NOTE ON HOMOTOPY CLASSES OF SELF MAPS; $[\Sigma HP^3, \Sigma HP^3]$

HIDEO TAKAHASHI

1. Introduction. Let X be a CW complex and Σ denote the reduced suspension. Then the homotopy classes of self maps of ΣX [ΣX , ΣX] has a group structure induced by the co-H structure of ΣX . In this paper we shall investigate [ΣX , ΣX] when X is the quarternionic projective space HP^2 and HP^3 . Let HP^n be the quarternionic projective space S^{4n+3}/S^3 and let Eq(X) denote the group consisting of the self homotopy equivalences of X by the composition structure. Let + denote the sum operation in $[\Sigma X, \Sigma X]$ and let \circ denote the composition of maps. Then we have the following theorems:

Theorem 2.2. $[\Sigma HP^2, \Sigma HP^2]$ is abelian and isomorphic to Z+Z.

Theorem 2.20. $[\Sigma HP^3, \Sigma HP^3]$ is non-abelian. We have a non trivial extension;

$$0 \to Z\{K, P, \Xi\} \to [\Sigma H P^2, \Sigma H P^2] \to Z\{id\} \to 0.$$

The non trivial commutator is $< id, \Xi >= 24K$. The center of $[\Sigma HP^3, \Sigma HP^3] = Z\{K, P\}$.

Let

$$H_X: [X, X] \to Hom(\tilde{H}_*(X), \tilde{H}_*(X))$$

 $\pi_X: [X, X] \to Hom(\pi_*(X), \pi_*(X))$

denote the maps defined by $H_X(f)$ = the induced homomorphism on homology groups $H_*(X)$ and $\pi_X(f)$ = the induced homomorphism on homotopy groups $\pi_*(X)$ for $f \in [X,X]$ respectively. Then we call $f \in [X,X]$ homologically trivial if $\tilde{H}_X(f)$ is the trivial homomorphism, homotopy trivial if $\pi_X(f)$ is the trivial homomorphism, homologically identity if $H_X(f)$ is the identity and homotopically identity if $\pi_X(f)$ is the identity. Then for the group of homologically identity maps of X, $H_X^{-1}(id)$, the group of homotopically identity maps of X, $\pi_X^{-1}(id)$, the group of self homotopy equivalences of X, Eq(X), the homologically trivial maps of X, $H_X^{-1}(0)$ and the homotopically trivial maps of X, $\pi_X^{-1}(0)$ in the case of $X = \Sigma HP^2$ and ΣHP^3 we obtain the followings:

Theorem 5.2. (1) $H_{\Sigma HP^2}^{-1}(0) = \{0\} = \pi_{\Sigma HP^2}^{-1}(0), H_{\Sigma HP^2}^{-1}(id) = \{id_{\Sigma HP^2}\} = \pi_{\Sigma HP^2}^{-1}(id) \text{ and } Eq(\Sigma HP^2) = \{\pm id_{\Sigma HP^2}\}.$ (2) $H_{\Sigma HP^3}^{-1}(0) = Z\{K\}, \pi_{\Sigma HP^3}^{-1}(0) = \{0\}, H_{\Sigma HP^3}^{-1}(id) = \{id_{\Sigma HP^3} + Z\{K\}\}, \pi_{\Sigma HP^3}^{-1}(id) = \{id_{\Sigma HP^3}\} \text{ and } Eq(\Sigma HP^3) = \{\pm id_{\Sigma HP^3} + Z\{K\}\}.$

We shall give the composition operations in $[\Sigma HP^2, \Sigma HP^2]$ and $[\Sigma HP^3, \Sigma HP^3]$ in the section 5.

Lemma 5.22. The standard left distributivity law is satisfied in $[\Sigma HP^2, \Sigma HP^2]$.

Theorem 5.25. The left distributivity law in $[\Sigma HP^3, \Sigma HP^3]$ is as follows:

 $(f+g)\circ h=f\circ h+g\circ h$ for the case $f,g\in Z\{K,P,\Xi\}$ or $h\in\{id,\Xi\}$ and exceptinal cases;

$$(m \ id) \circ K = m^2 K, (a \ id + b\Xi) \circ K = a(1 + 24b) K$$

and $(a \ id + b\Xi) \circ P = (a + 120b) P + 4320b K.$

Let (a,b) denote a $id + b\xi \circ (/S^5)$ in $[\Sigma HP^2, \Sigma HP^2]$ for abbreviation where id and $\xi \circ (/S^5)$ are generators of $[\Sigma HP^2, \Sigma HP^2]$. Then we have:

Corollary 5.26.
$$(a,b) \circ (c,d) = (ac,ad+bc+24bd)$$
.

Let (a, b, c, d) denote $a id + bK + cP + d\Xi$ in $[\Sigma HP^3, \Sigma HP^3]$ where id, K, P and Ξ are generators of $[\Sigma HP^3, \Sigma HP^3]$. Then we have:

Corollary 5.27. $(a, b, c, d) \circ (e, f, g, h) = (ae, a2f + af(1 + 24d) + be + 360bg + 4320dg + 120bh, ag + ce + 360cg + g(a + 120d) + 120ch + 32dh, ah + de + 24dh).$

2. Groups $[\Sigma HP^2, \Sigma HP^2]$ and $[\Sigma HP^3, \Sigma HP^3]$. We have the following exact sequence for the pair $(\Sigma HP^2, S^5)$:

$$\pi_{14}(\Sigma HP^{2}, S^{5}) \to \pi_{13}(S^{5}) \to \pi_{13}(\Sigma HP^{2}) \xrightarrow{j_{1}^{(1)}} \\ \parallel \qquad \qquad \parallel \qquad \qquad \parallel \\ Z_{2}\{[e^{9}, \iota_{5}] \circ \bar{\eta}\} \qquad Z_{2}\{\epsilon_{5}\} \qquad Z_{2}\{\epsilon_{5}\} + Z\{\kappa\}$$

$$\pi_{13}(\Sigma HP^{2}, S^{5}) \to \pi_{12}(S^{5}) \to \pi_{12}(\Sigma HP^{2})^{(2} \to \\ \parallel \qquad \qquad \parallel \qquad \qquad \parallel \\ Z\{[e^{9}, \iota_{5}]\} \qquad Z_{30}$$

$$\pi_{12}(\Sigma HP^{2}, S^{5}) \to \pi_{11}(S^{5}) \to \pi_{11}(\Sigma HP^{2}) \to \\ \parallel \qquad \qquad \parallel \qquad \qquad \parallel \qquad \qquad \parallel \\ Z_{24}\{e^{9} \circ \bar{\nu}\} \qquad Z_{2}\{\nu^{2}\} \qquad 0$$

$$(2.1)$$

$$\pi_{11}(\Sigma HP^{2}, S^{5}) \to \pi_{10}(S^{5}) \to \pi_{10}(\Sigma HP^{2}) \to \\ \parallel \qquad \qquad \parallel \qquad \qquad \parallel \\ Z_{2}\{e^{9} \circ \bar{\eta^{2}}\} \qquad Z_{2}\{\nu \circ \eta^{2}\} \qquad 0$$

$$\pi_{10}(\Sigma HP^{2}, S^{5}) \to \pi_{9}(S^{5}) \to \pi_{9}(\Sigma HP^{2}) \xrightarrow{j_{1}^{(3)}} \\ \parallel \qquad \qquad \parallel \qquad \qquad \parallel \\ Z_{2}\{e^{9} \circ \bar{\eta}\} \qquad Z_{2}\{\nu \circ \eta\} \qquad Z\{\xi\}$$

$$\pi_{9}(\Sigma HP^{2}, S^{5}) \to \pi_{8}(S^{5}) \to \pi_{8}(\Sigma HP^{2}) \to \\ \parallel \qquad \qquad \parallel \qquad \qquad \parallel \\ Z\{e^{9}\} \qquad Z_{24}\{\nu\} \qquad 0$$

$$;^{(1)}j_{*}\kappa = [e^{9}, \iota_{5}],^{(2}\Sigma p \in \pi_{12}(\Sigma HP^{2}),^{(3)}j_{*}\xi = 24e^{9}$$

where the symbols of almost all of elements of the homotopy groups of spheres are followed by Toda[13], p is the canonical projection $S^{11} \to HP^2$ and, for example, e^9 represents the characteristic element of $\pi_9(\Sigma HP^2, S^5)$ such that $\partial e^9 = \nu$ and similarly $\bar{\eta}$ does the characteristic element of $\pi_{k+1}(e^k, S^{k-1})$ such that $\partial \bar{\eta} = \eta$.

We obtain an exact sequence

$$0 \to \pi_9(\Sigma HP^2) \to [\Sigma HP^2, \Sigma HP^2] \to \pi_5(\Sigma HP^2) \to 0$$

from the Puppe sequence associated with the cofibering $S^5 \subset \Sigma HP^2 \to S^9$ because $\nu^*: \pi_6(\Sigma HP^2) \to \pi_9(\Sigma HP^2)$ is trivial and $\pi_8(\Sigma HP^2) = 0$. Therefore $[\Sigma HP^2, \Sigma HP^2]$ is generated by id and $\xi \circ (/S^5)$ where $/S^5$:

 $\Sigma HP^2 \to S^9$ denotes the collapsing map.

Theorem 2.2. $[\Sigma HP^2, \Sigma HP^2]$ is abelian and $[\Sigma HP^2, \Sigma HP^2] = Z\{id, \xi \circ (/S^5)\}.$

Proof. It remains to show the commutativity of id and $\xi \circ (/S^5)$. The map $-id + \xi \circ (/S^5) + id$ is represented as follows:

$$\Sigma HP^2 \overset{\nabla}{\to} \Sigma HP^2 \vee \Sigma HP^2 \vee \Sigma HP^2 \overset{\Gamma}{\to} \Sigma HP^2 \vee \Sigma HP^2 \vee \Sigma HP^2 \overset{fold}{\to} \Sigma HP^2,$$

where ∇ denotes the pinching map and $\Gamma = -id \vee \xi \circ (/S^5) \vee id$.

Since the restriction $\xi \circ (/S^5)|S^5$ is homotopy trivial, $-id + \xi \circ (/S^5) + id$ is contained in the image of $\pi_9(\Sigma HP^2)$ on the above Puppe sequence. The element $\xi \in \pi_9(\Sigma HP^2)$ is characterized by the property that the induced homomorphism ξ_* on the homology group $H_9(\Sigma HP^2)$ is 24id and trivial on others $\tilde{H}_*(\Sigma HP^2)$. The map $-id + \xi \circ (/S^5) + id$ has the same property and so $-id + \xi \circ (/S^5) + id = \xi \circ (/S^5)$. Hence $[\Sigma HP^2, \Sigma HP^2]$ is equal to $Z\{id, \xi \circ (/S^5)\}$ as an abelian group.

Next we shall investigate $[\Sigma HP^3, \Sigma HP^3]$. First we note

Lemma 2.3.
$$(/S^4) \circ p = 2\nu$$
.

Proof. Since $HP^3/S^4 = HP^3/HP^1$ is homeomorphic to the Thom space of $2[\xi]$ over HP^1 where $[\xi]$ is the canonical line bundle, $(/S^4) \circ p$ must be 2ν .

