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NOTE ON HOMOTOPY CLASSES OF SELF MAPS;
[SHP®, SHP3)

Hipeo TAKAHASHI

1. Introduction. Let X be a CW complex and ¥ denote the reduced
suspension. Then the homotopy classes of self maps of £X [£X,XX] has a
group structure induced by the co-H structure of ¥X. In this paper we shall
investigate [ZX, £X] when X is the quarternionic projective space HP?
and HP3. Let HP™ be the quarternionic projective space §%"*3/5% and
let Eq(X) denote the group consisting of the self homotopy equivalences
of X by the composition structure. Let + denote the sum operation in
[EX,XX] and let o denote the composition of maps. Then we have the
following theorems:

Theorem 2.2. [ZHPz, S HP? is abelian and isomorphic to Z + Z.

Theorem 2.20. [SHP3,~HP3) is non-abelian. We have a non trivial
extension;

0 — Z{K,P,Z} - [CHP%, SHP? - Z{id} = 0.

The non trivial commutator s < id,= >= 24K. The center of
[EHP3,XHP3 = Z{K, P}.
Let

Hx :[X,X] - Hom(H,(X), H,(X)
mx ¢ [X, X] = Hom(m.(X), m (X))

denote the maps defined by Hx (f) =the induced homomorphism on homol-
ogy groups H,(X) and 7x(f) =the induced homomorphism on homotopy
groups 7, (X) for f € [X, X] respectively. Then we call f € [X, X] homo-
logically trivial if Hx (f) is the trivial homomorphism, homotopy trivial if
7x (f) is the trivial homomorphism, homologically identity if Hx(f) is the
identity and homotopically identity if 7x(f) is the identity. Then for the
group of homologically identity maps of X, H;l (id), the group of homotopi-
cally identity maps of X, ﬂ}l(z‘d), the group of self homotopy equivalences
of X, Eq(X), the homologically trivial maps of X, Hy'(0) and the homo-
topically trivial maps of X, w}l (0) in the case of X = XHP? and SHP?
we obtain the followings:
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Theorem 52 (1) H EHP2 (0) = {0} = EHPQ (0), EHPg(zd)
{Zdz;{pz} = ’H'EHPQ (Zd) and Eq(SHP2 = {:tZdEsz}

(2) Hpa(o Z{K}: EHpa( {0}: ):Hpa( ) {id}:‘HP3 +Z{K}};
EHP3 (’td) {’LdEHpa} and Eq(ZH.Ps) = {:I’:'I:dEHpa + Z{K}}

We shall give the composition operations in [ZHP? THP? and
[SEHP3,THP3| in the section 5.

Lemma 5.22. The standard left distributivity law is satisfied in
[SHP?, SHP?.

Theorem 5.25. The left distributivity law in [SHP3,SHP3) is as
follows:

(f+g)oh=foh+goh for the case f,g € Z{K, P,E}or h € {id, =}
and exceptinal cases;

(m id) o K =m?K, (a id+ bZ) o K = a(1 + 24b)K
and (a id + bE) o P = (a + 1206) P + 4320bK.

Let (a,b) denote a id + b€ o (/S°) in [CHP?, £ HP?] for abbreviation
where id and & o (/S®) are generators of [SH P2, ©H P?]. Then we have:

Corollary 5.26. (a,b) o (c,d) = (ac,ad + bc + 24bd).

Let (a,b,c,d) denote a id + bK + cP + d= in [SHP?, £HPY| where
id, K, P and E are generators of [SHP3, LHP®]. Then we have:

Corollary 5.27. (a,b,c,d)o (e, f,g,h) = (ae,a2f +af(1+24d) +be+
360bg + 4320dg + 120bh, ag + ce + 360cg + g(a + 120d) + 120ch + 32dh, ah +
de + 24dh).

2. Groups [EHP? SHP?) and [SHP3, SHP3|. We have the follow-
ing exact sequence for the pair (ZHP?, S°):
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B (1

ma(SHP?, 8% - m3(8%) — ms(SHP?) &
I I |

Zo{[€%, 15] o 77} Zo{es} Zo{es} + Z{x}

m3(SHP?, 5% 5 m3a(S%) — mp(THP?)? 5
i I
Z{[e, 5]} Zy

7T12(2HP2,S5) - 7T11(55) - ﬂll(EHPQ) —
l | Il
Z24{69 o] 17} Zg{l/2} 0
(2.1)
7T11(2HP2, 55) — 7!'10(55) - 7r10(2[?[]32) —
- | l
Zo{on?y  Zp{von?) 0

(3

m0(SHP? 8% = m(8%) — m(SHP?)
I I I
Zy{€® o 7j} Zy{von} Z{¢}

Wg(EHPz,Ss)—) 71’8(85) — 7rg(2HP2) -

I | [
Z{eg} 224{1/} 0

{1 jes = [€%, 05,2 Tp € mip(SHP?),0 j,& = 24¢°

where the symbols of almost all of elements of the homotopy groups of
spheres are followed by Toda[13], p is the canonical projection S!! — HP?
and, for example, e° represents the characteristic element of mg(SH P2, S%)
such that 8¢’ = v and similarly 7 does the characteristic element of
Tp+1(e¥, S¥71) such that o7 = 7.

We obtain an exact sequence

0 — mo(EHP?) - [EHP?, SHP? — n5(SHP?) - 0

from the Puppe sequence associated with the cofibering S5 ¢ THP? —
S° because v* : mg(ZHP?) — mg(THP?) is trivial and mg(SHP?) = 0.
Therefore [SHP? LHP?| is generated by id and £ o (/S®) where /S° :



162 H. TAKAHASHI

L HP? — S9 denotes the collapsing map.

Theorem 2.2. [EHP?,SHP? is abelian and [EHP?, SHP? =
Z{id,€ o (/5%)}.

Proof. It remains to show the commutativity of id and £ o (/S®). The
map —id + & o (/S°) + 4d is represented as follows :

vHP? L sHP:VvEHP:VESHP? 5 sHP?vSHP? vEHP? 4 sHP?,
where V denotes the pinching map and T' = —id V £ o (/S°) V id.

Since the restriction £ o (/5%)|S% is homotopy trivial, —id + £ o (/S°) + id
is contained in the image of m9(XH P?) on the above Puppe sequence. The
element ¢ € mg(ZH P?) is characterized by the property that the induced
homomorphism &, on the homology group Hg(XHP?) is 24id and trivial
on others H.(SHP?). The map —id+ &0 (/S%) +id has the same property
and so —id + £ o (/S%) 4 id = £ 0 (/55). Hence [SHP? SHP?] is equal to
Z{id, & o (/5°)} as an abelian group.

Next we shall investigate [CHP3, ZHP®). First we note
Lemma 2.3. (/S%)op=2v.

Proof. Since HP3/S* = HP3/HP?! is homeomorphic to the Thom
space of 2[¢] over HP! where [¢] is the canonical line bundle, (/S%) o p
must be 2v.

Hence it follows j,Xp = 2¢® o v where j, : m32(ZHP?) -
WIQ(Zsz,Ss).

Lemma 2.4. m2(SHP?) = Z3g0 generated by Tp.

Though the result of Lemma 2.4 is given by Morisugi[8], another proof
is given in the section 4. ‘

Lemma 2.5. Zpon # 0 and it follows £p on = i.€s.
The proof of Lemma 2.5 is given in the section 3.

Thus we have the following exact sequence for the pair (ZH P3, ©H P?):
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ma(SHP3, SHP?) o m3(SHP?) — ma(SHPY) 5

Il I I
Zy{e"n} Zoles+ Z{s}  Z{x,p}
(2.6)

T('13(EHP3, EHPZ) - 7l'12(2HP2) — 7(12(2HP3)

l | l
Z{e!?} Zseo{Zp} 0

(4, p = 360e!3
On the other hand from the cofiber sequences
85 C SHP? 5 SHP3/S% = 89Uy, e and 8° c THP3/S5 - §13

we obtain the Puppe sequences using (2.1) and (2.6):

WlO(EHPs) = 0
i

Zy{n} =  7(THP?) m3(SHP®) = Z{x,p}

} L(/8%)"
[CEHP3/S5 SHP? = [SHP?/S% SHP?
(2.7) 4 (/s°) 118°

Z{id} ¢ [SHP3 SHP? m(SHP?) = Z{¢)
4|8 4 (2v)"

Z{L} = 7r5(EHP3) 7T12(2HP3) = 0
+
0

Here we note that [SHP3/S% THP3] is abelian because THP3/S% =
59 Uy, €13 is a double suspension. Thus we obtain

Lemma 2.8. [SHP%/S®, SHP% = Z{(/S°%)"k,(/S°)*p,£} where £
denotes an eztension of &€ on THP3/S® such that £|S° = €.

