD(x) - 4xD(x)^2 \\ &= -2D(x)xD(x) - 2xD(x)^2 + 2D(x\left[D(x), x\right]\right). \end{split}$$

Thus we have

$$(4) D(x[D(x),x]) = D(x)xD(x) + xD(x)^2, \quad x \in R.$$

Let us Prove the identity

(5)
$$D([D(x), x]x) = D(x)xD(x) + xD(x)^2, x \in R.$$

Using Lemma 3 and (3) we have

$$D([D(x), x]x + x[D(x), x]) = 2[D(x), x]D(x) + 2xD([D(x), x])$$

= 2[D(x), x]D(x) + 4xD(x)².

Now applying (4) we obtain

$$D([D(x), x]x) = 2[D(x), x]D(x) + 4xD(x)^{2} - D(x[D(x), x])^{2}$$

$$= 2[D(x), x]D(x) + 4xD(x)^{2} - D(x)xD(x) - xD(x)^{2}$$

$$= D(x)xD(x) + xD(x)^{2},$$

which completes the proof of (5).

From (4) and (5) we obtain

(6)
$$D([[D(x), x], x]) = 0, \quad x \in R.$$

From (6) and Lemma 4 it follows

$$[D(x), x]D(x) = 0, \quad x \in R,$$

Using (7) and (3) we obtain

$$D(D(x)[D(x), x]) = D(D(x)[D(x), x] + [D(x), x]D(x))$$

= $2D(x)D([D(x), x]) + 2[D(x), x]G(x).$

Thus we have

(8)
$$D(D(x)[D(x),x]) = 4D(x)^3 + 2[D(x),x]G(x), x \in \mathbb{R}.$$

Let us prove the relation

(9)
$$D(D(x)[D(x),x]) = -6[D(x),x]G(x), x \in R.$$

Using (7) and Lemma 3 we obtain

$$0 = D([D(x), x]D(x))$$

$$= D(D(x)xD(x)) - D(xD(x)^{2})$$

$$= D(x)^{3} + 3D(x)xG(x) - xD(x)G(x) - D(xD(x)^{2}).$$

Thus we have

(10)
$$D(xD(x)^2) = D(x)^3 + 3D(x)xG(x) - xD(x)G(x), \quad x \in R.$$

Now we have

$$D(D(x)^2x + xD(x)^2) = 2D(x)^3 + 4xD(x)G(x), \quad x \in R.$$

From the above relation and (10) it follows

(11)
$$D(D(x)^2x) = D(x)^3 + 5xD(x)G(x) - 3D(x)xG(x), \quad x \in R.$$

From (10) and (11) we obtain

$$D([D(x)^2, x]) = 6[x, D(x)]G(x).$$

Thus we have according to (7),

$$6[x, D(x)]G(x) = D([D(x)^{2}, x])$$

$$= D([D(x), x]D(x) + D(x)[D(x), x])$$

$$= D(D(x)[D(x), x]),$$

which completes the proof of (9). Combining (8) with (9) we arrive at

(12)
$$D(x)^3 + 2[D(x), x]G(x) = 0, \quad x \in R$$

Now starting from (7) and using Lemma 3 we obtain

$$0 = D(D(x)[D(x), x]D(x))$$

$$= D(x)^{2}D([D(x), x]) + 3D(x)[D(x), x]D^{2}(x) - [D(x), x]D(x)D^{2}(x)$$

$$= 2D(x)^{4} + 3D(x)[D(x), x]G(x).$$

Thus we have

6

(13)
$$2D(x)^4 + 3D(x)[D(x), x]G(x) = 0, \quad x \in R$$

From (12) and (13) it follows $D(x)^4 = 0$, $x \in R$, which completes the proof of the theorem, since all the assumptions of Theorem 1 are fulfilled.

REFERENCES

- M. Brešar and J. Vukman: Jordan derivations on prime rings, Bull. Austral. Math. Soc. 37 (1988), 321-322.
- [2] M. Brešar: Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), 1003-1006.
- [3] M. Brešar and J. Vukman: On left derivations and related mappings, Proc. Amer. Math. Soc. 110 (1990), 7-16.
- [4] J. Cusack: Jordan derivations on rings, Proc. Amer. Math. Soc. 53 (1975), 321-324.
- [5] Q. DENG: On Jordan left derivations, Math. J. Okayama Univ. 34 (1992), 145-147.
- [6] I. N. HERSTEIN: Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104-1110.
- [7] I. N. HERSTEIN: Topics in Ring Theory, Univ. of Chicago Press, Chicago 1969.
- [8] A. GIAMBRUNO and I. N. HERSTEIN: Derivations with nilpotent values, Rendiconti del Circolo Matematico di Palermo, Serie 11, Tomo xxx(1981), 199-206.
- [9] E. C. Posner: Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF MARIBOR
PEF, KOROŠKA 160
2000 MARIBOR
SLOVENIA

(Received November 24, 1995)