Hence it follows $j_*\Sigma p=2e^9\circ \nu$ where $j_*:\pi_{12}(\Sigma HP^2)\to\pi_{12}(\Sigma HP^2,S^5)$.

Lemma 2.4. $\pi_{12}(\Sigma HP^2) = Z_{360}$ generated by Σp .

Though the result of Lemma 2.4 is given by Morisugi[8], another proof is given in the section 4.

Lemma 2.5. $\Sigma p \circ \eta \neq 0$ and it follows $\Sigma p \circ \eta = i_* \epsilon_5$.

The proof of Lemma 2.5 is given in the section 3.

Thus we have the following exact sequence for the pair $(\Sigma HP^3, \Sigma HP^2)$:

On the other hand from the cofiber sequences

$$S^5 \subset \Sigma HP^3 \to \Sigma HP^3/S^5 = S^9 \cup_{2\nu} e^{13}$$
 and $S^9 \subset \Sigma HP^3/S^5 \to S^{13}$

we obtain the Puppe sequences using (2.1) and (2.6):

Here we note that $[\Sigma HP^3/S^5, \Sigma HP^3]$ is abelian because $\Sigma HP^3/S^5 = S^9 \cup_{2\nu} e^{13}$ is a double suspension. Thus we obtain

Lemma 2.8. $[\Sigma HP^3/S^5, \Sigma HP^3] = Z\{(/S^9)^*\kappa, (/S^9)^*\rho, \tilde{\xi}\}$ where $\tilde{\xi}$ denotes an extension of ξ on $\Sigma HP^3/S^5$ such that $\tilde{\xi}|S^9=\xi$.

Now the generators $K=(/\Sigma HP^2)^*\kappa, P=(/\Sigma HP^2)^*\rho$ and $\Xi=(/S^5)^*\tilde{\xi}$ of $[\Sigma HP^3, \Sigma HP^3]$ are given as follows:

$$\Xi: \Sigma HP^{3} \stackrel{/S^{5}}{\rightarrow} S^{9} \cup_{2\nu} e^{13} \stackrel{\tilde{\xi}}{\rightarrow} \Sigma HP^{3}$$

$$\cup \qquad \qquad \cup$$

$$S^{9} \stackrel{\tilde{\xi}}{\rightarrow} \Sigma HP^{2} \stackrel{/S^{5}}{\rightarrow} S^{9}$$

$$\parallel \qquad \qquad \parallel$$

$$S^{9} \stackrel{24\iota_{9}}{\rightarrow} S^{9}$$

$$(2.9)$$

$$P: \Sigma HP^{3} \stackrel{/\Sigma HP^{2}}{\rightarrow} S^{13} \stackrel{\rho}{\rightarrow} \Sigma HP^{3}$$

$$\downarrow /HP^{2}$$

$$S^{13} ; (/HP^{2}) \circ \rho = 360\iota_{13}$$

$$K: \Sigma HP^{3} \stackrel{/\Sigma HP^{2}}{\rightarrow} S^{13} \stackrel{\kappa}{\rightarrow} \Sigma HP^{2}$$

By (2.7), it follows that $[\Sigma HP^3, \Sigma HP^3]$ is generated by 4 elements: id, K, P, Ξ .

Recall the Hilton-Milnor theorem (followed by G.W.Whitehead[14]). Let J(X) be the infinite reduced product spaces of James and let $J_n(X)$ be the image of X^n . Let $i: X \to J(X)$ be the canonical inlusion. It is well known that $j: J(X) \to \Omega \Sigma X$ is a homotopy equivalence where $j(x_1 \cdot x_2 \cdots x_n) = (\cdots (i(x_1) + i(x_2)) + i(x_3) + \cdots) + i(x_n)$. We identify J(X) with $\Omega \Sigma X$ by j for brevity. Let $x \in [\Sigma X, Y]$. Then let $x' \in [X, \Omega Y]$ be its adjoint and occasionally x by the same sign. To state the Hilton-Milnor theorem precisely, we need some algebraic preliminaries. Let A be the free non-associative ring with n generators x_1, x_2, \cdots, x_n . A has an additive basis consisting of all parenthesized monomials in x_i . We shall single out certain of these, reffering to them as basic products. Let us define the weight of a monomial to be the number of its factors. Suppose Y be a connected homotopy associative Y space (grouplike space). If Y is a basic product and Y if Y is a basic product and Y if Y is define

$$w(x_1, x_2, \dots, x_n) \in [X_1^{w(1)} \wedge X_2^{w(2)} \dots \wedge X_n^{w(n)}, Y] = [X^{\wedge w}, Y]$$

using the iterated Samelson product. If $Y=\Omega\Sigma X$, its adjoint is the iterated Whitehead product

$$[x_1,x_2,\cdots,x_n]_w\in [\Sigma(X_1^{w(1)}\wedge X_2^{w(2)}\cdots\wedge X_n^{w(n)},\Sigma X]$$
 for $x_i\in [\Sigma X_i,\Sigma X]\simeq [X_i,\Omega\Sigma X]$. Then we have

Theorem (Hilton-Milnor). Let $X_t(t=1,\dots,n)$ be connected CW-complexes with vertices. Then $J(X_1 \vee X_2 \vee \dots \vee X_n)$ is homotopy equivalent to $\prod_{w} J(\Sigma(X_1^{w(1)} \wedge X_2^{w(2)} \wedge \dots \wedge X_n^{w(n)}).$

An explicit equivalence can be constructed as follows. Let $j_t: X_t \subset X = X_1 \vee X_2 \vee \cdots \vee X_n$ be the usual inclusion $(t = 1, \ldots, n)$ and let $i_t: X_t \subset J(X)$ be the composite of j_t with the inclusion $i: X \to J(X)$. For each basic product w, we can form the element (the iterated Samelson products)

$$w(i_1, i_2, \dots, i_n) : X_1^{w(1)} \wedge X_2^{w(2)} \dots \wedge X_n^{w(n)} \to J(X).$$

This map can be extended uniquely to a homomorphism

$$w(i_1, i_2, \ldots, i_n) : J(X_1^{w(1)} \wedge X_2^{w(2)} \wedge \cdots \wedge X_n^{w(n)}) \rightarrow J(X).$$

Their weak products induces an equivalence:

$$\prod_{w} w(i_1, i_2, \dots, i_n) : \prod_{w} J(X_1^{w(1)} \wedge X_2^{w(2)} \wedge \dots \wedge X_n^{w(n)}) \to J(X_1 \vee X_2 \vee \dots \vee X_n).$$

Consider the case n=2 and $X_1=X_2=X$. Let $i_1=id_1$ and $i_2=id_2$ denote the inclusions of ΣX into $\Sigma X \vee \Sigma X$ so that $\nabla = i_1 + i_2$. Then the formula of the Hilton-Milnor theorem for n=2 is as follows:

Corollary. The iterated Samelson products $\langle id_1, id_2 \rangle_w \in [X^w, \Omega\Sigma(X \vee X)]$ for basic products w induces a homotopy equivalence (not necessarily H space equivalent unless X is a co-H space)

$$\psi = \prod_{w} \langle i\widetilde{d_1, id_2} \rangle_w : \prod_{w} \Omega\Sigma(X^{\wedge w}) \simeq \Omega\Sigma(X \vee X)$$

where $< id_1, id_2 >_w : \Omega\Sigma(X^{\wedge w}) \to \Omega\Sigma(X \vee X)$ is the unique homomorphic extension of $< id_1, id_2 >_w$. Especially $< id_1, id_2 >_{w_*} : \pi_*(\Omega\Sigma(X^{\wedge w})) \to \pi_*(\Omega\Sigma(X \vee X))$ is an embedding to direct summands for each w.

It follows for any finite dimensional CW-complex A that

$$[\Sigma A, \Sigma(X \vee X)] \simeq \prod_w [A, \Omega \Sigma(X^{\wedge w})] \simeq \prod_w [\Sigma A, \Sigma(X^{\wedge w})].$$

Let $pr_w: \prod_w \Omega\Sigma(X^{\wedge w}) \to \Omega\Sigma(X^{\wedge w})$ be the projection. Especially for A=X, the co-Hopf structure map $\nabla \in [\Sigma X, \Sigma(X \vee X)] \simeq id_1 + id_2 \in [X, \Omega\Sigma(X \vee X)]$ corresponds to $\prod_w h_w$ where $h_w = pr_w \circ \psi^{-1} \circ \nabla$. For

 $\alpha \in [\Sigma A, \Sigma X]$, define $h_w(\alpha)$ =the adjoint of $h_{w*}\alpha'$ called the Hopf-Hilton invariants of α so that $\nabla \alpha \simeq \Pi_w h_w(\alpha)$ by the above correspondence. That is,

$$abla lpha = \sum_{w} [id_1, id_2]_w \circ h_w(lpha)$$

and its adjoint is

$$\nabla'\alpha' = \prod_{w} < i\widetilde{d_1, id_2} >_w \circ h_{w*}\alpha'$$

where $\nabla' = (id_1 + id_2)$ denotes the canonical extension. Then the generalized Hopf invariants $H_n : [\Sigma A, \Sigma X] \to [\Sigma A, \Sigma (X^{\wedge n})]$ are defined. Especially we need the evalution of H_2 .

Our $X = HP^2$, HP^3 are not co-H spaces but for our requirement, it is sufficient to investigate a few invariants $H_2()$. On our cases $\pi_8(\Omega \Sigma HP^2)$ and $\pi_{12}(\Omega \Sigma HP^3)$, we have $<\widetilde{id_1,id_2}>_w=<\widetilde{id_1,id_2}>_w$ because

$$\pi_8(HP^2 \wedge HP^2) \simeq \pi_8(\Omega \Sigma (HP^2 \wedge HP^2)),$$

$$\pi_{12}(HP^3 \wedge HP^3) \subset \pi_{12}(\Omega \Sigma (HP^3 \wedge HP^3))$$

and

$$\pi_{12}(HP^3 \wedge HP^3 \wedge HP^3) \simeq \pi_{12}(\Omega \Sigma (HP^3 \wedge HP^3 \wedge HP^3))$$

for w with weight 2 or 3. First we consider

$$\nabla \xi = i_1 \circ \xi + i_2 \circ \xi + [id_1, id_2] \circ \{a(\xi)\iota_9\} = i_1 \circ \xi + i_2 \circ \xi + a(\xi)[\iota_5^{(1)}, \iota_5^{(2)}].$$

Let $\xi' \in \pi_8(\Omega \Sigma H P^2)$ be the adjoint of ξ . Note that $\Omega \Sigma H P^2 = S^4 \cup_{\nu} e^8 \cup_{[\iota,\iota]} e^8 \cup e^{12} \cup \cdots$. From the following sequence

$$(2.10) \begin{array}{cccc} \pi_{8}(S^{4}) & \to \pi_{8}(\Omega \Sigma H P^{2}) \xrightarrow{j_{\bullet}^{(1)}} \pi_{8}(\Omega \Sigma H P^{2}, S^{4}) \to & \pi_{7}(S^{4}) \\ \parallel & \parallel & \parallel & \parallel \\ \Sigma \pi_{7}(S^{3}) & Z\{\xi'\} & Z\{e_{\nu}^{8}, e_{[\iota, \iota]}^{8}\} & Z\{\nu\} + Z_{12}\{\Sigma \omega\} \end{array}$$

$$;^{(1)}j_*\xi'=24e_{\nu}^8-12e^8[\iota,\iota]$$

we obtain

$$S^{8} \xrightarrow{\xi'} \Omega \Sigma P \xrightarrow{H_{2}} \Omega \Sigma (P \wedge P) \xrightarrow{\langle id_{1}, id_{2} \rangle} \Omega \Sigma (P \vee P)$$

$$\parallel \qquad \cup \qquad \qquad \cup \qquad \uparrow \langle id_{1}, id_{2} \rangle$$

$$(2.11) \xrightarrow{S^{8}} \xrightarrow{} J_{2}(P) \xrightarrow{/P} J_{2}(P)/P = \qquad P \wedge P$$

$$\downarrow \delta \qquad \downarrow /S^{4} \qquad \uparrow 0 \vee id$$

$$S^{8} \vee S^{8} \subset J_{2}(P)/S^{4} = S^{8} \vee (P \wedge P) \qquad \uparrow 0 \vee id$$

$$\parallel \qquad \qquad S^{8} \vee S^{8} \qquad = \qquad S^{8} \vee S^{8}$$

where P denotes HP^2 , $\delta = 24\iota_8 \vee -12\iota_8$ in the diagram and $P \wedge P$ has a CW-decomposition $S^8 \cup_{\nu} e^{12} \cup_{\nu} e^{12} \cup e^{16}$.

