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PLANES, NETS, AND CODES

STEVEN T. DOUGHERTY

1. Introduction.

Projective planes, affine planes, nets and their related structures
(transversal designs, MOLS) have received a great deal of attention. An
extensive literature exists using groups and combinatorial techniques to
study these objects. More recently the theory of algebraic codes has been
applied, see [1], [4], [7]. In this paper, we show the connection between com-
binatorial and geometric information in the designs and questions which
arise naturally in the application of coding theory. We begin with some
definitions.

Definition. A projective plane II is a set of points P, a set of lines
L, and an incidence relation I between them where any two points are
incident with a unique line, any two lines are incident with a unique point
with not all points incident with one line. It follows from the definition that,
when P is a finite set with more than one point, |P| = |L| = n? +n+1, for
some n, which is called the order of the plane. An affine plane of order n
is the design formed by removing a line and all points incident with it from
a projective plane of order n, and so the affine plane 7 = [I1¢= = (A4, M, I)
where A = {g|q € P and ¢ not incident with Lo}, M = L—{L}, and the
incidence relation is the incidence relation of the projective plane restricted
to these sets; it follows that |A| = n? and |[M| = n? + n.

Every projective plane gives rise to n2+n+ 1 affine planes — which may
or may not be isomorphic. An affine plane has a unique “completion” which
is a projective plane. For a fuller discussion of these points see Chapter 6
of [1]; we will adopt the notation of this book.

In a projective plane of order n there are n + 1 points on a line and
n+ 1 lines through a point. In an affine plane there are n+ 1 lines through
a point and n points on each line. An affine plane has n + 1 parallel
classes each containing n lines. A projective plane of order 7 is said to be
desarguesian if it is the projective plane formed in the usual way from the
field F},, n necessarily a power of a prime. An affine plane is desarguesian
if its completion is a desarguesian projective plane.
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Definition. A k-net of order n is an incidence structure consisting
of n? points and nk lines satisfying the following four axioms:
(1) every line has n points;
(ii) parallelism is an equivalence relation on lines, where two lines are said
to be parallel if they are disjoint or identical;
(iii) there are k parallel classes each consisting of n lines;
(iv) any two non-parallel lines meet exactly once.

From the definition it follows that an (n+1)-net of order n is an affine plane.
An s-transversal of a net is a set of sn points having exactly s points in
common with each line of the net. A 1-transversal is known simply as a
transversal.

Definition. Let S be a set of cardinality n. Let A be an n X n matrix
such that each row and column of A contains each element of S exactly
once. Then A is a Latin square of order n. Let A = (a;;) and B = (b;)
be Latin squares of order n; if {(aij,b;;)} = S x S then A and B are
said to be orthogonal. A set {A;, As,..., As} with A; orthogonal to A; for
1 <1< 3 <siscalled a set of s Mutually Orthogonal Latin Squares.

It is well known that £-MOLS of order n are equivalent to a (k + 2)-net
of order n.

A linear [n, k] code C is a vector space of dimension k in F™, where F
is a field and n is the length of the code. In this paper F' will always be
F,, the finite field with p elements, with p a prime. The ambient space is
equipped with the standard inner product, namely

n
[v, w] = Z ViWs;.
i=1

The orthogonal to the code is defined to be
Clt={ve F|[v,w] =0 for all w € C}.

For any incidence structure D = (P, B), we take the characteristic
function of a block b € B to be:

b 1, if bis incident with ¢
v'(q) =
0, if b is not incident with ¢

We define Cp(D) to be the code generated by the characteristic func-
tions of blocks over Fp, i.e. Cp(D) = (v°|b a block in B). We take p to be
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a prime and for the code to be useful we take p such that p divides n. For
the remainder of the paper we always assume that p divides n, the order
of the design, if p divides n but p? does not divide n then we say that p
sharply divides n.

Set Hull,(D) = Cp(D) N Cp(D)* and let Hy(D) be the code gen-
erated by differences of parallel blocks in D, i.e. Hp(D) = (vb —
v®'|b and &' parallel blocks). This is a slight notational difference from the
work of Assmus and Key in which Hull,(D) is often denoted by H,(D).

