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SELF MAPS OF SUSPENSION OF SPHERE
BUNDLES OVER SPHERES

Hipeo TAKAHASHI

1. Introduction. Since £(S™ x S™) is homotopy equivalent to 5™V
NS™ Vv ES™ there exists a bijection

[S(S™V S™),Y] = [ES™ Vv £5™ v £S™ V).

However this bijection is not always homomorphic with respect to the nat-
ural multiplication of two sets. Of course the latter is necesarily abelian
for any Y. However, the first group is not always abelian. For example, let
Pn S x 8" = S™ and pry, 1 S™ x S™ = S™ be the projections onto each
factor and let g : S™ x §™ — S™*" be the projection. For brevity, suppose
i denotes canonical inclusions £§™ — Z(S™ x §7),£8" — T(S™ x S7),
ES™ Vv ES™ 5 E(S™ x S™) by the same symbol. Then the commutator
< 50 Xpn,i0 Epy >= Fiufing1, tmsr] 0 Zg € [E(S™ x S7), B(S™ x §")]
is a non-trivial element(Corollary 2.2) and so [E(S™ x S™), £(S™ x S")] is
non-abelian. More generally we show,

Theorem. Let E(§) be an S™-bundle over S™ with its characteristic
class £ € m,_1(SO(m+1)). If2 < m+1 < n, then the group [EE(£), LE(£)]
15 not abelian.

For example the cases of $3 — Sp(2) = S7 and 53 — SU(3) — S° are
known by Ohshima.
The author wants to thank the refree for valuable suggestions.

2.A commutator in [EE(£), XE(£)] We use the notations:

Pnt S™x 8" = 5™ and ppy, : S™ x S™ — S™ be the projections on the
each of factors,respectively,

g: S™x 8" — S = 8™ x §"/S™ v §" be the projection,

in t ST C QE(S™ V S™) and iy, : S™ C QE(S™ V S™) be the canonical
inclusions respectively,
i denotes the adjoints of 7,, and 3,, by the same symbol,
+, — denotes the loop sum operation and its inverse,

and assume 2 < m+1 < n.

Lemma 2.1. In [E(S™ x S™),Z(S™ V S§")], we have the following
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relation

{": o Xpn,t o0 me} = [Ln+1, Lm+1] o Xgq.
where {a,b} denotes the commutator (—a — b) + (a + b).

Proof. The adjoint of {i o Xp,,i o Xpp,} is represented < in,im > og
using the Samelson product < in,im > of ¢y and ¢,,. Considering the
adjoint by (3], this turns to the identity

{i o Zpn,io Zpm} = i[LrH-l: tm+1] © Zg.
Applying the inclusion (5™ Vv S™) C £(S™ x S™), the following is easy;
Corollary 2.2. [Z(S™ x S™),X(S™ x S™)| is non-abelian.

Next we consider more generally the case [EE(§), LE(£)] where

p: E(€) — S™, an S™-bundle over S™ with its characteristic class
§ € mp1(SO(m + 1)),

q: E(§) = E(§)/S™Ue = §™*7,

We assume 2 < m+1 < n. The following lemma is an extension of [2].

Lemma 2.3. Let X be a connected finite CW complex of dim X=n
and let P : X — X/Xn_1 = ViS™ be the projection where X,_1 denotes
the (n-1)-skelton of X. Then for f € [EX,Y] and {a} € mp41(Y), we have
the equality,

f+ (Viag) o BP = (Viax) o BP + f
in the group [EX,Y].
Proof. We put § = £(X/Xn-1) = ViS™*! and consider the map
LP+Yid: X — SVIX. Since the inclusion i : SVEX — Sx XX induces
a bijection [EX, SVEX] — [EX, SxZX] because of (SXEX)p42 = SVEX

we obtain EP + £id = Tid + L P. Then the proof is completed by applying
the map (Vxag) V f: SVEIX — Y to both sides of this equality.

Lemma 2.4. Let (X, u) be a connected CW Hopf space, n > m+1 > 2,
a € mp(X) and g: E(€) & X. Then

{aop,gly =2 <a,go0i>,oq,

where {a, B}, = (—a — B) + (a + B) is the commutator in the algebraic
loop [E(£), X] with respect to i, < —,— >, is the Samelson product with
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respect to ji.

Proof. 1t follows from the commutativity of the following diagram.

q <a,goi>,
E(¢) - St AS™ - X
Ld VidAi t{ Ju
E(§) AE(&) - S*AE(£) - XAX
(etnop) Aid alg

where d denotes the diagonal map,{ }, denotes the commutator map with
respect to ¢ and € is £1. The commutativity of the first square follows
from the facts that (id A i) o ¢ and {(etn © p) A id} o d have the same
induced homomorphism H™*"(S" AE(£)) - H™*(E(£)) and the natural
transformation

[E(€), 8™ A E(€)] = Hom(H™™(S" A E(8)), H™T™(E(£)))-

is isomorphic. The commutativity of the second square follows from the
definition. Thus the proof is completed.

Proposition 2.5. If a € [ES", LE(¢)] and g € [ZE(£),ZE(£)], then
we have

{aoZp, g}, = (-1)"€[a, g 0 Ti] 0 Xq.

Proof. 1t follows from the adjoint isomorphism

[EE(£), ZE(€)] (E(), QZE(€)]
(Zg)* 1 tq
Tmn+1(ZE(E)) = Tmin(REE(E))

1

and Lemma 2.4.

Proof of Theorem. From the exact sequence of homotopy groups
of the fiber bundle p : E(§) — S™, there exists an elemnet o €
mn+1(ZE(£)) such that deg(Xp o ) is non-zero, because n,_1(S™) is fi-
nite. By [1], £E(¢) has the homotopy type of the mapping cone of
LA, V J(E) : £S* L v £S™mtn-1 4 6™ where A denotes the bound-
ary homomorphismm, (S™) — m,_1(S™) of the exact sequence of homotopy
groups of the fiber bundle and J is the Hopf-Whitehead J-homomorphism.
By our assumption n > m+1, J(§) € Tn4m(ZS™) has the finite order. For
such an element a, it follows that [, ] has infinite order because there
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exists no map S™t! x S™*! — TE(€) of type (ka, X4) for any integer k # 0.
From the Puppe sequence

L(Zio J(§)) xg
[Z3(S™uUe), ZE(¢)] - Tmn+1(ZE(E))  —  [EE(E), ZE(¢)]

it follows that the order of the kernel of Xg¢* : mpint1(SE(E)) —
(ZE(€),LE(E)] is finite and so we have that the commutator < a o
Yp,idsg > is also non-trivial by Proposition 2.5. Thus the proof is com-
pleted.

Remark. (1) Any maps in [EE(£),LE(£)] can be represented as the
formula

sidsp+aoXp+ fBo3q

for s € Z(integers), a € mp41(ZE(E)) and B € Tmin(SE(E)).

(2) On the set [EE(£),LE(E)], the iterated commutators are trivial.

(3) For the case n=m+1, we have a counterezample for the Theorem, that
is, the Hopf fibration 83 — S — S§* or §7 — S15 5 88,
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