Hence we obtain

$$a(\xi)[\iota_5^{(1)}, \iota_5^{(2)}] = \text{the adjoint of } < \widetilde{id_1, id_2} >_* H_{2*} \xi'$$

= the adjoint of $< \widetilde{id_1, id_2} >_* (-12\iota_8) = -12[\iota_5^{(1)}, \iota_5^{(2)}].$

Theorem 2.12.
$$\nabla \xi = i_1 \circ \xi + i_1 \circ \xi - 12[\iota_5^{(1)}, \iota_5^{(2)}].$$

We have stated previously that Theorem 2.2 follows from this equation and $\Phi_*[\iota_5^{(1)}, \iota_5^{(2)}] = \nu \circ \eta = 0$ in $\pi_9(\Sigma HP^2)$. The reduced diagonal map

$$\bar{\Delta}: HP^3 \to HP^3 \land HP^3 = S^8 \lor (S^8 \cup_{\nu} e^{12} \cup_{\nu} e^{12} \cup e^{16}) \cup \cdots$$

is decomposed as follows:

$$(2.13) \qquad HP^{3} \stackrel{/S^{4}}{\rightarrow} HP^{3}/S^{4} \rightarrow HP^{3} \wedge HP^{3}$$

$$\parallel \qquad \qquad \cup$$

$$S^{8} \cup_{2\nu} e^{12} \stackrel{\hat{\nabla}}{\rightarrow} S^{8} \cup_{\nu} e^{12} \cup_{\nu} e^{12}$$

The map $\hat{\nabla}: S^8 \cup_{2\nu} e^{12} \to S^8 \cup_{\nu} e^{12} \cup_{\nu} e^{12}$ is the one gotten by the construction of the following cofiber sequences:

$$(2.14) \qquad S^{11} \xrightarrow{2\nu} S^8 \subset S^8 \cup_{2\nu} e^{12} \xrightarrow{/S^8} S^{12}$$

$$\downarrow \nabla \qquad \parallel \qquad \downarrow \hat{\nabla} \qquad \downarrow \nabla$$

$$S^{11} \vee S^{11} \xrightarrow{\nu \vee \nu} S^8 \subset S^8 \cup_{\nu} e^{12} \cup_{\nu} e^{12} \rightarrow S^{12} \vee S^{12}$$

Let ξ_2 be the generator of $\pi_8(S^4 \cup_{2\nu} e^8)$ such that $j_*\xi_2 = 12e^8$ where $j_*: S^4 \cup_{2\nu} e^8 \to (S^4 \cup_{2\nu} e^8, S^4)$ and for abbreviation, let ξ_2 denote its suspended generator of $\pi_{8+t}(\Sigma^t(S^4 \cup_{2\nu} e^8))$, too. Let $S_0^{11} = e_+^{12} \cap e_-^{12}$ be the equator of

 $S^{12}=e^{12}_+\cup e^{12}_-$ and then $S^8\cup_\nu e^{12}\cup_\nu e^{12}$ is considered as the partial mapping cylinder of $\nu:S^{11}_0\to S^8$. Let $\hat\iota$ be the map $S^{12}=e^{12}_+\cup e^{12}_-\subset S^8\cup_{S_0}S^{12}$.

Lemma 2.15 $\pi_{12}(S^8 \cup_{\nu} e^{12} \cup_{\nu} e^{12}) = Z\{\hat{\iota}, \hat{\nabla} \circ \xi_2\}.$

Proof. Consider the exact sequence of the pair $(S^8 \cup_{\nu} e^{12} \cup_{\nu} e^{12}, S^8)$:

$$\pi_{12}(S^8) = 0$$

$$\downarrow$$

$$\pi_{12}(S^8 \cup_{\nu} e^{12} \cup_{\nu} e^{12})$$

$$\downarrow j_*$$

$$\pi_{12}(S^8 \cup_{\nu} e^{12} \cup_{\nu} e^{12}, S^8) = Z\{e_+^{12}, e_-^{12}\}$$

$$\downarrow$$

$$\pi_{11}(S^8) = Z_{24}\{\nu\}$$

$$\downarrow$$

$$\pi_{11}(S^8 \cup_{\nu} e^{12} \cup_{\nu} e^{12}) = 0$$

Then we have $\partial^{-1}(0) = Z\{e_+^{12} + e_-^{12}, 12(e_+^{12} - e_-^{12})\}$. From the definitions of $\hat{\iota}$ and $\hat{\nabla}\xi_2$, we have

$$j_*\hat{\iota} = e_+^{12} + e_-^{12}, j_*(\hat{\nabla}\xi_2) = 12(e_+^{12} - e_-^{12}).$$

Considering the adjoints of this lemma, we obtain the following diagram:

where P denotes HP^2 in the diagram and we have

$$\partial[e^{9(1)},\iota_5^{(2)}] = [\nu^{(1)},\iota_5^{(2)}] = [\iota_5^{(1)},\iota_5^{(2)}] \circ \nu = [\iota_5^{(1)},\nu^{(2)}] = -\partial[e^{9(2)},\iota_5^{(1)}].$$

It follows that

$$\pi_{13}(\Sigma(HP^2\vee HP^2,S^5\vee S^5)=$$

$$i_1 \circ \pi_{13}(\Sigma HP^2, S^5) + i_2 \circ \pi_{13}(\Sigma HP^2, S^5) + Z\{[e^{9(1)}, \iota_5^{(2)}], [e^{9(2)}, \iota_5^{(1)}]\}.$$

Let λ and μ be the adjoints of $\langle id_1, id_2 \rangle_* \hat{\iota}$ and $\langle id_1, id_2 \rangle_* \hat{\nabla} \circ \xi_2$ in $\pi_{12}(\Omega \Sigma (HP^2 \vee HP^2))$ respectively. Then we have the following relations

$$\lambda = [id_{1}, id_{2}]_{*} \Sigma \hat{\iota} \qquad \mu = [id_{1}, id_{2}]_{*} \Sigma (\hat{\nabla} \circ \xi_{2})$$

$$(2.7) \quad j_{*} \lambda = [e^{9(1)}, \iota_{5}^{(2)}] + [e^{9(2)}, \iota_{5}^{(1)}] \qquad j_{*} \mu = 12([e^{9(1)}, \iota_{5}^{(2)}] - [e^{9(2)}, \iota_{5}^{(1)}])$$

$$[id_{1}, id_{2}]_{*} e_{+}^{13} = [e^{9(1)}, \iota_{5}^{(2)}] \qquad [id_{1}, id_{2}]_{*} e_{-}^{13} = [e^{9(2)}, \iota_{5}^{(1)}]$$

$$\Phi_{*} \lambda = 2\kappa \qquad \Phi_{*} \mu = 0$$

It follows that

$$\pi_{13}(\Sigma(HP^2 \vee HP^2)) = i_1 \circ \pi_{13}(\Sigma HP^2) + i_2 \circ \pi_{13}(\Sigma HP^2) + Z\{\lambda, \mu\} + Z\{[[\iota_5^{(1)}, \iota_5^{(2)}], [\iota_5^{(1)}], [[[\iota_5^{(1)}, \iota_5^{(2)}], \iota_5^{(2)}], \iota_5^{(2)}].$$

Similarly we have

$$\begin{split} \pi_{13}(\Sigma(HP^3\vee HP^3)) &= i_1\circ\pi_{13}(\Sigma HP^3) + i_2\circ\pi_{13}(\Sigma HP^3) \\ &+ Z\{\lambda,\mu\} + Z\{[[\iota_5^{(1)},\iota_5^{(2)}],[\iota_5^{(1)}],[[\iota_5^{(1)},\iota_5^{(2)}],\iota_5^{(2)}]\}. \\ \pi_{13}(\Sigma(HP^3\vee HP^3),S^5\vee S^5) &= i_1\circ\pi_{13}(\Sigma HP^3,S^5) + i_2\circ\pi_{13}(\Sigma HP^3,S^5) \\ &+ Z\{[e^{9(1)},\iota_5^{(2)}],[e^{9(2)},\iota_5^{(1)}]\}. \end{split}$$

Suppose X is a connected finite complex. Let $id_j: X \to \Omega\Sigma(X \vee X)$ be the canonical inclusion into j-th factor and also its adjoint by the same sign. Then the commutator for $f, g \in [\Sigma X, \Sigma X]$ is given by

$$-f - g + f + g = \Phi_*[f \circ id_1, g \circ id_2] \circ \Sigma \bar{\Delta} :$$

$$\Sigma X \to \Sigma (X \wedge X) \to \Sigma (X \vee X) \to \Sigma X$$

where $[f \circ id_1, g \circ id_2] : \Sigma(X \wedge X) \to \Sigma(X \vee X)$ denotes the Whitehead product of $f \circ id_1$ and $g \circ id_2$ and $\Phi : \Sigma(X \vee X) \to \Sigma X$ denotes the folding map. In our case $X = HP^3$, we have the following commutative diagram:

where P denotes HP^3 and $K = S^9 \cup_{\nu} e^{13} \cup_{\nu} e^{13}$.

From this diagram and $[\xi, \iota_5] = 24\kappa$ (see Theorem 7.1), we obtain

Lemma 2.19. The commutators in
$$[\Sigma HP^3, \Sigma HP^3]$$
 are $\langle id, K \rangle = \langle id, P \rangle = 0$ and $\langle id, \Xi \rangle = 24K$.

Theorem 2.20 $[\Sigma HP^3, \Sigma HP^3]$ is non-abelian. We have a non trivial extension:

$$0 \to Z\{K, P, \Xi\} \to [\Sigma H P^3, \Sigma H P^3] \to Z\{id\} \to 0.$$

The non trivial commutator is $< id, \Xi >= 24K$. The center of $[\Sigma HP^3, \Sigma HP^3] = Z\{K, P\}$.