For the remainder of the paper we shall not distinguish between a block
(in our case, a line) and its characteristic function, that is, b denotes both
the line and the characteristic function depending on the context.

2. The Structure of the Codes.

In this section we shall state and prove some general structure theo-
rems (some old and some new) about the codes of nets and planes to use
later in the paper. The results in this section about planes (specifically
Theorem 2.1, Theorem 2.4 and Lemma 2.2) can be found in [1] and some
of those about nets (specifically Theorem 2.2, Theorem 2.3 and Lemma,
2.1) are generalizations of theorems found in [4]. We include proofs for
completeness.

Let II be a projective plane of order n with m = IT¥> an affine plane
formed from II. We have No C Ny C N C :++ C N C Np41 = 7 where
Ny is a k-net formed from 7 by removing n + 1 — k parallel classes, we also
consider the case where Ny C Ny C No C -+« C Ny, where N, is maximal.

Theorem 2.1. Let II be a projective plane of order n with p a prime
dividing n. Hully(I1) is of codimension 1 in Cp(I1), and Hull,(II) = (L —
M|L, M lines of IT).

Proof. For any two lines L and M of II, [L,M] = 1 # 0, hence
L ¢ Cp(I)1, and then L ¢ Hully(IT), giving Hullp(IT) # Cp(T1). Let G =
(L—M|L and M lines in II). Given lines L, M, and T of I, [L—M,T] =0
giving G C Hull,(IT) C Cp(II). For any line L, (G, L) = Cp(Il) and hence
G is at most codimension 1 in C,(IT). Therefore Hully(IT) is generated by
differences of lines and is of codimension 1 in Cy(II). O

For any k, Hy(Ng) C Hullp(Ny), since clearly Hp(Nx) C Cp(Ng) and
for parallel lines /,m we have [l — m,t] = 0 for any line t. Hence Hp(Ny) C
Cp(Ni) N Cp(Ni)t = Hully(Ny).
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Theorem 2.2. If Ny has an s-transversal with p not dividing s or if
k #1 ( mod p), then dim Cp(Ng)—dim Hp(Ny) = k.

Proof. We know dim Cp(Ni)-dim Hp(N;) < k since Cp(Ng) =
{m1,...,mg, Hp(Ng)) where m; € %;, and ?; is the 4-th parallel class.
Moreover, we may assume that k& > 1, since dim Cp(N1) = n and dim
H,(Ny) = n — 1. We shall show that m;,ms,...,my are linearly indepen-
dent over H,(Ny). First we note that since k¥ > 1, no line m is in Cp(Ni)*
since [I,m] # 0 for | and m not parallel. Hence no line m is in Hp(Vg),
since Hp(Ni) C Cp(Ne)*-

Assume v = aymy +agma +... + agmg € Hp(Ng) C Cp(Ni) N Cp(Ng) L.
Since v € Cp(Nk)*, [v,m] = 0 for all lines m in Ny. Let I; € %;; we have:

0= [’U,lj] = [alml, lj] + ..+ [akmk,'lj] = Za{.

i#]
k k
Therefore 0 = (Z ai)—ay=..= (E a;) — ak, and so Zai =a; =ap =
o —ay i=1 i=1 i=1
If k#1( mod p), set a; = a, wehaveZaiz(k—l)azo, ifa#0

2

then (k—1)=0;but k #rp+1sok—1# O,#;nd hence a = 0, and in this
case {my, my,...,mi} are linearly independent over H,(Ny).

Now let ¢t be an s-transversal of N, with p not dividing s. We know
t € Hy(Ng)t since [t,m — I] = 0 for m parallel to I. So [v,t] = 0, that
is [aym1,t] + ... + [@akmg,t] = O which implies sa; + saz + ... + sax =
s(a; +as+---+ag) =0, and so, again we have that a; = 0 for all 4, giving
the result. O

Lemma 2.1. Let Nj be a k-net of order n, where k < n. Set Uy =
{l1,12,...,1n}. When k is not congruent to 1 (mod p) or when Ny has an
s-transversal with p not dividing s, then if a1ly + ... + aplp € Cp(Ng—1), we
have 3 a; =0 and a1ly + ... + aply € Hp(Ni—1) as well.