Now the generators K = (/SHP?)*s,P = (/ZHP?*p and = =
(/8%)*¢€ of [EH P2, ©H P?] are given as follows:
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=. 3 /5% o 13 & 3
Z:SHP? 5 §0Uy 3 SHP
U U
5
s¢ & wap? 5 g9
Il Il
59 24 S®
(2.9)
2
p.sHpYPAP g3 A wpps
\ /HP?

S35 (JHP?)op=2360i3

2
K :sHp3/PEP g1 K wpp?

By (2.7), it follows that [SHP3 CHP®) is generated by 4 elements:
id, K, P,=.

Recall the Hilton-Milnor theorem (followed by G.W.Whitehead[14]).
Let J(X)be the infinite reduced product spaces of James and let J,(X)
be the image of X™. Let i : X — J(X) be the canonical inlusion. It
is well known that j : J(X) — QXX is a homotopy equivalence where
gz zg-ozp) = (- (i(z1) + i(x2)) +i(z3) + -+ ) + i(zs). We identify
J(X) with QXX by j for brevity. Let z € [£X,Y]. Then let z' € [X,QY]
be its adjoint and occasionally z by the same sign. To state the Hilton-
Milnor theorem precisely, we need some algebraic preliminaries. Let A be
the free non-associative ring with n generators z,z9, - ,Z,. A has an
additive basis consisting of ‘all parenthesized monomials in z;. We shall
single out certain of these, reffering to them as basic products. Let us
define the weight of a monomial to be the number of its factors. Suppose
Y be a connected homotopy associative H space (grouplike space). If w is
a basic product and z; € [X;,Y], we define

w(mhl'%”' ,mn) € [X;U(l) /\X;U(Q) ‘oo /\X:}(n),Y] — [XM",Y]

using the iterated Samelson product. If ¥ = QXX, its adjoint is the
iterated Whitehead product

[(El,xg, e axn]w € [E(Xiﬂ(l) /\X;u@) e A X,r’l:)(n),EX]
for z; € [EX;,XX] =~ [X;,QZX]. Then we have
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Theorem (Hilton-Milnor). Let X;(t =1,---,n) be connected CW-
complezes with vertices. Then J(X1VXaV---VX,) is homotopy equivalent
to [T, JEXPD A XEO Ao p xP),

An explicit equivalence can be constructed as follows. Let j; : X; C
X = X1 VXaV---V X, be the usual inclusion (¢t = 1,...,n) and let
it + Xy C J(X) be the composite of j; with the inclusion i : X — J(X).
For each basic product w, we can form the element (the iterated Samelson
products)

w(t1,92, ... yin): X{”m /\)(;”(2).../\)(:;)(71) > J(X).

This map can be extended uniquely to a homomorphism

———

wlit, i, .. yin) : JXYDAXEE A A X2 5 J(X).

Their weak products induces an equivalence:

[T wtiniz--. yin) : [JIXED AXED Ao AXEO) 5 J(XLV X V-V X)),
w w

Consider the case n = 2 and X; = Xy = X. Let ¢; = id; and is = idy
denote the inclusions of £X into XX VvV XX so that V = i; + i3. Then the
formula of the Hilton-Milnor theorem for n = 2 is as folllows:

Corollary. The iterated Samelson products < 1idy,idy >4€
[X"¥, QE(X VX)) for basic products w induces a homotopy equivalence (not
necessarily H space equivalent unless X is a co-H space)

v =[] < idr,ids >u : [[ OZ(XM) ~ QT(X V X)
w w

where < sz;d/z Sy QE(XM) 5 QZ(X V X) is the unique homomorphic

extension of < idy,idy >y. Especially < idy,idy >y, : m(QL(XM)) =
T (QE(X V X)) is an embedding to direct summands for each w.

It follows for any finite dimensional CW-complex A that
[ZA4, (X v X))~ []l4, 02(x")] ~ [[[24, 2(X ™).

w w
Let pry : [1, Q2(X") = QE(X"") be the projection. Especially for
A = X, the co-Hopf structure map V € [EX,E(X V X)] ~ id; +idy €
[X,QZ(X V X)] corresponds to [],, hy where hy = pry, 01y~ 1o V. For
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a € [EA,XX], define hy(a) =the adjoint of hy.a' called the Hopf-Hilton
invariants of a so that Va ~ Il,,h,(a) by the above correspondence. That
is,

Va =) lid,ido)y o hu(a)

w

and its adjoint is
Vo' =[] < idi,idy > © hupedd
w

————

where V' = (i¢d; + id2) denotes the canonical extension. Then the gener-
alized Hopf invariants Hy, : [EA4, £X] — [ZA, 5(X"")] are defined. Espe-
cially we need the evalution of H,. :

Our X = HP?, HP3 are not co-H spaces but for our requirement, it
is sufficient to investigate a few invariants H(). On our cases mg(Q2XH P?)

and m2(QXHP3), we have < idy,id; >, =< idy,idy >, because

ns(HP2 A HP?) ~ rg(QS(HP? A HP?)),
7[’12(HP3 A HP3) C 1!'12(QZ(HPS A HPs))

and
m2(HP? A HP3 A HP®) ~ 5(QE(HP3 A HP? A HP3))
for w with weight 2 or 3. First we consider
VE =it o€ +ip0€ + [idy,ida] o {a(€)ua} = i1 0 € + iz 0 € +a(€)iS”, ).
Let ¢ € ms(QTHP?) be the adjoint of £. Note that QSHP? = 54U, e8Uy,,

e Uel2U..-. From the following sequence

7r3(S4) —)Wg(QEHPz)'é; WS(QEHP2,S4) 4 7!'7(54)
2100 I I I
S (S%) Z{¢"} Z{e,el )} Z{v}+ Zn{Sw}

(1 G 6" = 24e8 — 12€8[1, (]

we obtain
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<idyid2>
) =

s 5 osp % aspaPp QE(PV P)
I u U 1< idy,idy >
8 o RP) L5 neyp = PAP
211) 5 1 /st +0Vid
S8v S8 C Jo(P)/St =SBV (PAP) t0Vvid
|
S8v g8 = S8y g8

where P denotes HP?, § = 2443 V —12¢5 in the diagram and P A P has a
CW-decomposition S8 U, e'? U, el2 U ¢!,
Hence we obtain

a(f)[bgl), Léz)] = the adjoint of < im2 >, Ho. ¢

— the adjoint of <'idy, ids >, (—1248) = _12[L§1)3L.{52)]'

Theorem 2.12. V¢ =1i; 0 € +14; 0 — 12V, 1),
We have stated previously that Theorem 2.2 follows from this equation

and @,[1{", P = von =0 in me(THP?).
The reduced diagonal map

A:HP* 5 HP3AHP? =S8 v (58U, €U, e?ue'®)u...
is decomposed as follows:

4
HP3'S HP3/$* & HPSAHPS
(2.13) T U
S8 Uy, el2 Y g8 U, el2 U, el?

The map V : S8 Uy, €12 5 S8 U, e!2 U, e!? is the one gotten by the
construction of the following cofiber sequences:

S8
S B gsc stuyer 5 g2

(2.14 v | IV v
Sy S Y 68 68y, el2y, 12 5 §12y g12

Let & be the generator of mg(S* Uy, €®) such that j,&, = 12e® where jx :
S%Ug, €8 = (S1Ugy €8, %) and for abbreviation, let & denote its suspended
generator of g +(5!(S* Ug, €3)), too. Let S}! = e!?Ne!? be the equator of
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512 = el2Ue!? and then S8U, e'2U, e!? is considered as the partial mapping

cylinder of v : S§! — S®. Let i be the map S = el2Ue!? C S8 ug, S'2
Lemma 2.15 m15(S8 U, e!?2 U, e!?) = Z{i, V 0 &5}

Proof. Consider the exact sequence of the pair (S8 U, e!? U, €2, S%):

Trlg(Ss) = 0
!
m12(S8 U, e!? U, e1?)
s
{
m11(88) = Zu{v}
i

Then we have 871(0) = Z{e? + €!?,12(e}? — €!?)}. From the definitions
of i and V§&;, we have

el = el2 + €12, 5, (V&) = 12(eff - e!?).