Proof. The extension diagram follows from (2.7). The commutativities of K, P and Ξ is easily verified because these are contained in the image of the abelian group $[\Sigma HP^3/S^5, \Sigma HP^3]$. By Lemma 2.19, it follows that the non trivial commutator is $\langle id, \Xi \rangle = 24K$.

3. Proof of Lemma 2.5. Let F be the homotopy fibre of the collapsing map $/S^4: HP^2 \to S^8$. Then it is easily verified that the 10-skelton of F is S^4 . Let i be the inclusion $S^4 \subset F$. The exact sequence of the fibration $F \to HP^2 \to S^8$ must be as follows:

Since $(/S^4)_*p = 2\nu$, there exists an element $\alpha \in \pi_{10}(F)$ such that $\pi_{10}(F) = Z_2\{\alpha\} + i_*\Sigma\pi_9(S^3)$ and $\iota_*\nu^2 = \alpha$. On the E^2 -term of the homology spectral sequence of the fibration $F \to HP^2 \to S^8$, the first non-trivial differential on $H_8(S^8) \otimes H_4(F)$ just hits $H_{11}(F) \simeq Z$. Let $K = S^4 \cup e^{11}$ be the mapping cone of $2\nu^2$. Then we may regard K as the 11-skelton of F. Let β be the generator of Z-summand of $\pi_{11}(F)$ such that $i_*\beta = 12p$ and let γ be the element of $\pi_{12}(F)$ so that γ corresponds to $p \circ \eta$. Then we obtain the following exact sequence of homotopy groups of the pair (F, S^4) :

Consider the exact ladder of homotopy groups of the pairs (K, S^4) and (F, S^4) :

$$\pi_{12}(S^{4}) \to \pi_{12}(K) \to \pi_{12}(K, S^{4}) \to \pi_{11}(S^{4}) \to \\
\parallel \qquad \qquad \downarrow \qquad \qquad \parallel \\
\pi_{12}(S^{4}) \to \pi_{12}(F) \to \pi_{12}(F, S^{4}) \to \pi_{11}(S^{4}) \to \\
\pi_{11}(K) \to \pi_{11}(K, S^{4}) \to \pi_{10}(S^{4}) \to \pi_{10}(K) \to \\
\downarrow \qquad \downarrow \\
\pi_{11}(F) \to \pi_{11}(F, S^{4}) \to \pi_{10}(S^{4}) \to \pi_{10}(F) \to \\$$

This ladder is equivalent to

Thus we may regard K as the 12-skelton of F and so $\pi_{12}(F,K)=0$. Then the 13-skelton of ΣF is of the form $\Sigma K=S^5\vee S^{12}$. Suppose c denotes the collapsing maps; $K\to K/S^4=S^{11},\ S^5\vee S^{12}\to S^{12}$ in the following diagram.

The left suspension and the right one are isomorphic and so is the central suspension. Hence $\Sigma p \circ \eta = \Sigma(p \circ \eta) \neq 0$ and it follows $\Sigma p \circ \eta = i_* \epsilon_5$ for $i: S^5 \subset \Sigma HP^2$. Then we know the following groups are isomorphic to each other.

$$\pi_{12}(HP^2) \leftarrow \pi_{12}(F) \leftarrow \pi_{12}(K) \stackrel{\Sigma}{\rightarrow} \pi_{13}(S^5 \vee S^{12})$$

4. Proof of Lemma 2.4. The Steenrod operations on the cohomology groups of HP^3 , $Sq^4(p=2)$ on H^4 , $\wp^1(p=3)$ on H^4 and H^8 , \wp^2 on H^4 and $\wp^1(p=5)$ on H^4 are non trivial. Hence Σp cannot be divisible by 2,3,5. The generator of Z_5 -summand of $\pi_{10}(S^3)=Z_{15}$ can be detected by the property that $\wp^1(p=5)$ on H^3 is non trivial. It follows that the Z_5 -component of Σp in $\pi_{12}(E(\hat{\nu})) \supset \pi_{12}(S^5) = \Sigma^2 \pi_{10}(S^3) + Z_2 \{\sigma'''\}$ contains the generator of the Z_5 -summand. For the generator of Z_3 -summand of $\pi_{10}(S^3)=Z_{15}$, $\wp^1(p=3)$ on $H^3(S^3\cup e^{11})$ is trivial since the mod 3 Hopf invariant is trivial. Since $(/S^5)_*\Sigma p=2\nu$, it follows that the order of Σp is divisible by 60. Recall that the homotopy groups of $S^5 \cup_{\nu} e^9$ are $\pi_5=Z$, $\pi_6=\pi_7=Z_2,\pi_8=0$, $\pi_9=Z$, $\pi_{10}=\pi_{11}=0$ and

$$0 \to Z_{30} \to \pi_{12}(S^5 \cup_{\nu} e^9) \to Z_{12} \to 0$$

is an exact sequence. Hence it is enough for us to investigate the mod 3 and mod 2 extension problems for the group structure of $\pi_{12}(S^5 \cup_{\nu} e^9)$. Then we obtain the followings:

Lemma 4.1. $\pi_{12}(S^5 \cup_{\nu} e^9)$ has Z_8 as the 2-component.

Lemma 4.2. $\pi_{12}(S^5 \cup_{\nu} e^9)$ has Z_9 as the 3-component.

First for our calculation of the 2-component of $\pi_{12}(S^5 \cup_{\nu} e^9)$, consider the following the tower of fiber spaces (the connective fiber spaces of $(S^5 \cup_{\nu} e^9)$):

$$K(Z,8) \rightarrow X_{4}$$

$$\downarrow$$

$$K(Z_{2},6) \rightarrow X_{3} \stackrel{\xi}{\rightarrow} K(Z,9)$$

$$\downarrow$$

$$K(Z_{2},5) \rightarrow X_{2} \stackrel{\eta^{2}}{\rightarrow} K(Z_{2},7)$$

$$\downarrow$$

$$K(Z,4) \rightarrow X_{1} \stackrel{\eta}{\rightarrow} K(Z_{2},6)$$

$$\downarrow$$

$$(S^{5} \cup_{\nu} e^{9}) \stackrel{\iota}{\rightarrow} K(Z,5)$$

$$;\eta^{*}\iota = a, \eta^{2*}\iota = a', \xi^{*}\iota = a''$$

Proof of Lemma 4.1. The mod 2 cohomology algebra of $K(Z_2, n)$ is the polynomial algebra over Z_2 with the generators $Sq^I\iota$ where I runs through all admissible sequences of excess less than n and the one of K(Z,n) is the polynomial algebra over Z_2 with the generators $Sq^I\iota$ where I runs through all admissible sequences of excess less than n and of the form $Sq^I \neq Sq^JSq^1$. We know $H^*(S^5 \cup_{\nu} e^9; Z_2) = Z_2\{\iota\} + Z_2\{Sq^4\iota\}$. Consider the cohomology spectral sequences of the tower of fiber spaces (figure 1-4), where the following above condensed statesments mean the full statesments below:

$$Sq^2\iota$$
 \swarrow a
;a hits $Sq^2\iota$ by the differential d_* ,i.e., $d_*(a) = Sq^2\iota$
 $Sq^4Sq^2a' \overset{\checkmark}{\nwarrow} Sq^5\iota \overset{\checkmark}{\nwarrow} Sq^2a''$
; $d_*(Sq^5\iota) = d_*(Sq^4Sq^1\iota) = Sq^4Sq^2a'$, and $d_*(Sq^2a'') = Sq^5\iota + Sq^4Sq^1\iota$, $Sq^1a \leftarrow Sq^1\iota$
: the horizontal arrow means the element $Sq^1\iota$ of base space survives the

;the horizontal arrow means the element $Sq^1\iota$ of base space survives the correspondent Sq^1a of total space.

; ${}^{(1}Sq^2=0$ by Adem relation $Sq^2Sq^2=Sq^3Sq^1$, ${}^{(2}Sq^2Sq^3\iota=(Sq^5+Sq^4Sq^1)\iota=\iota^2}, {}^{(3}Sq^3Sq^1a=Sq^2Sq^2a=0}, {}^{(4}Sq^4Sq^2a=0}, {}^{(5}Sq^5Sq^1a=Sq^2Sq^3Sq^1a=0}, {}^{(6}Sq^5Sq^2a=0}, {}^{(7}Sq^6Sq^2a=0}, {}^{(8}Sq^4Sq^2Sq^1a=0}, {}^{(9}Sq^6Sq^3a=Sq^6Sq^1Sq^2a=0}, {}^{(10}Sq^1b=0}, Sq^5Sq^2Sq^1a=0}, {}^{(11}Sq^2b=0}, Sq^2Sq^4=Sq^6+Sq^5Sq^1, {}^{(12}Sq^3b=0}, Sq^6Sq^2Sq^1a=Sq^7Sq^2Sq^1a=0}$

Therefore we obtain $\pi_{12}(S^5 \cup_{\nu} e^9) \otimes Z_2 = Z_2$. To know the 2-order of c, we must investigate the Bockstein spectral sequence. Let d_r be the r-th Bockstein operator and let τ be the transgression. Then we have the Bockstein relations:

Lemma 4.3. $d_rb = 0$ for any r, i.e., b is a mod 2 reduction of a class

in $H^{13}(X_i; Z)(i = 1, 2, 3, 4)$ with infinite order.

Proof. Consider the mapping cone of κ , $E(\hat{\nu}) = S^5 \cup_{\nu} e^9 \cup_{\kappa} e^{14}$ which is the S^5 -bundle over S^9 corresponding to the generator $\hat{\nu}$ of $\pi_8(SO(6)) = Z_{24}\{\hat{\nu}\}$ such that $\pi_*\hat{\nu} = \nu$ because $\pi_* : \pi_8(SO(6)) = Z_{24}\{\hat{\nu}\} \to \pi_8(S^5) = Z_{24}\{\hat{\nu}\}$ is an isomorphism induced by the projection $\pi : SO(6) \to S^5$. On the fiber sequence $K(Z,13) \to F \to E(\hat{\nu}) \to K(Z,14)$ induced by the orientation class $[E] \in H^{14}(E(\hat{\nu});Z)$, the homotopy fibre F of [E] is $S^5 \cup_{\nu} e^9$ up to 13 dimension. The class $b \in H^{13}(X_i;Z_2)$ is the one correspondent to $\kappa \in \pi_{13}(S^5 \cup_{\nu} e^9)$. Thus b is a mod 2 reduction of a class in $H^{13}(X_i;Z)$ with infinite order and so $d_rb = 0$ for any r.

The next lemma necessary for our calculations is known as the "Bockstein lemma" (for example, see[9]).

Lemma 4.4 [Bockstein lemma]. Let $F \stackrel{i}{\subset} E \stackrel{p}{\to} B$ be a fiber space. Let the class $u \in H^n(F; Z_2)$ be transgressive, and suppose $d_r v = \tau(u)$ for some positive integer r and for some class $v \in H^n(B; Z_2)$. Then $d_{r+1}p^*v$ is defined, and moreover $i^*d_{r+1}p^*v = d_1u$.

Corollary 4.5. (1) For $K(Z_2,6) \subset X_3 \to X_2$, $d_2c = Sq^4a''$ in $H^{13}(X_3; Z_2)$.

(2) For $K(Z,8) \subset X_4 \to X_3$, there exists $d \in H^n(X_4; Z_2)$ such that $d_3c = d$ and $\tau(d) = Sq^5\iota$ for the fiber space $X_4 \subset X_3 \to K(Z,9)$.