Proof. Let v = aily + ... + aplp. If v € Cp(Ng_1) then v = eymy +
coma + .. + cg—1mk—1 + u where u € Hp(Nx_1), m; € 2;, which implies
v+bimy +bomo + ...+ bp_1mg_1 =u€ Hp(Nk_l) where b; = —c¢;. Since
u is in Hp(IVg—_1), it is orthogonal to any line and any s-transversal of N.
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We have
0= [alll + ...+ aply +bymy +boma + ... + bk—lmk—lal_’i]
= aj(n) + Zbi = zbi

and therefore ) b; = 0. If Ny has an s-transversal ¢, with p not dividing s,
then

0=[aili + ...+ anln + bymy + bomo + ... + br—1mk—1,1]
=sZai+stj :SZai

and hence Y a; = 0, since p does not divide s.

Hence
0=> ai+ (> bi—b)
—Zaizzbi—bj
——Za,;:O—bj
Zai=bjfor1§j§k—1

If Ny has no such s-transversal but & is not congruent to 1 mod p then
we have:

0= [a1l1 + ...+ aply + bymy + bomg + ... + bk_lmk_l,'rnj]

= ai+» bifori<j<k-1
i£]
Thus all b; are equal; set b = b;. Then ) b = 0 implies (k — 1)b = 0,
but p does not divide (k — 1). Therefore b =0, and 3_ a; = 0 as desired. O

Theorem 2.3. Let the i-th parallel class be A; = {l;} in a k-net Ny
of order n, where Ny has a transversal or k #1 mod p, then if

doajli+..+ ) akib=0
then 35, a5 = 0.

Proof. Given any parallel class 2; arrange the net so that this is the
k-th parallel class. Then the result follows from the previous lemma. O

For Ny C N2 C -+ C Np C Npyq it is clear that Cp(N1) C Cp(N2) C
=+ C Cp(Np) C Cp(Nnt1) and that Hy(N1) C Hp(Ng) C -+ C Hy(Ny) C
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Hy(Np41). The all one vector j is in Cp(Ny) for all k since the sum of any
parallel class is j. For any line [ in the (n + 1)-st parallel class we have:

n
l=j—- Z l; where [; is incident with ¢ a point on [
i=1

and ; €A, for1 <i<n

This makes Cp(N,) = Cp(Npy1), Hp(Np) = Hp(Nny1), and
Hully(Nyp) = Hull,(Npy1). By Theorem 2.2, the codimension of Hp(Ny)
in Cp(Np) is n, since any line in the (n + 1)-st parallel class serves as a
transversal, and then the codimension of Hy(Np41) in Cp(Np41) is also n.

Theorem 2.4. Let m be an affine plane of order n and let I1 be its
projective completion with Lo the line at infinity. Then, for a prime p
dividing n, Hullp(7) is the projection of the subcode {c € Hull,(IT)|cg =
0 for Q on Lo}, and Hully(7) = ({ — m| | and m are parallel lines in ),
and is of codimension n in Cp(m).

Proof. We have seen that Hy(Ny) = Hp(Np41) = Hp(w) C Hully(m) C
Cp(m) and the codimension of Hy(Np41) in Cp(Npy1) = Cp(x) is n. The-
orem 2.2 gives that H,(N,) = Hull,(Ny,) since the proof shows the linear
independence of these n vectors over Hull,(N,). We know Cp(N,) =
Cp(Np4+1) and so Hully(Ny) = Hully(Np41). Therefore Hull,(7) = Hp(T),
i.e. Hull,(m) = (I — m|l and m are parallel lines in 7), and Hully(7) has
codimension n in Cp(7).

If | and m are parallel lines in 7, let L and M be their extension in
II. Then L — M is 0 on the points of Ly. Let G = (L — M|L and M
extensions of parallel lines in 7). Note that all of the vectors in G have 0
on the coordinates of Ly,. Let I; € ;, with L; its extension in II. We see
that Hullp(I1) = (G, L1 — Loo, L2 — L, . ., Ln — Leo). If a vector has 0’s
on the coordinates of Ly, then it is in G and Hullp() is the projection of
G.O

Lemma 2.2. If Il is a projective plane of order n with p a prime
dividing n, and © = IT*=. Then Cp(m)* is the projection of {v € Cp(II)*
with vy = 0 when g is a point on the Loo.}

Proof. Let Y = {v € Cp(II)* with v, = 0 when ¢ is a point on the L.}

It is clear that if v € Y then its projection is in Cp(m)*. The dimension of
Y can be found by noticing that requiring v, = 0 lowers the dimension by



PLANES, NETS, AND CODES 129

1 for the first n points on Ly, giving that dim Y = dim Cp(m)t. O
The following is the standard definition of the direct product of nets.