Considering the adjoints of this lemma, we obtain the following dia-
gram: R
0 Z{Z5, (Vo &)} Z{el3,e!3}
I | |
m3(S%) - m3(S°u, ePu, et?) Ei 713(S° U, e3 U, 13, 59)
CAIR \[idy,ida)e 4 [id1, ido]s
(S5 Vv S 5 m(QS(PVP)) B ma(QX(PV PSSV S

Za{v} 0
|
— 71'12(59) — 7!'12(59 Uy eld Uy 613)
8, s 1

- 13(QT(SP Vv S%)2 = m3(QX(PV P))

I
T12(EP)?

 Omia(S° v 8%) = ma(8% + Z{(05” 47157 (5”157 157)
C m12(5%)2 + Zaa {18, 18P} 0 v}
(2.16)
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where P denotes HP? in the diagram and we have
3™, ) = W, D) = (N, P o v = [, = —5[e*@,. V).

It follows that
m3(S(HP?V HP?,5% Vv 85) =

it 0 mg(SHP?, §°) + iz 0 ma(SHP?, §%) + Z{[e*"), 7], [, {)).

Let ) and p be the adjoints of < idy,ids >, and < idy, idy >,V 0 & in
T12(QE(HP? v HP?)) respectively. Then we have the following relations

A = [idy, idg). B0 = [idy,id2)« Z(V 0 &)
o) 3= D@1+ I on =12, 57] - [, 47
" lidy, idy)eeld = [0, 2] [idy, ida]ve!® = [9®), )]
o) =2k A Q.u=0

It follows that

m3(S(HP? v HP?)) = i) o m3(SHP?) + i3 0 m3(SHP?)
2 1 2); (2
+2{ m} + Z{11687, 5 1 (157, 471, 7).

Similarly we have
ms(S(HP?V HP3)) =i o m3(SHP3) + i3 0 m3(SHP?)

+2{0u} + Z{{1”, &1 1 116, 670, 0571} -
ma(S(HP3V HP?), 8%V 8%) = i) o m3(RHP?, 8% + iy o m3(THP?, 8%)

+2{[eM, ], [, 5 13-

Suppose X is a connnected finite complex. Let id; : X = QE(X V X)
be the canonical inclusion into j-th factor and also its adjoint by the same
sign. Then the commutator for f,g € [£X,XX] is given by

~f—g+f+g=8.[foid,goid)]oTA:
X5 Z(XAX) 22X VX)X
where [f o id;,g o idg] : (X A X) = E(X V X) denotes the Whitehead

product of foid) and goidy and @ : ¥(X V X) = £X denotes the folding
map. In our case X = HP3, we have the following commutative diagram:
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TP 15 59U, 3/ 13
I =A 1=V
(P A P) > K
| [idy, ids]
S(PVP) = X(PVP) 1/8° |
idV /SHP? | L23dV /8%
i/ g9 @
C18)  spveny WU gpyprss) VE gisy g
idVEkl . z
idv L bidveE I
ov—[{P) @) v
S(PVP) S(PVP) &7 T8y gl L g8
3| 1@ - [
TP TP sl g1 g1

where P denotes HP3 and K = S%U, el U, e!3.
From this diagram and [¢, t5] = 24« (see Theorem 7.1), we obtain
Lemma 2.19. The commutators in [SHP3, HP3| are
<id,K >=<1id,P >=0and <id,Z >= 24K.

Theorem 2.20 [SHP3 T HP3 is non-abelian. We have a non trivial
eztension:

0 — Z{K,P,Z} — [EHP* ©HP% — Z{id} - 0.

The non trivial commutator is < id,= >= 24K. The center of
[EHP3,THP3) = Z{K, P}.

Proof. The extension diagram follows from (2.7). The commutativities
of K, P and Z is easily verified because these are contained in the image of
the abelian group [CHP3/S5 “H P3). By Lemma 2.19, it follows that the
non trivial commutator is < id, = >= 24 K.

3. Proof of Lemma 2.5. Let F be the homotopy fibre of the collaps-
ing map /8% : HP? — S8, Then it is easily verified that the 10-skelton of
F is S%. Let i be the inclusion S* C F. The exact sequence of the fibration
F — HP? — S8 must be as follows:
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m3(58) =0 & ma(HP?,58%) = Zo{[€8, 4] 0 7;-2]}
10 10
m2(F) = Zo{v} + Zo{taea} & m12(8*) = Za{es}
l i
71’12(HP2) = Zg{p l¢] 'r)} -+ Zg{i*e‘;} = 7r12(HP2)
L(/Sh. S
m12(88) =0 — mio(HP?), 8%) = Zo{[e®, 4] o barn]}
{ . l
11'11(F) = Z{ﬂ} + L*2W10(53) — 7T11(S4) = Z15
1i | !
711 (HP?) = Z{p} +1.Zmo(S?) = 711 (HP?)
L(/8He | S

71’11(HP2, 54) =

m11(S%) = Zoa{v} Zo{[€8, 4]} + Zoa{eB o}

106 106
(7
m0(F) = Zo{a} + tu.Zm9(S3) & mo(S?) = Zoa{v?} + Zmg(S3)
{ i,
mo(HP?) =i, Eme(S3) =23 = m10(HP?)
4 1jx=0 _
7?10(58) = 22{772} «— 7T10(HP2,S4) = Zg{e8 o U2}

{1 j,poii = [€®, ta)of, @ .8 = 12p, B (/5%).p = 20, ¢ j.p = [€®, La] +2¢B0D, -
ca[€B,is] = 0,ciet 0ot = v, O v = o, © e, 4] = [V, 14], BB 0D =12

T, 2 _
702 =a,

Since (/S*).p = 2v, there exists an element a € mo(F) such that
mo(F) = Z2{a} +1,5mg(5%) and t,2 = a. On the E2-term of the homol-
ogy spectral sequence of the fibration F — HP? — S8, the first non-trivial
differential on Hg(S®) ® Hy(F) just hits Hy(F) ~ Z. Let K = S* Ue!l
be the mapping cone of 2v2. Then we may regard K as the 11-skelton of
F. Let 3 be the generator of Z-summand of m11(F) such that i¢,8 = 12p
and let y be the element of m12(F") so that -y corresponds to pon. Then we
obtain the following exact sequence of homotopy groups of the pair (F, $4):
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(1
Zo{7} + 1 Zm1(S%) = me(F) 5 mp(HP?) = Z{p} + 1.Smo(S3)

s

Zz{elloﬁ} :7r12(F,S4)
d

E?Tlo(s3) = 7I'11(S4) ’”11(34)
1 18

- (2
20} +iuTma(S") = wu(F) 52 10 (HPY) = Z{p} + 1.Emo (%)
13
Z{e“} =7l'11(F,S4)

Lau

Zoa{v?} + Emg(8%) = mo(SY)
Misy=pon, @ i,8=12p, @ j,8 =12¢", (4 ge!! = 2,2
Consider the exact ladder of homotopy groups of the pairs (K, S) and
(F,8%):
m2(SY) = ma(K) — ma(K,S) - mi(SY) -

I + ! |

7!'12(54) g 7‘(12(F) — 7r12(F, 54) - 71'11(34) —

7r11(K) —)71'11(K,S4) — 11‘10(54) — 7T10(K) -

] ) l i
7T11(F) — 7['11(F,S4) — 7T10(S4) — 7I'1[)(F) —.

This ladder is equivalent to

Zy — Zo+ 29 — Zy = Zis -

|| i} 1 Il
Zg_ — Zy+ Zy > Zy - Zis =

Z+ 75 — Z{eu} > Zog+ 23— 2o+ 23 —

1(12,0) { Il Il
Z + Z{ﬂ} — Z{eu} — 2oy + Z3 — Zy + Z3 —>.