Proof. (1) $d_1c=Sq^1c=Sq^4Sq^2a\prime=\tau(Sq^4Sq^2\iota)$. Hence $i^*d_2c=Sq^5Sq^2\iota$ and so $d_2c=Sq^4a''$.

(2) $d_2c = Sq^4a'' = \tau(Sq^4\iota)$. Hence $i^*d_3c = Sq^5\iota$. Since $Sq^5a'' = 0$, there exists $d \in H^n(X_4; Z_2)$ such that $d_3c = d$ and $\tau(d) = Sq^5\iota$ for the fiber space $X_4 \subset X_3 \to K(Z, 9)$.

Theorem 4.6. $H^{12}(X_4; Z_2) = Z_2\{c\}$ and hence $\pi_{12}(S^5 \cup_{\nu} e^9) \cong \pi_{12}(X_4) \cong Z_{360}$.

From the structure of $\pi_{12}(S^5 \cup_{\nu} e^9) = \pi_{12}(X_4)$ as a group, it is compatible that c is the mod 2 reduction class of a Z_8 -class in $H^{12}(X_4; Z_8)$.

Remark 4.7. In addition, construct the connective fiber space $X_5 \subset X_4 \to K(Z_8, 12)$ killing c by the fundamental class $\iota \in H^{12}(K(Z_8, 12); Z_2)$.

(figure 5)
$$H^*(X_4; Z_2) \quad H^*(K(Z_8); Z_2) \quad H^*(X_5; Z_2)$$

$$c \quad \leftarrow \quad \iota$$

$$d = d_3c \quad \leftarrow \quad d_3\iota \quad \swarrow e(\text{correspondent to } \epsilon_5)$$

$$b \quad \qquad \qquad b(\text{correspondent to } \kappa)$$

$$0 = Sq^1c$$

$$0 = Sq^1b \quad Sq^3\iota \quad \swarrow \quad 0 = Sq^1e$$

Then we obtain the 2-component of $\pi_{13}(S^5 \cup_{\nu} e^9) = \pi_{13}(X_5)$ is equal to $Z_2\{\epsilon_5\} + Z\{\kappa\}.$

Similarly for our calculation of the 3-component of $\pi_{12}(S^5 \cup_{\nu} e^9) = \pi_{12}(E(\hat{\nu}))$, consider the following the tower of fiber spaces (the connective fiber spaces of $S^5 \cup_{\nu} e^9$):

$$K(Z,8) \rightarrow X_{2}$$

$$p \downarrow$$

$$K(Z,4) \rightarrow X_{1} \stackrel{\xi}{\rightarrow} K(Z,9)$$

$$\downarrow$$

$$S^{5} \cup_{\nu} e^{9} \stackrel{\iota}{\rightarrow} K(Z,5)$$

$$1^{*}\iota = a, \xi^{*}\iota = b,$$

Proof of Lemma 4.2. The mod 3 cohomology algebra of K(Z,n) is the free commutative algebra over Z_3 with the generators $\{\wp^I\iota\}$ where I runs through all admissible sequences of excess less than n and of the form $\wp^I \neq \wp^J \beta$ (β denotes the Bockstein operation). We know $H^*(S^5 \cup_{\nu} e^9; Z_3) = Z_3\{\iota\} + Z_3\{\wp^1\iota\}$.

Consider the cohomology spectral sequences of the tower of fiber spaces

(figure 7)
$$X_2 \subset X_1 \to K(Z,9)$$

$$H^*(X_1; Z_3) \qquad H^*((K(Z,9); Z_3) \qquad H^*(X_2; Z_3)$$

$$a \qquad \leftarrow \qquad \iota$$

$$0 = \beta a$$

$$b \qquad \qquad b \qquad \qquad \beta b = 0$$

$$c \qquad \qquad b \qquad \qquad \beta c = 0$$

$$b \qquad \qquad b \qquad \qquad \beta c = 0$$

$$b \qquad \qquad b \qquad \qquad \beta c = 0$$

$$c \qquad \qquad b \qquad \qquad \beta c = 0$$

$$d \qquad \qquad b \qquad \qquad \beta c = 0$$

$$d \qquad \qquad b \qquad \qquad \beta c = 0$$

$$d \qquad \qquad b \qquad \qquad \beta c = 0$$

$$d \qquad \qquad b \qquad \qquad \beta c = 0$$

$$d \qquad \qquad b \qquad \qquad \beta c = 0$$

It follows $H^{12}(X_2; Z_3) = Z_3\{b\}$. Apply (4.3) (use the prime number 3 instead of 2) for the fibration $K(Z,8) \subset X_2 \to X_1$. Since $d_1b = \beta b \wp^1 a$ in $H^{13}(X_1; Z_3)$, we obtain the relation $\iota^* d_2 b = \beta \wp^1 \iota$ and so $d_2 b = d$ in $H^{13}(X_2; Z_3)$. Therefore b is the mod 3 reduction class of a class in $H^{12}(X_2; Z_9)$ with order 9. Hence $\pi_{12}(S^5 \cup_{\nu} e^9) \otimes Z_3 = \pi_{12}(X_2) \otimes Z_3 \simeq H^{12}(X_2; Z_3) = Z_3$ and so it follows that $\pi_{12}(S^5 \cup_{\nu} e^9)$ has Z_9 as the 3-component.

Remark 4.8. We can also know the class $c \in H^{13}(X_2; Z_3)$ is the one correspondent to κ from the similar argument as (4.3).

5. Left distributive law and composition law. For abbreviation, let P^n denote the quorternionic projective space HP^n in this section. First we shall investigate the composition structure in $[\Sigma P^2, \Sigma P^2] = Z\{id, \xi \circ (/S^5)\}$. We have

Theorem 5.1.
$$(\xi \circ (/S^5)) \circ (\xi \circ (/S^5)) = 24\xi \circ (/S^5)$$
.

Proof. $(\xi \circ (/S^5) \circ (\xi \circ (/S^5)) = \xi \circ (/S^5) \circ \xi \circ (/S^5) = \xi \circ (24\iota_9) \circ (/S^5) = 24\xi \circ (/S^5).$

Recall the diagram (2.7), the following diagram

$$\pi_{10}(\Sigma P^{3}) = 0$$

$$\downarrow 2\nu^{*}$$

$$Z_{2}\{\eta\} = \pi_{6}(\Sigma P^{3}) \qquad \qquad \pi_{13}(\Sigma P^{3}) = Z\{\rho, \kappa\}$$

$$\downarrow \qquad \qquad \downarrow$$

$$[\Sigma P^{3}/S^{5}, \Sigma P^{3}] \qquad = [S^{9} \cup_{2\nu} e^{13}, \Sigma P^{3}] = Z\{(/S^{9})^{*}\kappa, (/S^{9})^{*}\rho, \tilde{\xi}_{5}\}$$

$$\downarrow (/S^{5})^{*} \qquad \qquad \downarrow$$

$$Z\{id\} \subset [\Sigma P^{3}, \Sigma P^{3}] \qquad \qquad \pi_{9}(\Sigma P^{3}) = Z\{\xi\}$$

$$\downarrow |S^{5} \qquad \qquad \downarrow 2\nu^{*}$$

$$Z\{\iota_{5}\} = \pi_{5}(\Sigma P^{3}) \qquad \qquad \downarrow$$

$$\downarrow (/S^{5})^{*} \qquad \qquad \downarrow$$

$$0$$

and the facts that the extension $\tilde{\xi} \in [S^9 \cup_{2\nu} e^{13}, \Sigma P^3]$ of ξ satisfies the condition that $(/\Sigma P^2) \circ \tilde{\xi}$ is $120(/S^9)$ and ρ satisfies the condition that $(/\Sigma P^2) \circ \rho$ is $360\iota_{13}$. We collect the behaviors of the induced homomorphisms on homology groups of Ξ, P, K ; the non-trivial cases are as follows:

$$\Xi_*$$
 on $H_9(\Sigma P^3, Z) = 24id_*, \Xi_*$ on $H_{13}(\Sigma P^3, Z) = 120id_*$ and P_* on $H_{13}(\Sigma P^3, Z) = 360id_*$, especially K_* is trivial on $\tilde{H}_*(\Sigma P^3, Z)$

For the group of homologically identity maps of X, $H_X^{-1}(id)$, the group of homotopically identity maps of X, $\pi_X^{-1}(id)$, the group of self homotopy equivalences of X,Eq(X), the homologically trivial maps of X, $H_X^{-1}(0)$ and the homotopically trivial maps of X, $\pi_X^{-1}(0)$ for $X = \Sigma P^2$ and ΣP^3 we obtain the following.

Theorem 5.2. (1)
$$H_{\Sigma P^2}^{-1}(0) = \{0\} = \pi_{\Sigma P^2}^{-1}(0), \ H_{\Sigma P^2}^{-1}(id) = \{id\} = \pi_{\Sigma P^2}^{-1}(id), \ and \ Eq(\Sigma P^2) = \{\pm id\}.$$
 (2) $H_{\Sigma P^3}^{-1}(0) = Z\{K\}, \ \pi_{\Sigma P^3}^{-1}(0) = \{0\}, \ H_{\Sigma P^3}^{-1}(id) = Z\{id + Z\{K\}\}, \ \pi_{\Sigma P^3}^{-1}(id) = \{id\} \ and \ Eq(\Sigma P^3) = \pm id + Z\{K\}\}.$

Proof. Since $K_*\rho = 360\kappa$ on $\pi_{13}(\Sigma P^3)$, it is easily verified that $\pi_{\Sigma P^3}^{-1}(id)$ and $\pi_{\Sigma P^3}^{-1}(0)$ are singletons.

We have

Theorem 5.3. $\xi \circ \nu = 60\Sigma p$.

Consequently there exists an extension $\tilde{\xi}$ of ξ as follows:

The proof of Theorem 5.3 is given in the section 6.

Next we shall investigate the composition structures of $[\Sigma P^3, \Sigma P^3]$. In our choices of ρ and $\tilde{\xi}$ there exists an ambiguity. We must choose the appropriate generators of $[\Sigma P^3, \Sigma P^3]$ to know the composition structures of $[\Sigma P^3, \Sigma P^3]$. Here we shall give the precise definition of them. The homotopy fibre of $\Sigma P^3 \vee (\Sigma P^3/S^5) \to \Sigma P^3 \times (\Sigma P^3/S^5)$ is S^{13} up to dim 15 and the inclusion $S^{13} \subset \Sigma P^3 \vee (\Sigma P^3/S^5)$ is $[\iota_9, \iota_5]$, and so we define $\phi: [\Sigma P^3/S^5, \Sigma P^3] \to Z$ as follows;

$$(5.4) \qquad ((id \vee /S^5)\nabla)_*(f) = f + (/S^5) \circ f + \phi(f)[\iota_9, \iota_5] \circ (/S^9)$$

$$\text{for } f \in [\Sigma P^3/S^5, \Sigma P^3].$$

$$\Sigma P^3/S^5 \xrightarrow{f} \Sigma P^3 \xrightarrow{\nabla} \Sigma P^3 \vee \Sigma P^3 \xrightarrow{id \vee /S^5} \Sigma P^3 \vee (\Sigma P^3/S^5)$$

It is easily verified that f is a homomorphism. And moreover we have

Lemma 5.5.
$$\phi(\kappa \circ (/S^5)) = 1$$
.