Definition. Let Ni, IV; be k-nets of order n and n' respectively. The
direct product of nets Ny x N,’c is defined as follows:
(1) the points N x N} are ordered pairs (g,q’) with ¢ a point of Nx and ¢
a point of Nj.
(2) the lines of Ny x N are ordered pairs (m,m') with m,m' from the i —th
parallel class of Ni and Nj, respectively.
(3) the point (g,q') is incident with the line (m,m') if and only if ¢ is
incident with m and ¢’ is incident with m'.

Let 2;,%s,..., 2 be the parallel classes of Ny and let 2}, 205,..., 2
be the parallel classes of V. Note that the order the parallel classes are
labeled makes a difference in the direct product. Let X; = Cp(2;) and
X! = Cp(2}) By the natural identification of FF*¥', where P and P’ are
the point sets, with F’ ® F' we have that

k
Co(Nk x Np) =) X; ® X]
i=1
Let Y; = Hp(2;) and Y] = Hy(2}). Let (r,7’) be a point in Ny x N},
and let (m,m') and (,!') be lines in Ny x Ni. Then (r,r') is incident with
(m,m') and (r,7’) is incident with (/,!’) if and only if r is incident with m
and r is incident with /, and ' is incident with m' and r’ is incident with
I', and hence (m,m’) and (I,!') are parallel if and only if m is parallel to [
or m’ is parallel to I’. This gives us the following:
Hy(@x2) = (G @XD)+(¥/®X:) and Hy(Nex Nj) = S5 (V9 X))+
(Y ® X;)), and dim H,(Nj x N) = dim (X5, ;i ® X!) +dim (3.5, V! ®
X;) —dim (L, Y ®Y)).

3. s-Transversals.

A great deal of work has been done studying transversals and partial
transversals to Latin squares. See chapter 8 of [3] for an explanation of
what has been done. Much less attention has been given to s-transversals
for s > 1.

One of the most interesting conjectures concerning transversals was
made by Ryser. He conjectured that every Latin square of odd order has
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a transversal. This remains unproven.

A similar conjecture was made by Peter Rodney, [10]. He conjectured
that any Latin square has a 2-transversal, (in our definition that means
that the corresponding 3-net has a 2-transversal). Later this was revised
to conjecture that every Latin square can be partitioned into disjoint 2-
transversals with a single transversal left over in the case of n odd.

The author and Jeanette Janssen conjectured the following:

Conjecture. Any s-transversal to a Latin square can be partitioned
into an a-transversal and a b-transversal for some a and b with a + b =k,
if k> 2.

This final conjecture implies both Ryser’s and Rodney’s conjectures,
since a Latin square is an n-transversal of itself.

A Latin square can have a 2-transversal and not have a transversal.
For example, the circulant Latin square of order 4 has no transversal, but
it is easy to find a 2-transversal.

Lemma 3.1. An affine plane of order n has no k-transversals, for
1<k<n.

Proof. Assume a plane has a k-transversal S with 1 < & < n. Pick a
point ¢ of S. Through ¢ there are n+ 1 lines and through g and any other
point in S there is a line. If none of these lines has more than k£ points
from S on it, then at most it can have k£ — 1 points other than ¢ from S.
This gives a total of

1+(n+1)(k-1)=14+nk+k-n—-1=nk—(n—-k)

points on S. So if k is less than n we have a contradiction. When k& is equal
to n the k-transversal is simply all the points of the plane. O

We shall show how s-transversals appear in the codes of nets.