Thus we may regard K as the 12-skelton of F and so 712(F, K) = 0. Then
the 13-skelton of LF is of the form ©K = 5% v §'2. Suppose ¢ denotes
the collapsing maps; K — K/S* = S1, §3v §12 5 §12 in the following
diagram.
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Za{es} + Z1s Z>{n}
| Il
1r12(54) - 11'12(K) — 71’12(K, 54) 64 1r12(5'u)
2 +J X (DY
7!‘13(5'5) - 7r13(.5'5 \Y 512) = 7r13(55) + 71’13(512) 5 7r13(.5'12).
[ [
0 Zo{n}

The left suspension and the right one are isomorphic and so is the central
suspension. Hence Zpon = Z(pon) # 0 and it follows Tp o p = i,€5 for
i: 8% Cc THP?. Then we know the following groups are isomorphic to each
other.

ma(HP?) « m13(F) « m1a(K) 3 ms(S® v S12)

4. Proof of Lemma 2.4. The Steenrod operations on the cohomology
groups of HP3,S¢*(p = 2) on H*, p'(p = 3) on H* and H8,p? on H* and
p'(p = 5) on H* are non trivial. Hence Ip cannot be divisible by 2,3,5.
The generator of Zs-summand of 719(S%) = Zi5 can be detected by the
property that p!'(p = 5) on H3 is non trivial. It follows that the Zs-
component of p in m2(E(#)) D m12(S%) = £2m19(S%) + Z2{c™} contains
the generator of the Zs-summand. For the generator of Z3-summand of
m10(S3) = Z15, p'(p = 3) on H3(S3 Uell) is trivial since the mod 3 Hopf
invariant is trivial. Since (/S°).E p = 2v, it follows that the order of p is
divisible by 60. Recall that the homotopy groups of S° U, e° are 5 = Z,
71’5271’7222.,71'3:0, 7Tg=Z, Tf10=7i'11=08.nd

0— Z3 — 71’12(55 Uy 69) — Z12—>0

is an exact sequence. Hence it is enough for us to investigate the mod 3
and mod 2 extension problems for the group structure of 712(S° U, €9).
Then we obtain the followings:

Lemma 4.1. m5(S° U, €°) has Zg as the 2-component.
Lemma 4.2. 712(S% U, €°) has Zy as the 3-component.

First for our calculation of the 2-component of m12(S% U, €?), consider
the following the tower of fiber spaces (the connective fiber spaces of (S°U,

e)):
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K(Z,8) » Xa
X

K(Z:,6)> X3 5 K(Z,9)
ik

K(Z5) > X, " K(Z,7)
ik

K(Z,4) - X1 3 K(Z,,6)
!
(S®u, %) o K(Z,5)

mte=a, 1" L=a, ' =0d"

Proof of Lemma 4.1. The mod 2 cohomology algebra of K(Z,, n)is the
polynomial algebra over Z, with the generators Sq’. where I runs through
all admissible sequences of excess less than n and the one of K(Z,n) is
the polynomial algebra over Z with the generators Sq’: where I runs
through all admissible sequences of excess less than n and of the form
Sq' # Sq’Sq'. We know H* (S5 U, €%; Z3) = Zo{t} + Z2{Sq*.}. Consider
the cohomology spectral sequences of the tower of fiber spaces (figure 1-4),
where the following above condensed statesments mean the full statesments
below:

Sq*. N a
;a hits Sg%¢ by the differential d,,i.e., d,(a) = Sq¢°
5
Sq4Sq2a’ v S N Sq2a”

N S¢'Sq¢l
i di(S¢°) = dy(Sq*Sq't) = Sq*Sq%d/, and d.(Sq%a") = Sq¢° + Sq*Sqle,
Sq'la — Sqle

;the horizontal arrow means the element Sq'c of base space survives the
correspondent Sqla of total space.
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(figure 1) X; C S* U, &® = K(Z,5)
H*(K(Z,5); Z2) H*(X1; 2,)
L

Sq*t N a
Sqe N Sqla
Sqte @

2 V4 SqQSqla (2
Sq*Sq% V4 Sq*a @
Sq°Sq*. v S¢°a = Sq¢*Sqla
L+ S¢% N t®a (4
SqbSq>. Z  S¢%a=a? (5
t-Sg3 N4 t® Sq'a
SqbSqd. N4 Sq¢®Sqla (6

v-Sqght N b 7
(Sq%)? Y  S¢*®a (8
Sq'S¢* v (S¢%a)? (®
3

Sq%.- S¢bu < 852'3 éi’;la > a-S¢'a
i3 Z 1®8¢°Sqtar (10
Sq2L'Sq4L V4 Sq4b®a (11
(sq®)? v S¢®Sqla (12

:(18¢2 = 0 by Adem relation S¢?Sq®> = S¢°Sq', 2S¢2S¢3: = (S¢° +
Sq¢iSq') = 2, 358¢3Sqla = S¢?Sq%a = 0, (4S¢4Sq¢%a = 0, 55¢°Sqla =
Sq¢*S¢*Sqta = 0, 68¢°Sq%a = 0, 75¢5S¢%a = 0, 85¢4S¢2Sq'a = 0,
98¢5S¢%a = SqSq' Sq2a = 0, (195¢'b = 0,5¢°S¢%Sq'a = 0, (11S¢2b = 0
by Sq2Sq* = Sqb + S¢°Sqt, (128¢%b = 0, 5¢55¢?Sqla = Sq"Sq*Sq'a =0
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(figure 2) X2 C X1 — K(2Z2,6)

H*(Xl;Zg) H*(K(ZQ,ﬁ);ZQ) H*(X2;Z2)
a — L
Sqla — Sqlt
0 = Sq%a Sq¢ N a
0= 5S¢ Sq3 v Sqla’
Sq%Sqla — Sq%Sql.
Sq*a — Sqtt
0 = Sq¢3sqla Sq3Sq's = 5¢%Sq* Sq%d’
5
Sq®a = Sq*Sqla < S(;S‘;‘;JS';IL > Sq%Sqta (1
Sgta=a? 2 Sq®a' =0
0 = S¢°Sqla Sq®Sqle v 8¢°Sq*d’ = S¢*Sqla’
0 = Sq*Sq?a 0=S5¢'S¢>. Sqta’
0=2S5¢%5¢'a « Sq8Sqle
0 = Sq¢°Sq%a Sq°Sq% v S¢Pa’ = Sq¢*Sqla’ (2
0 = Sq*Sq¢*Sqla Sq*S¢’Sqgty c
a-Sqla — - Sqle
b b
(Sq'a)? « (S¢'0)?
0 = S¢%S¢%a S5¢%5q% N Sqba’
0= 5¢°5¢°Sq'a 0=5¢*S¢*Sq't /' Sq*SqPa’ = Sq'c:G
L+ Sq* N t@ad
L+ Sq N4 L ® Sqta
Sqli- Sq* v Sqlt®a’
0 = Sq"Sq%a Sq’Sq% v a'
0 = Sq¢%SqPa Sq8Sq%: Ve Sq8Sqla
0= S¢%5¢35q'a S¢%5¢%*Sqls 5¢*S¢%Sqld + a4

15’8 = 5S¢ + S¢*S¢', PS¢Sg'a = 0,35¢*S¢® = S¢°S¢?,
(48¢°Sq%a’' = 0,S¢%c =0
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(figure 3) X3 C X2 = K(Z,7)

H*(X2; Z,) H*(K(23,7);Z2) H*(X3;2Z2)
a — L
Sqla’ — Sqle
Sq%d’ — Sq%u
0 =S¢ Squ N4 a”
Sq®Sqla’ — Sq?Sql. Sqla”" =0
Sqta’ — Sqte
Sq*Sqla’ — Sq®Sqle
5
S¢°ad’ = Sq*Sqla < S;?S’;IL > Sq%d’
c _ c:(
Sqba’ — Sqb.
0 = Sq¢°Sqtd’ S5¢°Sqls v 8¢
Sq*Sq%a’ = Sqglc Sq¢*Sq* (@
b b
a12 — l,2
Sq8Sqta’ — Sq%Sql.
0 = S¢°Sq%d’ S5¢°Sq%. v Sg¢ta" B
Sq*Sq?Sqla’ «  Sq¢*Sq*Sql. “

{(18¢lc = 0, 25¢25qta" =0, BS¢*S¢® = S¢°Sq?, (4SgPa" =0, Sq%c =0

(figure 4) X4y C X3 — K(Z,9)
H*(X3;Z2) H'(K(Z,9);Z2) H*'(X4;20)

n

a «— 1A
Sq*d" Sq%e
Sqda" Sqe
c c Sqlc=0
Sqta" Sqt
b b Sqg'b=0
0 = Sq°a" Sq°t N d

Therefore we obtain 7r12(S5 Uy eg) ® Zo = Zy. To know the 2-order of
¢, we must investigate the Bockstein spectral sequence. Let d, be the r-
th Bockstein operator and let 7 be the transgression. Then we have the
Bockstein relations:

Lemma 4.3. d;b =0 for any r, i.e., b is a mod 2 reduction of a class
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in H3(X;; Z)(i = 1,2, 3,4) with infinite order.

Proof. Consider the mapping cone of &, E(9) = S5U, €° U e'* which
is the S5-bundle over S? corresponding to the generator & of 73(SO(6)) =
Z94{D} such that 7,5 = v because T, : 73(SO(6)) = Zos{D} — ma(S°) =
Zo4{i} is an isomorphism induced by the projection 7 : SO(6) — S°.
On the fiber sequence K(Z,13) —» F — E(V) — K(Z,14) induced by the
orientation class [E] € H(E(%); Z), the homotopy fibre F of [E] is S°U, €°
up to 13 dimension. The class b € H'3(X;; Z2) is the one correspondent to
& € m3(S® U, €°). Thus b is a mod 2 reduction of a class in H3(X;; Z)
with infinite order and so d,b = 0 for any r.