Proof. It is enough to show that $((id \vee /S^5)\nabla)_*(\kappa) = \kappa + [\iota_9, \iota_5]$ in $\pi_{13}(\Sigma P^3 \vee (\Sigma P^3/S^5))$. Consider the homotopy groups of pairs:

$$\begin{array}{ccc} \pi_{13}(\Sigma P^2) & \to & \pi_{13}(\Sigma P^2, S^5) \\ & \downarrow (id \vee /S^5) \nabla & \downarrow (id \vee /S^5) \nabla \\ \pi_{13}(S^5) = Z_2\{\epsilon\} & \to & \pi_{13}(\Sigma P^2 \vee S^9) & \xrightarrow{j_{\star}} \pi_{13}(\Sigma P^2 \vee S^9, S^5 \vee *). \end{array}$$

From the equalities $j_*\kappa=[e^9,\iota_5],\,((id\vee/S^5)\nabla)_*e^9=e^9+j_*\iota_9,$ we obtain

$$j_*(id \vee /S^5)\nabla)_*\kappa = ((id \vee /S^5)\nabla)_*\kappa = j_*(\kappa + [e^9, \iota_5]).$$

Hence $((id \vee /S^5)\nabla)_*\kappa = \kappa + [e^9, \iota_5]$ or $k + [e^9, \iota_5] + \epsilon$, however $i_*\epsilon = 0$ where $i_*: \pi_{13}(\Sigma P^2) \to \pi_{13}(\Sigma P^3)$, and so we have $((id \vee /S^5)\nabla)_*\kappa = [e^9, \iota_5]$ in $\pi_{13}(\Sigma P^3 \vee (\Sigma P^3/S^5))$.

J(X) has the filtration $J(X) = \bigcup_n J_n(X)$ where $J_n(X)$ is the image of n-fold product X^n . It is well known $J_2(S^4) = S^4 \cup_{[\iota,\iota]} e^8$. $J_3(S^4)$ has a CW-decomposition as follows:

$$J_3(S^4) = S^4 \cup_{[\iota, \iota]} e^8 \cup_r e^{12} = S^4 \times S^4 \times S^4 / (\text{some relations})$$

where e^8 is attached by $[\iota_4, \iota_4]$ and r denotes the attaching map of e^{12} . Then $j_*r = 3[e^8, \iota_4]$ by the cohomological computations on $S^4 \times S^4 \times S^4 \to J_3(S^4)$ where $j_*: \pi_{11}(S^4 \cup_{[\iota,\iota]} e^8) \to \pi_{11}(S^4 \cup_{[\iota,\iota]} e^8, S^4)$. Let q be the attaching map of 12-cell of

$$P^2 \times S^4/(S^4 \vee S^4 \equiv S^4) = P^2 \cup_{[\iota,\iota]} e^8 \cup_q e^{12}$$

where the identification map is the folding map $\Phi: S^4 \vee S^4 \to S^4$. Let $e^8_{[\iota,\iota]}, e^8_{\nu} \in \pi_8(P^2 \cup_{[\iota,\iota]} e^8, S^4)$ be the characteristic elements such that $\partial e^8_{[\iota,\iota]} = [\iota_4, \iota_4], \ \partial e^8_{\nu} = \nu$ respectively. Then we have

$$j_*q = [e^8_{[\iota,\iota]},\iota_4] + [e^8_{\nu},\iota_4] + e^8_{\nu} \circ \bar{\nu}$$

by the cohomological computations on $P^2 \times S^4 \to P^2 \cup_{[\iota,\iota]} e^8 \cup_q e^{12}$ where j_* : $\pi_{11}(P^2 \cup_{[\iota,\iota]} e^8) \to \pi_{11}(P^2 \cup_{[\iota,\iota]} e^8, S^4)$. The 15-skeltons of $J_2(S^4)$, $J_2(P^2)$, $J_2(P^3)$, $J_3(S^4)$, $J_3(P^2)$ and $J_3(P^3)$ have the following CW-decompositions:

Then we have diagrams of the exact sequences of homotopy groups of some pairs in the above CW-decompositions, (5.7),(5.8),(5.9),(5.10),(5.11) and (5.12):

Generators of these groups and their homomorphic images in (5.7) are

enumerated as follows:

$$Z_{15}\{\alpha\} \longrightarrow Z\{p\} + Z_{15}\{\alpha\} \longrightarrow Z\{[e_{\nu}^{8}, \iota_{4}]\} + Z_{24}\{e_{\nu}^{8} \circ \bar{\nu}\}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

Generators of these groups and their homomorphic images in (5.8) are enumerated as follows:

$$Z_{2}\{\epsilon_{4}, p \circ \eta, q \circ \eta\} \rightarrow Z_{2}\{\epsilon_{4}\} + Z\{\kappa'\} \rightarrow Z\{e_{q}^{12(1)}, e_{q}^{12(2)}\}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$Z_{2}\{\epsilon_{4}, q \circ \eta\} \rightarrow Z\{\kappa'\} \rightarrow Z\{e_{q}^{12(1)}, e_{q}^{12(2)}\}$$

$$\downarrow \qquad \qquad \downarrow$$

$$Z\{e_{p}^{12}\} \rightarrow Z\{e_{p}^{12}\}$$

$$\downarrow \qquad \qquad \downarrow$$

$$Z\{p, q\} + Z_{120}\{\hat{\alpha}\} \rightarrow Z\{p\} + Z_{120}\{\hat{\alpha}\} \rightarrow 0$$

$$\downarrow \qquad \qquad \downarrow$$

$$Z\{q\} + Z_{120}\{\hat{\alpha}\} \rightarrow Z_{120}\{\hat{\alpha}\} \rightarrow 0$$

And we have

Generators of these groups and their homomorphic images in (5.9) are enumerated as follows:

$$Z_{2}\{\epsilon_{4}\} + Z\{\kappa'\} \rightarrow Z\{\kappa'\} \rightarrow Z\{e_{p}^{12}\}$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

And we have

$$Z_{2}\{\epsilon_{4}, p \circ \eta\} = \pi_{12}(P^{2}) \qquad = \qquad \pi_{12}(P^{2}) = Z_{2}\{\epsilon_{4}, p \circ \eta\}$$

$$\downarrow i_{*} \qquad \qquad \downarrow i_{*}^{(1)}$$

$$Z_{2}\{\epsilon'_{5}\} + Z\{\kappa'\} = \pi_{12}(J_{2}(P^{2})) \qquad \pi_{12}(J_{3}(P^{2})) = Z_{2}\{\epsilon'_{5}\} + Z\{\kappa'\}$$

$$\downarrow j_{*} \qquad \qquad \downarrow j_{*}$$

$$Z\{j_{*}\kappa'\} = \pi_{12}(J_{2}(P^{2}), P^{2}) \qquad \simeq \qquad \pi_{12}(J_{3}(P^{2}), P^{2}) = Z\{j_{*}\kappa', x\}$$

$$\downarrow \partial^{(2} \qquad \qquad \qquad \downarrow \partial^{(2} \qquad \qquad \qquad \downarrow \partial^{(2} \qquad \qquad \downarrow \partial^$$

And we have

(1 $\partial p \circ \eta = i_* \epsilon_4 = \epsilon_5'$, (2 $i_* \hat{\alpha} = 3 \Sigma p'$,

and moreover,

The choices of $\rho' \in \pi_{12}(J_3(P^3))$ and $x \in \pi_{12}(J_3(P^2), P^2)$ have an ambiguity of mod $Z\{\kappa'\}$ and mod $Z\{j_*\kappa'\}$ respectively. They must satisfy the conditions $j_*\rho' = 120e_r^{12} - (ae_q^{12(1)} + be_q^{12(2)}), \ a+b = 360$ and $j_*x = 8e_r^{12} - (ce_q^{12(1)} + de_q^{12(2)}), \ c+d = 24$. Thus we may choose ρ' and x so that

$$j_*
ho' = 120e_r^{12} - 180(e_q^{12(1)} + e_q^{12(2)})$$

and

$$\hat{j}_* x = 8e_q^{12} - 12(e_q^{12(1)} + e_q^{12(2)}),$$

because of $j_*\kappa'=e_q^{12(1)}-e_q^{12(2)}$. Then we have $j_*\rho'=15x$. Let ρ be the adjoint of ρ' .

We are in a position to calculate the Hopf invariants of κ and ρ .

Lemma 5.13. We have the following commutative diagram:

and $P^2 \wedge P^2$ has a CW-decomposition $K \cup e^{16} = S^8 \cup_{\nu} e^{12} \cup_{\nu} e^{12} \cup e^{16}$.

Proof. The map $(P^2) \circ \kappa' = \hat{\iota}$ is followed by the definition of $\hat{\iota}$ and $j_*\kappa' = e_+^{12} + e_-^{12}$.

Lemma 5.14. We have the following commutative diagram:

where $Q = S^8 \cup_{2\nu} e^{12}$, $K = S^8 \cup_{\nu} e^{12} \cup_{\nu} e^{12}$, $M = S^{12} \cup e^{16} \cup \cdots$, $P^3 \wedge P^3 = K \cup e^{16} \cup \cdots$ and $f = 30\xi_2 \vee -15\hat{\nabla} \circ \xi_2 \vee 120\iota_{12}$, $g = 0 \vee inclusion \vee 0 \cup \cdots$.

Proof. The equality $\hat{j}_*x = 8e_r^{12} - 12(e_q^{12(1)} + e_q^{12(2)})$ in (5.12) shows $(/P^3)_*x = -\hat{\nabla} \circ \xi_2 \vee 8\iota_{12}$ in $\pi_{12}(\Omega \Sigma P^3/P^3)$. It follows the lemma by $j_*\rho' = 15x$.

By the equalities (2.17), we obtain

Theorem 5.15. $\nabla \kappa = i_1 \circ \kappa + i_2 \circ \kappa + \lambda$

$$\nabla \rho = i_1 \circ \rho + i_2 \circ \rho - 15\mu \mod Z\{[[\iota_5^{(1)}, \iota_5^{(2)}], \iota_5^{(1)}], [[\iota_5^{(1)}, \iota_5^{(2)}], \iota_5^{(2)}]\}.$$

Corollary 5.16. $\phi((/S^9)^*\rho) = 180$, i.e.,

$$((id \vee /S^5)\nabla)_*\rho = \rho + (/S^5) \circ \rho + 180[\iota_9, \iota_5] = \rho + 30\xi_2 + 180[\iota_9, \iota_5].$$

Remark 5.17. The first equation in Theorem 5.15 also shows that $\phi(\kappa \circ (/S^5)) = 1$ because $(id \vee /S^5)_*\lambda = [\iota_9, \iota_5]$.