Let v be the characteristic function of an s-transversal to a k-net Ng.
We have that v € H,,(Nk)l since for any two parallel lines [ and m we have
[v,l —m] = [v,]] - [u,m] = 8 — 5 = 0. If p divides s, then v € Cp(Ng)*
since for any line ! we have [v,l] = s and s = 0 if p divides s. For example,
if we take a 3-net corresponding to a Latin square of even order, then the
characteristic functions of all its s-transversals are in Hully(N3)1 and the
characteristic functions of all its s-transversals for s-even are in Cz(IN3)t
which is a subspace of Ha(N3)* .
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We define a constant vector to be a vector that is a scalar multiple of
a vector consisting of 1’s and 0’s.

Theorem 3.1. Let 6 be a constant vector of weight sn in H,,(Nk)l
"~ with Ny a k-net of order n = p, with p a prime. Then 6 is the sum of s
parallel lines or it is an s-transversal.

Proof. Normalize 6 so that it is made up of 0’s and 1’s. For [ and m
parallel we have:

0=[8,l —m]=1[6,1] - [8,m]
giving that
[Al|=10Am| modp

for | and m parallel, where |6 A [| indicates the number of places where 6
and [ both have a 1. If [ Al| = 0 mod p then |§ Al| = 0 or n for any
line in the parallel class, giving that # is the sum of s lines in this class. If
|6 Al =7 mod p, with 0 < 7 < n then |§ Al| = r for all lines in the class
since |6 Al| cannot be bigger than n since there are only n points on a line.
Then rn = sn giving that r = s and that 8 is an s-transversal. O

This allows for the number of s-transversals to be read off the complete
weight enumerator of Hy(Ni)L, when the order of the net is p.

Let ly,ls,...,l, be any parallel class, then
n
> - 1) = -
i=2

where j is the all one vector, hence j € Hy(Ny) for any k. So if v is a constant
vector in Hp(Nk)J', then p must divide the weight of v, where the weight is
the number of non-zero coordinates of the vector, since 0 = [v,j] = 3 v;.
This gives that the weight of a constant vector must be of the form rp.
Note, in comparison, that for a projective plane the all one vector is not
in the Hull so that the weight of a constant vector in Hull,(II)* need not
have weight divisible by p. If n = p, then with the above, we have the
following:

Corollary 3.1. If v is a constant vector in H,(Ng)*, where Ni is
a k-net of order n = p, then v has weight sn for some s and it is the
characteristic function of an s-transversal.
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Proof. Follows from the above and Theorem 3.1. O

The importance of this corollary is that there must be sufficient s-
transversals to extend the net. Namely s transversals must be parallel to
form an s-transversal (of course there are s-transversals that are not of
this form). Hence, we need sufficient numbers of s-transversals for a set of
transversals to be resolvable into a parallel class.

Corollary 3.2. Let w be an affine plane of prime order p. The constant
weight vectors of Hully(r)* = Cp(r) are sums of lines and have weight kn
for some k.

Proof. The fact that Hull,(m)t = Cp(r) in this case follows from
the order being prime, see [1]. The rest follows from Lemma 3.1 and the
Corollary 3.1. O

As an example of this corollary consider the complete weight enumera-
tor of the affine plane of order 3, where there are A, . vectors with a 0's, b
1's, and ¢ 2’s. Note that the number of non-trivial constant weight vectors
for a given weight is 12 = 4(%) = 4(3).

The complete weight enumerator of the affine plane of order 3

Aa,b,c a b ¢
1 9 00
12 6 3 0
12 6 0 3
54 4 4 1
108 5 2 2
54 4 1 4
12 3 6 0
108 2 5 2
168 3 3 3
12 3 0 6
108 2 2 5
54 1 4 4
12 0 6 3
1 0 90
12 0 3 6
1 0 0 9
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Lemma 3.2. Let n be even and set p = 2. Let Ny be a k-net of order
n with A = {15, 15, ..., 1k}. Assume 3 of1¥ € Cp(Ni_,); where Ni_; is any
(k — 1)-subnet of Ny, with the following relation:

S okt + ok 4+ Yot =0

Let o’ be the number ofag which are 1, that is o = |{a{|a:f =1}|. If o/
is odd for any j then dim Cp(Ng)—dim Hp(Ny) < k, and therefore Ny has
no s-transversals for s odd, and does not extend.