The next lemma necessary for our calculations is known as the ”Bock-
stein lemma” (for example, see[9]).

Lemma 4.4 [Bockstein lemma). Let F C E 3 B be a fiber space.
Let the class u € H"(F; Z,) be transgressive, and suppose dyv = 7(u) for
some positive integer r and for some class v € H*(B; Z3). Then dry1p*v
is defined, and moreover i*dr+1p*v = diu.

Corollary 4.5. (1) For K(Z5,6) C X3 — Xs, doc = Sq*d" in
HY(X3; Z3).
(2) For K(Z,8) C X4 — X3, there ezists d € H™(Xy; Z3) such that dsc =d
and 7(d) = Sq®. for the fiber space X4 C X3 — K(Z,9).

Proof. (1) dic = Sq¢*c = Sq¢*Sq*ar = 7(Sq*Sq%.). Hence i*doc =
Sq¢58¢%: and so dyc = Sqia”.
(2) dac = Sq*a” = 7(Sq*.). Hence i*dzc = Sg°.. Since Sg°a” = 0, there
exists d € H™(X4; Zo) such that dsc = d and 7(d) = Sg¢°¢ for the fiber
space X4 C X3 - K(Z,9).

Theorem 4.6. H'%(Xy;Z2) = Zz{c} and hence m2(S° U, %) =
m12(X4) = Z360-

From the structure of m2(S% U, €?) = m12(X4) as a group, it is com-
patible that ¢ is the mod 2 reduction class of a Zg-class in H'?(X4; Zs).

Remark 4.7. In addition, construct the connective fiber space X5 C
X4 — K(Zs,12) killing ¢ by the fundamental class v € H'?(K (Zs,12); Z3).
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(figure 5)
H*(X4;2Z2) H*(K(Zs); Z2) H*(X5; Z,)
c — L
d=d3sc + dst ¢’ e(correspondent to €5)
b b(correspondent to k)
0 = Sq'c
0=Sq'b Sqde N4 0 = Sqle

Then we obtain the 2-component of m3(S° U, €°) = m13(X5) is equal to
Zo{es} + Z{x}.

Similarly for our calculation of the 3-component of 7r12(35 U, e%) =
m12(E (D)), consider the following the tower of fiber spaces (the connective
fiber spaces of S° U, €°) :

K(Z,8) = X,
pl
K(Z,4)—» X1 5 K(Z9)
!

S3u, e 5 K(Z,5)

"e=a,&" = b,

Proof of Lemma 4.2. The mod 3 cohomology algebra of K(Z,n) is
the free commutative algebra over Z3 with the generators {p’i} where
I runs through all admissible sequences of excess less than n and of the
form p! # /B (B denotes the Bockstein operation). We know H*(S5 U,
€% Z3) = Z3{1} + Z3{p"}.

Consider the cohomology spectral sequences of the tower of fiber spaces

(figure 6) X; C S5U2 — K(Z,5)
H*(K(Z,5);Z3) H*(X1;23)

Pl
Bp'e N4 a Ba=0
P2 Ve b
Lept N c Bc=0
Bp*e  pra= b p'Bp' = Bp® + p°B
L Bpte v t®a
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(figure 7) X2 C X1 = K(Z,9)
H*(X1;23) H*'((K(Z,9);2Z5) H*(Xa;Zs)

a — L
0=pa
b b Bb=0
v b Bc=0
b b Bb=0
pla=pb + ple
0= Bpla Bes o d=db

It follows H'2(X2;Z3) = Z3{b}. Apply (4.3) (use the prime number 3
instead of 2) for the fibration K(Z,8) C X2 — X;. Since dib = Bbpla
in H3(X,;Z3), we obtain the relation 1*d2b = Bp't and so deb = d
in H'3(X,; Z3). Therefore b is the mod 3 reduction class of a class in
H'2(X3; Zg) with order 9. Hence m2(S° U, €°) ® Z3 = m2(X2) ® Z3 ~
H'2(Xy; Z3) = Z3 and so it follows that m2(S® U, €°) has Zg as the 3-
component.

Remark 4.8. We can also know the class c € H'3(X2; Z3) is the one
correspondent to k from the similar argument as (4.3).

5. Left distributive law and composition law. For abbreviation,
let P™ denote the quorternionic projective space HP" in this section. First
we shall investigate the composition structure in [SP2? ZP?) = Z{id,£ o
(/5%)}. We have

Theorem 5.1. (€0 (/S%)) o (£0(/S%)) = 24€ 0 (/S9).

Proof. (£0(/S%)0(£0(/S%) =£€0(/S)0k0(/S®) =Eo(2419)0(/S°) =
24¢ o (/S9).

Recall the diagram (2.7), the following diagram
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7[‘10(2P3) =0
J 32w
Zy{n} = m6(SP?) m3(ZP3) = Z{p, x}
1
[ZP3/S5,ZP% =[S Uy, €%, EP%) = Z{(/5%)k, (/5°)p, &5}
1 (/8% L
Z{id} C [ZP3,ZP? m9(SP3) = Z{¢}
118° 12
Z{L5} = 7(5(2133) 71’12(2]33) =0
1 (/8% i

and the facts that the extension £ € [S9 Uy, e!3, TP3] of ¢ satisfies the
condition that (/ZP?) o £ is 120(/S?) and p satisfies the condition that
(/ZP?%) o p is 360t13. We collect the behaviors of the induced homomor-
phisms on homology groups of Z, P, K; the non-trivial cases are as follows:

Z, on Hy(T P2, Z) = 24id,,=, on Hi3(XP3, Z) = 120:d,
and P, on Hy3(EZP3, Z) = 360id,, especially K,is trivial on H,(ZP3, Z)

For the group of homologically identity maps of X, H)‘(1 (1d), the group
of homotopically identity maps of X,ﬂ')_(l (id), the group of self homotopy
equivalences of X,F¢(X), the homologically trivial maps of X, H;{l (0) and
the homotopically trivial maps of X,r%'(0) for X = TP? and ZP? we -
obtain the following.

Theorem 5.2. (1) HEPZ(O) = {0} = 7TEP7(0)’ Epz(id) = {id} =
"2?2 (zd and Eq(XP?) = {:I:zd}

(2) H ps(0) = Z{K}, m5ps(0) = {0}, Hyps(id) = Z{id + Z{K}},
2P3 zd) {id} and Eq(SP?) = +id + Z{K}}.

Proof Since K.p = 360k on 713(XP3), it is easily verified that 7r2 ps (zd)
and 71'E p3(0) are singletons.

We have
Theorem 5.3. {ov = 60%p.

Consequently there exists an extension E of ¢ as follows:
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The proof of Theorem 5.3 is given in the section 6.

Sl3
1120412
513

Next we shall investigate the composition structures of [ZP3, ZP3].
In our choices of p and £ there exists an ambiguity. We must choose the
appropriate generators of [ZP3, £P3] to know the composition structures
of [EP3,£P3]. Here we shall give the precise definition of them. The
homotopy fibre of ZP3 Vv (EP3/5%) — ©P3 x (ZP3/S%) is S13 up to dim
15 and the inclusion §'3 ¢ TP3 v (ZP3/5%) is [u9,¢5), and so we define

¢:[EP3/S%, ZP3 - Z as follows;

(5.4) ((GdV /SP)V)u(f) = £ +(/5%) o f + ¢(f)[ea, 5] © (/S°)

for f € [EP3/$5,5P3).

; 5
=p3/ss 4 xps % wpsyeps 4 sp3y (zp3)ss)

It is easily verified that f is a homomorphism. And moreover we have

Lemma 5.5. ¢(xo (/S%))=1.

Proof. 1t is enough to show that ((id V /S®)V).(k) = k + [tg,t5] in
m13(ZP3 v (£P3/8%)). Consider the homotopy groups of pairs:

7T13(EP2) - 7T13(2P2’ S5)

L(idV [S%)V

L(idV /S®)WV

7T13(55) = Zg{e} - 7T13(EP2 \Y Sg) k) 71'13(2132 Vv 39,55 V %),

From the equalities j & = [€2, 5], ((id V /S%)V).e® = €° + jitg, we obtain
J(idV [SP) V)i = ((id V /S°)V)ur = ju(k + [€°, 5)).