Remark 5.18. Provided we take the suitable choice of the generator τ of $\pi_{13}(\Sigma P^3, S^5) = Z\{\tau, [\iota_9, \iota_5]\}$, we obtain

$$\nabla \tau = i_1 \circ \tau + i_2 \circ \tau + 6([\iota_9^{(1)}, \iota_5^{(2)}] - [\iota_9^{(2)}, \iota_5^{(1)}])$$

and this relation is compatible with

$$\nabla \sigma''' = i_1 \circ \sigma''' + i_2 \circ \sigma''' + 12[\iota_9^{(1)}, \iota_5^{(2)}] \circ \nu$$

and $\pi_{12}(S^5) = Z_{30} \{ \partial \tau = \alpha + \sigma''' \}.$

We note $\phi(/S^9)^*$: $\pi_{13}(\Sigma P^3) \rightarrow [\Sigma P^3/S^5, \Sigma P^3] \rightarrow Z$ is an onto-

homomorphism and $180\kappa - \rho$ is an generator of $(\phi(/S^9)^*)^{-1}(0)$. And so we can define $\tilde{\xi}$ so that $\tilde{\xi}$ and $(/S^9)^*(180\kappa - \rho)$ are generators of $\phi^{-1}(0) \simeq Z + Z \subset [\Sigma P^3/S^5, \Sigma P^3]$. Let $P = (/\Sigma P^2)^*\rho, \Xi = (/S^5)^*\tilde{\xi}$. Since κ is homologically trivial, the homological degrees are independent to the choices of ρ and $\tilde{\xi}$.

Lemma 5.19. $(/S^5) \circ \tilde{\xi} = 24id + 8\xi_2 \circ (/S^9)$ where id denotes the identity map on $S^9 \cup_{2\nu} e^{13}$.

Proof. The Puppe sequence obtained from the cofiber sequence $S^9 \subset S^9 \cup_{2\nu} e^{13} \to S^{13}$ induces that self maps of $S^9 \cup_{2\nu} e^{13}$ are characterized by the homological degrees of the induced homomorphisms on $H^*(S^9 \cup_{2\nu} e^{13}; Z)$. It follows $(/S^5) \circ \xi_2 = 24id + 8\xi_2 \circ (/S^9)$.

Lemma 5.20. $\tilde{\xi} \circ \xi_2 = 4\rho$.

Proof. Considering the homological degrees, we have $\tilde{\xi} \circ \xi_2 = 4\rho + u\kappa$ for some integer u. Apply $/S^9$ to this equation and so we obtain $(\tilde{\xi} \circ \xi_2) \circ (/S^9) = 4\rho \circ (/S^9) + u\kappa \circ (/S^9)$ because $/S^9$ is an suspension. On the other hand we have $\phi(f \circ \Sigma g) = \phi(f) \deg H_{13}(\Sigma g)$ for $f \in [\Sigma P^3/S^5, \Sigma P^3]$ and $g \in [P^3/S^4, P^3/S^4]$. Hence $u = \phi((\tilde{\xi} \circ \xi_2) \circ (/S^9)) - 4\phi(\rho \circ (/S^9)) = \phi(\tilde{\xi}) \deg H_{13}((\tilde{\xi} \circ (/S^9)) = 0$.

Theorem 5.21. Some relations of the compositions of the generators of $[\Sigma P^3, \Sigma P^3]$ are as follows:

$$K \circ K = P \circ K = \Xi \circ K = 0, P \circ P = 360P, K \circ P = 360K, \Xi \circ P = 120P,$$

$$\Xi \circ \Xi = 24\Xi + 32P, P \circ \Xi = 120P, K \circ \Xi = 120K.$$

Proof. By the definition (2.9) and $(/S^5) \circ \kappa = 0$, the first three equations are easily verified. $(/\Sigma P^2)_* \rho = 360 \iota_{13}$ implies $P \circ P = 360 P$ and $K \circ P = 360 K$. The equations $(\Sigma P^2)_* \tilde{\xi} = 120 (/S^9)$ and Lemma 5.5 imply $P \circ \Xi = 360 K$.

120P and $K \circ \Xi = 120K$. Recall that the map $\Xi \circ P$ is represented as the following composition:

The relation $(/S^5)_*\rho=30\xi_2$ is easily verified. By Remark 5.18, it follows $\Xi\circ P=120P$. Finally, since the following maps are suspensions except $\tilde{\xi}$, it holds that

$$\Xi \circ \Xi = \tilde{\xi} \circ (/S^5) \circ \tilde{\xi} \circ (/S^5) = \tilde{\xi} \circ \{24id + 8\xi_2 \circ (/S^9)\} \circ (/S^5)$$
$$= \tilde{\xi} \circ \{24(/S^5) + 8\xi_2 \circ (/\Sigma P^2)\} = 24\Xi + 32P.$$

We have the following left distributive law related with the composition and the sum by co-H structure.

Lemma 5.22. For any $f, g, h \in [\Sigma P^2, \Sigma P^2]$, $(f+g) \circ h = f \circ h + g \circ h$.

Proof. It is sufficient to prove for $h = \xi \circ (/S^5)$. Recall Theorem 2.12;

$$\nabla \xi = i_1 \circ \xi + i_2 \circ \xi - 12([\iota_5^{(1)}, \iota_5^{(2)}] \text{ and } \Phi_*[\iota_5^{(1)}, \iota_5^{(2)}] = [\iota_5, \iota_5] = \nu \circ \eta = 0,$$

where $\iota_5^{(j)}(j=1,2)$ donotes the inclusion $S^5\subset \Sigma P^2\vee \Sigma P^2$ to the j-th factor and $\Phi:\Sigma P^2\vee \Sigma P^2\to \Sigma P^2$ be the folding map. And so it follows that the out-side square of the following diagram is commutative $(P=P^2)$.

For $[\Sigma P^3, \Sigma P^3]$, we have

Lemma 5.23. Let $f \in [\Sigma P^3, \Sigma P^3]$ and $g, h \in [\Sigma P^3/S^5, \Sigma P^3]$. Then we have a left distributive law in $[\Sigma P^3, \Sigma P^3]$ as follows:

$$f + g \circ (/S^5) \circ (h \circ (/S^5))$$

= $f \circ h \circ (/S^5) + g \circ (/S^5) \circ h \circ (/S^5) + \phi(h)[g_*\iota_9, f_*\iota_5] \circ (/\Sigma P^2).$

Proof. Apply $f \vee g$ and $/S^5$ to the relation

$$(id + /S^5) \circ h = h + (/S^5) \circ h + \phi(h)[\iota_9, \iota_5] \circ (/S^9)$$

and we obtain

$$(f \vee g) \circ (id + /S^5) \circ h \circ (/S^5) = f \circ h \circ (/S^5) + g \circ (/S^5) \circ h \circ (/S^5) + \phi(h)[g_*\iota_9, f_*\iota_5] \circ (/\Sigma P^2).$$

$$\Sigma P^3 \overset{/S^5}{\to} \Sigma P^3/S^5 \overset{h}{\to} \Sigma P^3 \overset{id+/S^5}{\to} \Sigma P^3 \vee (\Sigma P^3/S^5) \overset{f \vee g}{\to} \Sigma P^3.$$

Lemma 5.24. $(m\ id_{\Sigma P^3})\circ\kappa=m^2\kappa,\ (m\ id_{\Sigma P^3})\circ\rho=m\rho\ in\ \pi_{13}(\Sigma P^3)$ and $(m\ id_{\Sigma P^3})\circ\tilde{\xi}=m\tilde{\xi}\ in\ [\Sigma P^3/S^5,\Sigma P^3].$

Proof. Let $\nabla^m : \Sigma P^n \to \Sigma P^n \vee \Sigma P^n \vee \cdots \vee \Sigma P^n$ be the m-fold pinching map and let $\Phi : \Sigma P^n \vee \Sigma P^n \vee \cdots \vee \Sigma P^n \to \Sigma P^n$ be the folding map. Then our primary ∇ is represented ∇^2 by the new notation. Then we have

$$\begin{split} j_*\nabla\kappa &= \nabla j_*\kappa = \nabla[e^9, \iota_5] = [\nabla e^9, \nabla \iota_5] = [e_9^{(1)} + e_9^{(2)}, \iota_5^{(1)} + \iota_5^{(2)}] \\ &= j_*(\kappa + \kappa) + [e_9^{(1)}, \iota_5^{(2)}] + [e_9^{(2)}, \iota_5^{(1)}] \\ \pi_{13}(\Sigma P^2) &\stackrel{\nabla}{\to} \pi_{13}(\Sigma P^2 \vee \Sigma P^2) &\stackrel{\Phi_{\bullet}}{\to} \pi_{13}(\Sigma P^2) \\ \downarrow j_* & \downarrow j_* & \downarrow j_* \\ \pi_{13}(\Sigma P^2, S^5) &\stackrel{\nabla}{\to} \pi_{13}(\Sigma P^2 \vee \Sigma P^2, S^5 \vee S^5) &\stackrel{\Phi_{\bullet}}{\to} \pi_{13}(\Sigma P^2, S^5) \\ \parallel & \parallel \\ Z\{[e^9, \iota_5]\} & Z\{[e^{9(1)}, \iota_5^{(1)}], [e^{9(2)}, \iota_5^{(1)}], \\ [e^{9(1)}, \iota_5^{(2)}], [e^{9(2)}, \iota_5^{(2)}]\} \end{split}$$

and

$$\Phi_*[e^{9(1)}, \iota_5^{(2)}] = \Phi_*[e^{9(2)}, \iota_5^{(1)}] = [e^9, \iota_5] = j_*\kappa.$$

Hence

$$j_*\Phi_*\nabla_*\kappa = 4[e^9, \iota_5] = 4j_*\kappa$$

and so we obtain

$$(id_{\Sigma P^3}+id_{\Sigma P^3})\circ\kappa=\Phi_*\nabla_*\kappa=4\kappa$$

in $\pi_{13}(\Sigma P^3)$. Also we obtain

$$j_*\Phi_*\nabla_*^m\kappa = m^2[e^9, \iota_5] = m^2j_*\kappa$$

and

$$(m \ id_{\Sigma P^3}) \circ \kappa = \Phi_* \nabla_*^m \kappa = m^2 \kappa$$

in $\pi_{13}(\Sigma P^3)$. By Theorem 5.15, we obtain

$$\nabla_* \rho = i_1 \circ \rho + i_2 \circ \rho - 15\mu \bmod Z\{[[\iota_5^{(1)}, \iota_5^{(2)}], \iota_5^{(1)}], [[\iota_5^{(1)}, \iota_5^{(2)}], \iota_5^{(2)}]$$

Since $\Phi_*\mu = \Phi_*[[\iota_5^{(1)}, \iota_5^{(2)}], \iota_5^{(1)}] = \Phi_*[[\iota_5^{(1)}, \iota_5^{(2)}], \iota_5^{(2)}] = 0$, we obtain $(id_{\Sigma P^3} + id_{\Sigma P^3}) \circ \rho = 2\rho$ and similarly $(m \ id_{\Sigma P^3}) \circ \rho = \Phi_* \nabla_*^m \rho = m\rho$ for any integer m. Considering the homological degrees, we have

$$(m \; id_{\Sigma HP^3}) \circ \tilde{\xi} = m\tilde{\xi} + u\kappa \circ (/S^9)$$

for some integer u. Composing the suspension element ξ_2 , we have

$$((m \ id_{\Sigma HP^3}) \circ \tilde{\xi}) \circ \xi_2 = (m \ id_{\Sigma HP^3}) \circ (4\rho) = 4(m \ id_{\Sigma HP^3}) \circ \rho = 4m\rho$$
$$= (m\tilde{\xi} + u\kappa \circ (/S^9)) \circ \xi_2 = m\tilde{\xi} \circ \xi_2 + u\kappa \circ (/S^9) \circ \xi_2 = 4m\rho + 12u\kappa.$$

Since κ has the infinite order, we obtain u=0, i.e., $(m\ id_{\Sigma HP^3})\circ \tilde{\xi}=m\tilde{\xi}.$

Thus summing up Lemmas 5.23 and 5.24, we obtain

Theorem 5.25. The left distributivity law in $[\Sigma P^3, \Sigma P^3]$ is as follows: $(f+g) \circ h = f \circ h + g \circ h$ for the case $f, g \in Z\{K, P, \Xi\}$ or $h \in Z\{id, \Xi\}$ and exceptinal cases;

$$(m \ id_{\Sigma HP^3}) \circ K = m^2 K, (a \ id_{\Sigma HP^3} + b\Xi) \circ K = a(1 + 24b) K$$

and $(a \ id_{\Sigma HP^3} + b\Xi) \circ P = (a + 120b) P + 4320b K.$

Let (a,b) denote a $id+b\xi\circ(/S^5)$ in $[\Sigma P^2,\Sigma P^2]$ for abbreviation. Then we have

Corollary 5.26.
$$(a,b) \circ (c,d) = (ac, ad + bc + 24bd)$$
.