Proof. Note that Co(Ng) = (I3, ...,1%, Hy(Ng)). For all o/ odd, take
one line with non-zero coefficient out of the summation, and arrange it so
that it is 1. We have:

n n
Z l{ =Y oftf+..+ Z ail}
ajodd i=2 i=2
where all the weights in the summations are now even and so the right side
is in Hy(Ny). We now have a non-trivial linear combination of {i},...,1¥}
in Hy(Ng) and so dim Cy(Ng)—dim Hy(Ng) < k and hence, by Theorem
2.2, Ni does not have any s-transversals for s odd. O

The following Lemma appears in [7] and [4].

Lemma 3.3. Let n =2 (mod 4); then n = 2m with m odd. Let N3 be
a 3-net of order n with the following parallel classes: Ay = {l1, ...,In}, g =
{mi,...,mn}, and A3 = {t1,...,tn}. If 3 ait; € C2(N2), where No = A; U
A, then wi(a, ..., an) is n, 0, or 3 =m.

Theorem 3.2. Let N3 be a 3-net of order n = 2 mod 4. If dim
Ca(N3)—dim Co(N2) < n—1, then N3 does not have any s-transversals for
s odd.

Proof. We note that by Theorem 2.2, dim Cy(N2)—dim Ho(Ny) = 2
since k = 2 and 2 # 1 (mod 2). Now suppose that w = as(t; + t2) + ... +
an(t1 +tn) € Ha(N2) C Co(N2). Write

n
w= (Z ai)tl + azts + ... + antn
=2

n
then, when Zai = 1 an odd number of as,..,a, are 1 and so
=2
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n n
wt(E Qj,Q9,...,0n) is even and when E o; = 0 an even num-

=2 i=2
n

ber of a3,..,an, are 1 and again wt(Zai,az,...,an) is even. Thus
=2

n
Wt(Z a;, @9, ..., &) is even and by the previous lemma the weight is either
=2

0 or n.

Since t; + tg, ..., t1 + t, generate Hy(N3) over Hy(N3), we have shown
that dim Ho(N3)— dim Hy(N2) = n—2. Now, if dim C2(N3)—dim C3(N3) <
n — 1 then dim Cy(/N3)—dim H2(N3) # 3 and hence by Theorem 2.2, N3
does not even have any s-transversals for s odd. O

Therefore if dim C3(N3) < 3n — 2, the net does not have any s-
transversals for s odd, since dim C3(N3) = n + n — 1+dim (Cy(N3))—dim
(C2(N7)). For a similar result involving 1-transversals in terms of loops see
Moorhouse [7].

This produces a large class of Latin squares that have no s-transversals
for s odd. A subset of this class are those Latin squares which represent
the multiplication table of a group of order n =2 mod 4.

4. Linear Combinations of Lines.

Let II be a projective plane of order n, with P representing the point
set, L representing the line set and I the incidence relation between them,
and let ¥ = (L, P,I) be the dual plane. Take 7 = I1¥= to be an affine
_part of IT with Ny C Na C -+- C N, C Npy41 = 7, where Ny is formed by
removing (n + 1 — k) parallel classes from 7. For this section the lines of
the i-th parallel class 2|; are denoted by {l;}

Consider a linear combination of the lines of 7 summing to 0, where
the coeflicients of the lines in the (n + 1)-st parallel class are 0. That is

Z a;-l;- =0
where a§ € F and a;-‘"'”l = 0 for all j.

Let D be the space whose vectors are the coefficients of such linear
combinations, i.e.

D= {(a;)l Za;'-l;- = 0}.
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D is a linear code of length n? + n with the coordinates corresponding to
the n? + n lines in 7. The last n coordinates of any vector are 0, these
coordinates correspond to the lines in 2,4+, the (n + 1)-st parallel class of
7. Since these vectors correspond to linear combinations which are 0 on the
coordinates of the (n + 1)-st parallel class, then by Theorem 2.3 we have:

Zaj-zO
J

for all 7. This implies that the sum of their extension in the projective
plane II is 0 as well, since it is 0 at all points on L, i.e.

Z ag-L; =0
where L; is the line in the projective plane II formed from the line l;'. in the
affine plane 7 by completing this affine plane to the projective plane II.