Hence ((id V /S%)V)uk = & + [€%,¢5] or k + [€%, 5] + €, however i.e = 0
where i, : m13(ZP2%) = m3(ZP3), and so we have ((idV /S%)V).x = [e°, 15)

in m3(XP3 v (EP3/S9%)).

J(X) has the filtration J(X) = UpJp(X) where J,(X) is the image
of n-fold product X™. It is well known J5(S*) = §* Uy, 8. J3(S*) has a

CW-decomposition as follows:

J3(8%) = s* Ul e® U, e1? = §% x §* x §*/(some relations)
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where €? is attached by [t4,t4] and r denotes the attaching map of e!2. Then
jar = 3[€®, 14] by the cohomological computations on $*x §4 x §* — J3(S*)
where j, : m1(S* UL ed) = m (8t Ule] e3,54). Let ¢ be the attaching
map of 12-cell of
P? x §*/(S*v §* = 5% = P2y, et U, et?

where the identification map is the folding map ® : §* v §* — S%. Let
eﬁ’b],eﬁ € mg(P? Up,,) €8,5%) be the characterisitic elements such that
Beﬁ,L] = [t4,t4], €8 = v respectively. Then we have

j*q = [6[81,,1,]’ L4] + [618/’ L4] + 618/ ° 17

by the cohomological computations on P?x §* — P2U[L,L]e8qu12 where j, :
T (P? Uy, €8) = 11 (P2 Ule] e8,5%). The 15-skeltons of J5(S?), Jo(P?),
Jo(P?),J3(5%), J3(P?) and J3(P?) have the following CW-decompositions:

54 Ul et = J‘Z(S4) C J3(S4) =S U, et U, el?

n n
K,  CJy(P%)chi(P?)D K3
N N
Ky C J2(P3) C J3(P3) D) Ky
1K1 = P? Ule,) et Uq el? Ug el? Ky =P3 S/ e? Uqg el? Uqg e!?
K3 =P?Up ef Ugel? Uge? Urel?, Ky = PP U, €8 Ug e!? Uy el? Uy €12
(5.6)

Then we have diagrams of the exact sequences of homotopy groups of some
pairs in the above CW-decompositions, (5.7),(5.8),(5.9), (5.10),(5.11) and
(5.12):

7!‘11(54) - 1r11(P2) — 7T11(P2,S4)

{ ! {
7I‘11(S4 U[L,L] 68) — 71'11(]:'2 U[L’L] 68) — 7I’11(P2 U[L,L] 68, 34)
{ !
(5.7) ma(S* Uy €, 5%) = ma (P2 Uy, €, P?)
1 {
7I‘10(S4) — 71’10(P2) - 7!'1(](P2,S4)
{ { {

7r10(S4 Ul 88) — 71’1()(P2 UL, 68) — 71'11(132 Ul 68, 34)

Generators of these groups and their homomorphic images in (5.7) are
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enumerated as follows:

Zis{a} = Z{p} + Z15{c} — Z{[e,, 4]}

+Zz4{e§, o}
! ! !
Z{r} + Zis{e} 1,00 Z{p,q} 3s @ Z{[ef, s ea], el 4]}
+Z2{(C;”’} : +Z120{d} +Z24{[eﬁ,d oD, 6,8, o 17}
IRy '

Z{[C[BL‘L], L4]} N Z{[e[sl,,(,]’ l’4]}
+Zz4{e[8u] o} +Z24{eﬁ¢] o 17}

Lot
Zos{1? -
-2:;3{;(» ov} Z{Bwort = . Z{le o’}
Lif Il Lo
Zs{Vz} — 0 - Z2{e[8:,,z] on2,ed o n?}

(A ier = &+ 3¢ — 3p, ixa = 8&,1,0" = 604,
2 j.6=3e8 o,
G jor= 3[63"'], La), juo™ = 123[8“] o,
(4 aeﬁﬁ] = [[t4,t4],¢] = Bwo v, 8¢}, o7 =20 — Fwou,
G2 =22=Ywov
6.7y
And let L; = HP? Uy 8 c Ly=HP?3 U, e8,then we have

mao(L) = ma(f(P?) - ma(h(P?),L)

i { 1
ma(Le) —  ma(R(P?) - mia(J(PP), L)
{ il
(5.8) 7!'12(L2,L1) — 7r12(J2(P3), J2(P2))
{ ik
mi(Li)) —  m(J(P?) — m1(J2(P?), Ly)
! 1 !

mi(L2) = m(h(P?) - mu(J(P?), Ly).

Generators of these groups and their homomorphic images in (5.8) are
enumerated as follows:
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Zo{es,pon,gont = Zofes} + Z{K'} = Z{eg™", e}

! {
Zofes,gony - Z{®} - z2{efM, )
4 {
(5.8)’ Z{el?} - Z{el?})
{ {
Z{p,q} + Zroo{&} = Z{p} + Z120{a} = 0
{ {

(=

Z{q} + Zmo{&} — 2120{55} -
And we have
ma((P?) = ma(Js(P?)) = ma(J3(P?),2(P?))

1 { 1
m2(R(P?) = ma(B(P?) - ma((Ja(PP), J2(P2))
! il :
(5.9) ma(J2(P3), Jo(P?)) = mia(J3(P3), Jo(P?))
1 l
m1(L(P?) = mu(B(P?)) = ma(Ja(P?), o(P2))
1 ik I

m(HP?) - ma(BPY) = ma((J3(P?), o(P?))

Generators of these groups and their homomorphic images in (5.9) are
enumerated as follows: '

Zo{ea} + Z{Kk'} - Z{Kk'} - Z{ezl,z}

I} I} !
Zo{ea} + Z{r'} - Z{x,p'} = Z{el?}
! 158
(5.9) Z{e}2 - Z{e,l,Z}
18 188
Z{p} + Zio{@} =6 Zio{a} - 0
I ! I}

Z3eo{Zp'} - 0 —= 0

( jup' =120e}2, 2 9el2 = & — 3p, @ Bel2 = &, i,p =0, 4 iup = Op'iLa =
3p’,

And we have
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Zy{es,pon} = m2(P?) =  m2(P% = Zy{es,pon}
Lis Ll
Zo{es} + Z{K'} = m12(J2(P?)) m12(J3(P?)) = Za{es} + Z{x'}
A 4 s
Z{jsk'} = ma(Ja(P?),PY) =~ myp(J3(P?), P?) = Z{j.x', z}
{ } o
Z{p} + Zis{a} = T (P?) = m(P?) = Z{p} + Zi5{a}
4l Lilt
Z{p} + Zio{a} = m11(J2(P?) - mi(Js(P?)) = Zzeo{Zp'}
L3¢ L

Zo{ef, ;0 7} o 0} = ma(J2(P?), P?) = mi2(J3(P?), P?) =0

(fpon =iseq =eh, @ 8z = a—24p, Ci,a = 84, i,p =0, ¢ iya = 245p/,
G ia =3¢, 07,

(5.10)
And we have
ma(2(P?) = Zo{es} + Z{x'}
4
ma(J3(P?) = Zy{es} + Z{x'}
{
(5.11) m12(J3(P?), o(P?) = Z{e}*}
4ot
mi(J2(P?) = Z{p} + Z10{d}
Lil?
mi(Ja(P?)) = Zzeo{Zp'}

L Opon =iy =¢€, 24,4 =3%p,

and moreover,
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Zo{es} = m2(HP3)) - ma(P3U€?) = Zo{es, gon}
1 J
Z{s',p'} o~ m12(J3(P?)) = Z{K', 0’}
La 152
Z{jur, 5} = mia(Ja(P3), P3) 35 m1a(Ja(PY), PP U €8) = Z{el2V, 122 12y
L o8 186
Zis{a} = m1 (P3) - m(PPUed) = Z{q} + Z120{&}
{ {
0 = m1(J3(P?)) = m1(J3(P?)) =0

(A 4,0 =15z mod Z{j.x'}
@ ot = 20 _ 12

G oz =a

(4 ey = g,0¢)2 = 3¢ + &

(5.12)

The choices of p/ € m1a(J3(P?)) and z € m2(J3(P?), P?) have an am-

biguity of mod Z{x'} and mod Z{j.x'} respectively. They must sat-

isfy the conditions j.p' = 120e}? — (ae},z(l) + be(112(2)), a + b = 360 and

jax = 8el? — (ce}g(l) + de,llz(z)), ¢+ d = 24. Thus we may choose p’ and =
so that

Jup' = 120€}? — 180(el2V) 4 £12(2))
and
o - 20,

2(2
120) _ 22

because of j.x' = e . Then we have j,p' = 15z. Let p be the

adjoint of p'.
We are in a position to calculate the Hopf invariants of x and p.