Let (a,b,c,d) denote a $id+bK+cP+d\Xi$ in $[\Sigma P^3,\Sigma P^3]$ for abbreviation. Then we have

Corollary 5.27. $(a,b,c,d) \circ (e,f,g,h) = (ae,a^2f+af(1+24d)+be+360bg+4320dg+120bh,ag+ce+360cg+g(a+120d)+120ch+32dh,ah+de+24dh).$

For example, the composition law is simple and plain in the group $H^{-1}_{\Sigma HP^3}(id)$ of homologically identity maps of ΣP^3 ; $(id+aK)\circ(id+bK)=id+(a+b)K$.

6. Proof of Theorem 5.4. We shall give the order of $\xi \circ \nu$ in this section. We know $(k\xi) \circ \nu = k\xi \circ \nu$ because ν is a suspension. Since

 $j_*\xi \circ \nu = 0$ and $\xi \circ \nu$ is contained in the image of $\pi_{12}(S^5) = Z_{30}$ where $j_*: \pi_{12}(\Sigma HP^2) \to \pi_{12}(\Sigma HP^2, S^5)$, $30\xi \circ \nu = 0$. On the other hand we have $24\xi \circ \nu = \xi \circ (24\nu) = 0$. Hence $6\xi \circ \nu = 0$ is easily verified. In fact

Theorem 6.1. The element $\xi \circ \nu$ has order 6.

Proof. Consider the mapping cone of κ , $E(\hat{\nu}) = S^5 \cup_{\nu} e^9 \cup_{\kappa} e^{14}$ which is the S^5 -bundle over S^9 corresponding to the generator $\hat{\nu}$ of $\pi_8(SO(6)) = Z_{24}\{\hat{\nu}\}$ such that $\pi_*\hat{\nu} = \nu$ because $p_*: \pi_8(SO(6)) = Z_{24}\{\hat{\nu}\} \to \pi_8(S^5) = Z_{24}\{\nu\}$ is an isomorphism induced by the projection $p: SO(6) \to S^5$. We know the Hopf-Whitehead J-homomorphism $J: \pi_8(SO) = Z_2 \to \pi_8^s$ is an embedding to a direct summand and so the following diagram implies $J(\hat{\nu})$ is a generator of Z_{24} -summand. It follows $\Sigma \kappa = J(\hat{\nu})$.

By Lemma 2.4, the exact sequence of homotopy groups of the fibration $S^5 \to E(\hat{\nu}) \to S^9$ is as follows:

$$^{(1)}\Delta\nu=\nu^2$$

where π is the bundle projection. Let τ_{S^6} be the tangent sphere bundle of S^6 and let $E(\tau_{S^6})$ denote its total space. Then the pull back diagram

$$E((12\iota_6)^*\tau_{S^6}) \to E(\tau_{S^6})$$

$$\downarrow \qquad \qquad \downarrow$$

$$S^6 \xrightarrow{12\iota_6} S^6$$

induces the following commutative diagram:

There exists an elements ν' which is a coextension of $\nu \in \pi_9(S^6)$ and we have

$$\pi_9(S^5 \cup_{24} e^6) = \pi_9(E((12\iota_6)^*\tau_{S^6})) = Z_{24}\{\nu'\} + Z_2\{\nu \circ \eta\}$$

since $\pi_9(E(\tau_{S^6})) = Z_2 + Z_2\{\nu \circ \eta\}$. Recall the definition of $\{\nu_5, 24\iota_8, \nu_8\}$ represented by the Toda braket.

The Toda braket.

$$S^{11} \stackrel{\nu}{\to} S^8 = S^8$$

$$\cap \qquad \downarrow 24\iota_8$$

$$S^{12} \stackrel{\Sigma^3 \xi}{\to} S^8 \cup_{\nu} e^{12} \to S^8 = S^8$$

$$\downarrow 24\iota_{12} \qquad \downarrow S^8 \qquad \cap \qquad \downarrow \nu$$

$$S^{12} = S^{12} \stackrel{\Sigma^3 \nu'}{\to} S^8 \cup_{24} e^9 \stackrel{\tilde{\nu}}{\to} S^5$$

$$\downarrow \nu \qquad \qquad \downarrow /S^8 \qquad \downarrow i$$

$$S^9 = S^9 \rightarrow S^5 \cup_{\nu} e^9$$

$$\downarrow 24\iota_9 \qquad \downarrow /S^5$$

$$S^9 = S^9$$
(figure 9)

The element $\{\nu_5, 24\iota_8, \nu_8\}$ is the composition of $\Sigma^3\nu'$ and $\tilde{\nu}$ where $\Sigma^3\tilde{\nu}$ is a coextension of $\nu \in \pi_{12}(S^9)$ and $\tilde{\nu}$ is an extension of $\nu \in \pi_8(S^5)$ to $S^8 \cup_{24} e^9$. The indeterminacy on this case is $\nu_5 \circ \pi_{12}(S^8) + \pi_9(S^5) \circ \nu_9 = 0$. From the above diagram we obtain $\xi \circ \nu = i_*\{\nu_5, 24\iota_8, \nu_8\}$. On the other hand, by Adams[1] 7.17 p45-6 and Examples of 11.1 p53, $\{j_3, 24\iota, j_3\} = 40j_7$ where $j_r(r=3,7)$ denotes the image of the generator of $\pi_r(SO)$ under the stable J homomorphism: $\pi_r(SO) \to \pi_r^s$. We may consider $j_3 = \nu$ and $j_7 = \sigma$ which are the Hopf maps. Since $\pi_r^s = Z_{240}\{\sigma\}, \{j_3, 24\iota, j_3\}$ has the order 6. Since $i_*: \pi_{12}(S^5) \to \pi_{12}(S^5 \cup_{\nu} e^9)$ is injective, it follows the order of $\xi \circ \nu$ must be also 6.

7. Whitehead product. Our κ is related with the Whitehead product in $\pi_*(\Sigma HP^3)$. In fact

Theorem 7.1. $[\xi, \iota_5] = 24\kappa \ in \ \pi_{13}(\Sigma HP^3)$.

Proof. Let $\pi_k: E_k \to S^9$ be the induced sphere bundle of $E(\tilde{\nu})$ by the map $k\iota_9: S^9 \to S^9$. The pull back diagram

$$E_k \to E(\hat{\nu})$$

$$\pi_k \downarrow \qquad \downarrow \pi$$

$$S^9 \xrightarrow{\text{kig}} S^9$$

induces

Especially E_{24} is homotopy equivalent to $S^5 \times S^9 = (S^9 \vee S^5) \cup e^{14}$ attached by $[\iota_9, \iota_5]$, since $\pi_8(SO(5)) = 0$. It follows $\pi_{12}(E_{24}) = \pi_{12}(S^9) + \pi_{12}(S^5) = Z_{24} + Z_{30}$. The following diagram

$$Z\{e^{14}\} = \pi_{14}(E_{24}, S^{9} \vee S^{5}) \xrightarrow{\times 24} \pi_{14}(E(\hat{\nu}), S^{5} \cup_{\nu} e^{9}) = Z\{e^{14}\}$$

$$\partial^{(1} \downarrow \qquad \qquad \downarrow \partial^{(2}$$

$$\pi_{13}(S^{9} \vee S^{5}) \xrightarrow{\xi \vee_{\iota 5}} \pi_{13}(S^{5} \cup_{\nu} e^{9})$$

$$^{(1)}\partial e^{14}=[\iota_{9},\iota_{5}],\,^{(2)}\partial e^{14}=\kappa$$

implies $(\xi \vee \iota_5)_*[\iota_9, \iota_5] = [\xi, \iota_5] = 24\kappa$.

REFERENCES

- [1] J. F. ADAMS: "On the groups J(X) IV" Topology 5(1966), 21-71.
- [2] M. F. ATIYAH: "Thom complexes" Proc. London Math. Soc. 11(3)(1961), 291-310.
- [3] W. D. BARCUS and M. G. BARRATT: "On the homotopy classification of the extensions of a fixed map" Trans. Amer. Math. Soc. 88(1958), 57-74.
- [4] D. HUSEMOLLER: Fibre Bundles GTM-20, Springer-Verlag 1966.
- [5] I. M. JAMES: "On Sphere Bundles over Spheres" Comment. Math. Helv. 35(1961), 126-135.
- [6] I. M. JAMES: "On the homotopy groups of certain pairs and triads" Quart. J.

Math. Oxford 5(2)(1954), 260-270.

- [7] I. M. JAMES andtextscJ. H. C. Whitehead: "The homotopy theory of shere bundles over sheres" Proc. London Math. Soc. 4(3)(1954), 198-218.
- [8] K. Morisug: "Periodic behavior of SCP ∞ and its applications" Contemporary Mathematics 146(1993), 369-382.
- [9] R. E. MOSHER and M. C. TANGORA: "Cohomology Operations and Applications in Homotopy Theory" Harper and Row 1968.
- [10] G. F. PEACHTER: "The groups $\pi_r(V_{n,m})$ (I)" Quart. J. Math. Oxford 7(2)(1956), 249-68.
- [11] S. SASAO: "On the set $[\Sigma X, \Sigma X]$ for $X = S^n \cup e^{n+k}$ " Math. Jour. of Toyama Univ. 1995 (to appear).
- [12] H. TAKAHASHI: "Note on Homotopy Classes of Self Maps of Projective Planes"

 Bulletin of Nagaoka Univ. 17(1995), 1-5.
- [13] H. Toda: "Composition Methods in Homotopy Groups of Spheres" Annals of Math. Studies 49(1962), Princeton Univ. Press.
- [14] G. W. WHITEHEAD: "Elements of homotopy theory", GTM 61, Springer, New York, 1978.

H. TAKAHASHI DEPARTMENT OF MECHANICAL ENGINEERING CENTER OF SCIENCES AND MATHEMATICS NAGAOKA UNIVERSITY OF TECHNOLOGY

(Received March 26 1996, Revised January 20 1997)