Arrange the coordinates corresponding to the points in ¥ so that they
are in the same order as their corresponding lines in 7, with the last point
being Lo, the line at infinity in II. Then if v = (a_‘%) €D, ie. Y, aj—L_f,— =0
then (v,0) € C,(X)*, where (v,0) is the vector v with a 0 attached as the
last coordinate. Let D’ = {(v,0)|v € D}; then we have that D' C C,(X)*.

The vectors in D' are all 0 on the last (n + 1) points in X, after the
points are arranged in the manner described above. These (n + 1) points
correspond to the n lines in the (n + 1)-st parallel class of 7, together with
the point of ¥ corresponding to L. These (n+ 1) points make a line in ¥,
Denote this line as M, and set 0 = M= je. ¢ is the affine plane formed
from ¥ by removing My, and the points incident with it.

Let B be D' projected on the n? coordinates corresponding to the n2
points of o. Note that all the vectors in D’ were 0 on these coordinates.
B is a code of length n? whose vectors represent the coefficients of linear
combinations of the first n parallel classes of 7 summing to the zero vector.

Theorem 2.4 states that Hullp(o) = {w|lw € Hull,(¥) and wg =
0 for Q on M}, giving B C Hully(o). Since II and ¥ are dual planes
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dim Cyp(II) = dim Cp(X). By Theorem 2.4 we have
dim Cy(0)t = n® — dim Cp(o)
= n?— (dim Cp(X) — 1)
= n? — (dim Cp(IT) — 1)
= n? — dim Cy(n)
= n? — dim Cy(Ny)
= dim B

Therefore B = Cp(0)*, giving the following theorem:

Theorem 4.1. Let m be an affine plane of order n with p a prime
dividing n, the space of all vectors representing -the coefficients of lines in
linear combinations of lines in the first n parallel classes of m summing to
the zero vector is equal to Cp(c)L where o is an affine part of the dual plane
of the projective completion of m formed by removing the lines corresponding
to the lines of the (n+1)-st parallel class of m and the line at infinity of its
projective completion.

Note that only linear combinations that had 0 for coefficients of the
lines in the (n + 1)-st parallel class were considered; this is an extremely
important distinction. In a linear combination involving all (n+ 1) parallel
classes Theorem 2.3 would not apply and we would not have that the sum
of the coefficients on a given parallel class was 0, which was critically used
in establishing the isomorphism of the codes. The (n + 1)-st parallel class
often serves as an anomaly in the study of nets as it does here.

If p sharply divides n, then Cp(S)* = Hull,(X) and Cy(o)t =
Hully(o). We know that Hull,(o) = Hy(o), that is Hull,(o) is gener-
ated by differences of parallel lines in . It is vital then to determine what
form these generators take in B, when p sharply divides n.

Let t € Ap41, the (n + 1)-st parallel class of 7, and let g1, g2 be points
on t. Then, if j denotes the all one vector, we have:

t=.i—zli, LTq,l;e?;
and

t=j—) mi mil g, me



PLANES, NETS, AND CODES 137

This gives:

i=d li=i-> m
Yu=Fm
Zl,——Zmi=O

This linear combination can be expressed as follows; take any two
points ¢ and r such that the line through them is in the (n + 1)-st par-
allel class of 7. Note that the lines in o corresponding to these points are
parallel since their extensions meet at My, in . Let v be the vector in B
corresponding to this linear combination, we have for | € N,,:

1, if ! is incident with ¢
v(l) = ¢ —1, iflis incident with r

0, otherwise

We see that v has weight 2n and as viewed as a vector in Hully(o) is
the difference of parallel lines in the first n parallel classes of o, and is a
generator for Hull,(o).

Differences of parallel lines in the (n + 1)-st parallel class in o corre-
spond to linear combinations of the form:

ZSi—Zti=j—.i =0

where A, = {s;} and Ag = {t;} for 1 <, B < n.