Lemma 5.13. We have the following commutative diagram:

s2 & anpr Bonpryvpe) 4R anp? v pe)

I U U 1< idy,idy >
sz Jz(Pz) - JQ(P2)/P2 = P2 A P2
lovi 1 /8% 1+0Vid

S8V K C Jo(P?))S% = S8 v p?v p?
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and P%2 A P? has a CW-decomposition K U e!6 = S8 Uy el?2u, el?uelS,

Proof. The map (/P?) o &’ = i is followed by the definition of i and
Pl 512 12
Jar! = e}? + €12,

Lemma 5.14. We have the following commutative diagram.:

si2 & qonp: Qx(P? A P3) <UL%> o5y(p3 v p3)

| u U 1< idy, ide >

S12 - J3(P?) —» P3vp3 = pP3y ps

lf /8! tg
QVEKvVS2c Jy(P3st = QVKVM,

where Q = S8 Uy, €!2, K = 88U, e'2U, 2, M = S12uely... P3 A P3 =
KUe®U--. and f =306V —15V 0V 120019, g = OV inclusionVOU- - - .

Proof. The equality j,z = 8el? — 12(6;2(1) + eéz(z)) in (5.12) shows
(/P%sz = -V o & V 845 in m(QTP3/P3). It follows the lemma by
J«p' = 15z.

By the equalities (2.17), we obtain
Theorem 5.15. Vi =40K+i30Kk+ )
Vp=ii0p+izop—15umod Z{[[:{", ], M, [, 7], L2}

Corollary 5.16. #((/S°)*p) = 180, i.e.,
((id V /S®)V)up = p+ (/5°) 0 p+ 180[t, t5] = p + 30& + 180[¢g, ¢5].
Remark 5.17. The first equation in Theorem 5.15 also shows that
Pk o (/S®)) =1 because (id V /%)) = [1g,15).

Remark 5.18. Provided we take the suitable choice of the generator
7 of m3(EP3, 8%) = Z{7, |19, 5]}, we obtain

Vr=id107+i307+ 6([L§1), L?)] - [LS(,2), Lgl)])
and this relation is compatible with
V" =i100" +ig00™ + 12[L$(,1), ng)] ov
and m12(S%) = Z3p{07 = o + 0"}.

We note ¢(/5%)* : m3(EP3) — [EP3/S% £P3 — Z is an onto-
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homomorphism and 180k — p is an generator of (¢(/5°)*)71(0). And
so we can define £ so that £ and (/S%)*(180x — p) are generators of
¢$~1(0) ~ Z+ Z C [SP%/S% TP%. Let P = (/SP?)*p,E = (/S5)*¢.
Since  is homologically trivial, the homological degrees are independent
to the choices of p and €.

Lemma 5.19. (/S5) o £ = 24id + 8¢ o (/S°) where id denotes the
identity map on S° Uy, e13.

Proof. The Puppe sequence obtained from the cofiber sequence S° C
S%Us,e!3 — S12 induces that self maps of $°Us, e!3 are characterized by the

homological degrees of the induced homomorphisms on H*(S? U,, e13; Z).
It follows (/85) o & = 24id + 8&2 0 (/59).

v)* 9y *
7!'10(59 Uay 613) (2—2 7l’13(59 Uoy 613) (/i)) [Sg Uap 613, S5? Uy, 613]
| I |
Zy Z{&} Z{id,& 0 (/5°)}

— 7I’9(S9 Uay, 613) (2:2. 7"12('Svg Uay 313)
|| |
Z{19} Zp{v}

Lemma 5.20. £ o &, = 4p.

Proof. Considering the homological degrees, we have £ o & = 4p + uk
for some integer u. Apply /S° to this equation and so we obtain (§~ 0 &) o
(/S%) = 4p o (/5% + uk o (/S°) because /S? is an suspension. On the
other hand we have ¢(f o £g) = ¢(f) degH13(Zg) for f € [EZP3/S%, LP3]
and g € [P?/5*, P%/S%).-Hence u = ¢((€ 0 &) o (/S°)) — 44(p o (/S°)) =
P(€) degHra((€ o (/5%)) = 0.

Theorem 5.21. Some relations of the compositions of the generators
of [EP3,ZP3] are as follows:

KoK=PoK=EZ0K=0,PoP=360P,KoP=360K,Z0 P =120P,
EoE=242+432P,Po==120P,K o = = 120K.

Proof. By the definition (2.9) and (/S%)ox = 0, the first three equations
are easily verified. (/ZP?).p = 36013 implies Po P = 360P and K o P =
360K. The equations (XP?),£ = 120(/S°) and Lemma 5.5 imply Po = =
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120P and K o = = 120K. Recall that the map = o P is represented as the
following composition:

sop:.sp?/ B s & wpy 5 g0y, 135 np

I L/EP? +/8°
g3 360us 13 ¢13

The relation (/S5%),.p = 30, is easily verified. By Remark 5.18, it follows
Z o P = 120P. Finally, since the following maps are suspensions except &,
it holds that

0oZ=£0 (/8% 0fo(/S%) =Eo{24id+8E 0 (/5)} 0 (/S°)
=fo {24(/55) +8&0 (/2132)} = 248 + 32P.

[I]

We have the following left distributive law related with the composition
and the sum by co-H structure.

Lemma 5.22. For any f,g,h € [EP%,ZP?, (f+g)oh = foh+goh.
Proof. Tt is sufficient to prove for h = £ o (/S®). Recall Theorem 2.12;

Vé=410f+ig0& — [L5 A )] and @, [Lgl),ng = [ts,t5) =von =0,

where ng )( j = 1,2) donotes the inclusion $° C P2V EP? to the j-th factor
and @ : TP? Vv X P? — P? be the folding map. And so it follows that the
out-side square of the following diagram is commutative (P = P?).

5
sp 5 s 4 3wp g sP
iV iV iV I
5 5
spvep /S goy oM ypvsp M erpvsr S ep
For [EP3, £P3], we have

Lemma 5.23. Let f € [EP3,3P% and g,h € [EP3/S5,SP3). Then
we have a left distributive law in [SP3,ZP3] as follows:

f+go(/S)o(ho(/5?)
=foho(/S%) +go(/S%) oho(/S®)+d(h)lgse, fais)o (/ZP?).
Proof. Apply f Vg and /S® to the relation
(id+ /S%) o h = h+ (/S%) 0 h+ ¢(h) o, i8] o (/S°)
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and we obtain

(fVg)ol(id+/S%)oho(/S°) =
Foho(/S5) +go(/S%) oho(/S%) + ¢(h)[gets, futs) o (/EP?).

5 ; 5
spd 5 wp3yss & spd UMY sp3y(np/st) LY mps.
Lemma 5.24. (m idgps)ok = m?k, (m idsps)op = mp in m3(EP3)
and (m idgps) o € = mé in [SP3/S%, SP3).

Proof. Let V™ : TP" - EP"VEP"V...VEP" be the m-fold pinching
map and let ® : TP"VEIP"V...VEIP" = LP" be the folding map. Then
our primary V is represented V2 by the new notation. Then we have

7oK = Vjuk = V[e,15] = [Ve Vis] = [e(l) + 6(2), ()4 L(2)]
= ju(k+K) + [es()l),l/g?)] + [6(2) (1)]
ma(EP?) % ms(EPPVIPY) Y na(SP?)
1 Jx 17« s
m13(EP2,8%) 3 113(SP2V IP?, S5 v §5) 25 y3(TP?, S5)
| |
Z{[€%, 5]} Z{[[e‘;((z)) ((:))]] [[:(2) ((;))]]}
and
8,[°M, {7 = 8,[¥D, )] = [€%, 5] = jor.
Hence
Fs®Vak = 4]e%, 15] = 4juk
and so we obtain
(idyps + idsps) ok = D, V,k = 4K
in 7m13(ZP3). Also we obtain
7@ V™ = m?[e, 15] = m2j.k
and

(m idgps) o k = B, VTk = m2k
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in 713(XP3). By Theorem 5.15, we obtain

Vap =110 p+izop—15u mod Z{[[t", i§V], V], (116", 7], 47

Since ®,u = @, [[L(l) te )], Lgl)] = @*[[Lgl), L?)], Ly )] = 0, we obtain (idyps +
idyp3) o p = 2p and similarly (m idgps) o p = ®,V7*p = mp for any integer
m. Considering the homological degrees, we have

(m idggps) o £ = mé +uk o (/S°)
for some integer u. Composing the suspension element £3, we have
((m idggps) 0 €) o bo = (m idggps) o (4p) = 4(m idggps) 0 p = 4mp
= (m€ +uko (/S%)) o0&y =mE oy +uko(/S%) oty =4dmp+ 12ux.
Since x has the infinite order, we obtain u = O,i..e., (m idsyps) o £ =mé.
Thus summing up Lemmas 5.23 and 5.24, we obtain
Theorem 5.25. The left distributivity law in [EP3, ZP3) is as follows:
(f+g)oh=foh+goh for the case f,g € Z{K, P,E}or h € Z{id,=}
and ezceptinal cases;

(m id):HP3) oK = m2K, (a 'idnga + bE) oK = 0.(1 + 24b)K
and (a idsgyps + b=) o P = (a + 120b) P + 4320bK.

Let (a,b) denote a id+ b€ o (/S®) in [SP?, ZP?) for abbreviation. Then
we have

Corollary 5.26. (a,d) o (c,d) = (ac, ad + bc + 24bd).

Let (a, b, c,d) denote a id+bK +cP+d= in [ZP3, £ P3] for abbreviation.
Then we have

Corollary 5.27. (a,b,c,d)o(e, f,g,h) = (ae,a®f +af(1+24d) +be+
. 360bg + 4320dg + 120bh, ag + ce + 360cg + g(a + 120d) + 120ch + 32dh, ah +
de + 24dh).

For example, the composition law is simple and plain in the group
Hg H ps(id) of homologically identity maps of TP (id+aK)o (id+bK) =
id+ (a+b)K.

6. Proof of Theorem 5.4. We shall give the order of £ o v in this
section. We know (k€) o v = k€ o v because v is a suspension. Since
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j«€ov = 0 and £ o v is contained in the image of m2(S°) = Z3 where
gu : T12(EHP?) = m19(SHP?, S%), 306 ov = 0. On the other hand we have
24€ ov =€ 0 (24v) = 0. Hence 6£ o v = 0 is easily verified. In fact

Theorem 6.1. The element £ o v has order 6.

Proof. Consider the mapping cone of k, E(D) = S°% U, €° U, e!* which
is the §°-bundle over S° corresponding to the generator & of mg(SO(6)) =
Z54{0} such that m.» = v because p, : 73(SO(6)) = Zos{D} — m3(S%) =
Z34{v} is an isomorphism induced by the projection p : SO(6) — S°. We
know the Hopf-Whitehead J-homomorphism J : 73(SO) = Zy — «§ is an
embedding to a direct summand and so the following diagram implies J(©)
is a genertor of Zys-summand. It follows Xk = J (D).

Zay4 Z3 0
[ - [
78(SO(6)) & ms(SO(10)) — 78(SO(10)/S0O(6))
$J I J
ma(89) B ms(S™0)
I I
Zou{ts}  Zo{tro} + Zo{e}

By Lemma 2.4, the exact sequence of homotopy groups of the fibration
S5 = E(D) - 8% is as follows:

o m12(8%) = ma(E(D)) T ma(S8%) 23 111 (89)

I l l |
00— Zgo - Z360{2p} - Z24{I/} — Zg{l/z}

O Ay =p?

where 7 is the bundle projection. Let 7g6 be the tangent sphere bundle of
5% and let E(7g6) denote its total space. Then the pull back diagram
E((12L5)*T56) — E(Tse)
A ]
6 2 g6

induces the following commutative diagram:
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[~

4
U

N I
$° 5 55u,68 5 S5 =85
IS non
SO 59 Yy 95Uy eB C S5 Upg €S Uel! = EB((12t5)* 7gs)
[ L/8°
89 45 86 g8
(figure 8)

There exists an elements v* which is a coextension of v € m9(S®) and we
have

71‘9(55 U24 66) = ﬂg(E((lst)*Tsa)) = 22‘4{1/} + Zg{l/ o T]}

since mg(E(7g6)) = Z2 + Za{v o n}. Recall the definition of {vs,24.g, vg}
represented by the Toda braket.

smo 4 g8 = g8
N 1 241
3
sz Lfgyel? 5 g8 = g8
1 24412 158 N v
s = g2 Ees, 8 g
Ly L/s8 L
§ = 8 555U,
1 24 1/s8
59 — SQ
(figure 9)

The element {vs,24¢g, 15} is the composition of £31' and & where $37 is a
coextension of v € m2(S%) and # is an extension of v € 75(S%) to S8 Uy, €®.
The indeterminacy on this case is v5 0 m12(S®) + 79(S%) o vg = 0. From the
above diagram we obtain £ o v = i,{vs,24:3,13}. On the other hand, by
Adams[1] 7.17 p45-6 and Examples of 11.1 p53, {j3, 24, j3} = 4057 where
Jr(r = 3,7) denotes the image of the generator of m.(SO) under the stable
J homomorphism:, (S0) — 7;. We may consider j3 = v and j; = o which
are the Hopf maps. Since 7} = Zaso{o},{J3,24¢, 73} has the order 6. Since
iy : m12(S°) = m2(S® U, €°) is injective, it follows the order of £ o v must
be also 6.
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7. Whitehead product. Our & is related with the Whitehead prod-
uct in 7, (SHP?). In fact
Theorem 7.1. [£,t5] = 24k in m3(ZHP?).

Proof. Let 7y : Ex — S° be the induced sphere bundle of E(¥) by the
map kig : S® = §°. The pull back diagram

E, - E(l?)
Tk im
S0 M g9

induces

0— m2(S%) = ma(Ex) B ma(S%) — mi(S®) =
| { 4 kige I
— m12(S%) = ma(E(9)). B ma(S°) — m1(S5) —
I | | |
0— Z3 — Z330{2p} — Z24{U} — Zg{l/2} — 0.

Especially E4 is homotopy equivalent to S° x §% = (§°Vv S§°)Ue!4 attached
by [Lg, L5], since 71'3(50(5)) = 0. It follows 7!’12(E24) = 7!'12(59) + 7('12(5'5) =
Za4 + Z3g. The following diagram

Z{el4} = 7r14(E'24, S9v 55) >(—2¥4 7r14(E(z)), S9 Uy eg) = Z{el4}
oy 18
7"'13('5'9 v 55) 535 7T13(55 Uy, eg)

( Oelt = [Lg,L5], (2 3614 =K

implies (€ V t5)«[te, t5] = [€, t5] = 24k.

REFERENCES

[1] 3. F. Apams: "On the groups J(X) IV® Topology 5(1966), 21-71.

[2] M.F. ATrvaH: " Thom complexes” Proc.London Math.Soc. 11(3)(1961), 291-310.

[3] W. D. Barcus and M. G. BARRATT: "On the homotopy classification of the
extensions of a fixed map” Trans. Amer. Math. Soc. 88(1958), 57-74.

D. HUSEMOLLER: Fibre Bundles GTM-20, Springer-Verlag 1966.

1. M. JAMES: ” On Sphere Bundles over Spheres” Comment. Math. Helv. 35(1961),
126-135.

[6] I. M. JAMES: "On the homotopy groups of certain pairs and triads” Quart. J.



196

H. TAKAHASHI

Math. Ozford 5(2)(1954), 260-270.

I. M. JaMESs andtextscJ. H. C. Whitehead: ” The homotopy theory of shere bundles

K.

R.

w

Q@ m =

over sheres” Proc. London Math. Soc. 4(3)(1954), 198-218.

MoRisuag: ”Periodic behavior of SCP o and its applications” Contemporary
Mathematics 146(1993), 369-382.

E. MosHER and M. C. TANGORA: ”Cohomology Operations and Applications
in Homotopy Theory” Harper and Row 1968.

. F. PEACHTER: "The groups 7, (Va,m) (I)” Quart. J. Math. Ozford T(2)(1956),

249-68.

. SASAO: ”On the set [EX,ZX] for X = S™ Ue™ ™™ Math. Jour. of Toyama

Univ. 1995 (to appear).

. TAkAHASHI: "Note on Homotopy Classes of Self Maps of Projective Planes”

Bulletin of Nagaoka Univ. 17(1995), 1-5.

. Topa: ”Composition Methods in Homotopy Groups of Spheres” Annals of

Math. Studies 49(1962), Princeton Univ.Press.

. W. WHITEHEAD: ”Elements of homotopy theory”, GTM 61, Springer, New

York, 1978.

H. TAKAHASHI
DEPARTMENT OF MECHANICAL ENGINEERING
CENTER OF SCIENCES AND MATHEMATICS
NAGAOKA UNIVERSITY OF TECHNOLOGY

(Received March 26 1996, Revised January 20 1997)