We have seen that H,(N,) = Hp(Npt+1) = Hull,(o) and so it suffices
to take generators of Hully(o) as differences of parallel lines in the first n
classes of 0. Hence the following:

Theorem 4.2. The space of all vectors of coefficients of lines in linear
combinations of lines of the first n parallel classes of an affine plane of
order n, summing to the zero vector over Fp, with p sharply dividing n, is
generated by the vectors of coefficients of linear combinations of the form
Nl = > m; where l;;m; € %; 1 < i <n, and l;1q1, m;Iqs where the line
through the points q1,qo is in the (n + 1)-st parallel class.

Proof. Theorem 4.1 gives the space of linear combinations sum-
ming to 0 is equal to Hully(o) and Theorem 2.4 gives that Hully(o)
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is generated by differences of parallel lines, i.e. Hullp(o) = (I —
m|l and m are parallel lines in o). The above discussion gives the rest. O

Consider the case when n = 2 mod 4. Here Hully(o) is a self-
orthogonal code generated by differences of lines which have weight 2n and
therefore are doubly-even. Hence, all the vectors in Hully(o) are doubly
even giving the following:

Theorem 4.3. Let m be an affine plane of order n = 2 mod 4. A
linear combination of lines in the first n parallel classes of m summing to
the zero vector must involve a doubly-even number of lines. That is, if
Yim1 i alll = 0 where {1§,13,...,1} are the lines of the j-th parallel
class, then the number of non-zero a{ is divisible by 4.

This places a strong configurational constraint on any affine plane of
order n = 2 mod 4. Namely, given a set of lines from all but the last
parallel class, such that through any point on the plane there are evenly
many lines from the set through that point, then the cardinality of the set
is divisible by 4.

5. Hyperovals.

In this section we shall restrict our interest to planes of even order, and
set p = 2.

In a projective plane ¥ of even order a hyperoval is a set of n+2 points
with no three collinear. It follows immediately that any line in ¥ is either
secant to the hyperoval or disjoint from the hyperoval. When the line at
infinity is fixed we refer to those hyperovals that are secant to the line at
infinity as hyperbolic hyperovals and to those that are disjoint from the line
at infinity as elliptic hyperovals. If O is a hyperoval in ¥ then O € C,,(E)J-,
and if the hyperoval is elliptic, then by Lemma 2.2, O € Cy(0)*.

We show an example of the importance of hyperovals. Assume there
is a plane of order n = 6 with p = 2 and that there is a non-trivial linear
combination of the first four parallel classes:

Statif +3 a¥P+Y al2+ > alil=0

Let a/ denote the number of o} which are non-zero. If o = 6 for any j,
then by adding the all-one vector the appropriate number of times we can
change this value to 0. Hence we can assume a’ < 6 for all j. If a/ = 0 then
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we would have a linear combination of only three parallel classes which by
Theorem 3.2 would imply that there could not be a 4-net. This gives that
0 < a? < 6 for all j. By adding the all-one vector the appropriate number
of times it can be arranged that a' = a® = a® = 2 and a* is either 2 or 4.
We have seen that the coefficients of this linear combinations are vectors
in Cy(o)t which, since 2 sharply divides 6, is equal to Hullo(c). Thus
C(0)* contains only doubly-even weight vectors. Hence a* # 4. In [2]
it is shown that there cannot be an hyperoval in a (non-existent) plane of
order 6, giving that a* # 2 since this would correspond to a hyperoval in
0. The dimension of Cy(7) must be @ = 21 but the above gives that it
must be 6 +5+ 5+ 5+ (dim Ca(Ns) — dim C2(Ng)) + 1 > 22. Hence there
can be no plane of order 6. Of course, this can be shown many ways but
it is instructive to see the role the hyperovals can play in this setting. A
similar argument can show the non-existence of two mutually orthogonal
Latin squares of order 6, i.e. the non-existence of a 4-net of order 6, see
[5], or [11] where it is done in a different setting. See [6] for the role the
non-existence of a hyperoval in a possible plane of order 10 played in the
computation showing the non-existence of a plane of order 10.

A natural question arises as to whether a possible plane of order n = 2
mod 4 can have a hyperoval. This can be decided by showing that the
minimum weight of Hully(o) must be greater than n + 2, see (1] and the
next lemma which appear there.

Lemma 5.1. Let ¥ be a projective plane of even order n, o any affine
plane contained in £. The minimum weight of Co(2)* and Cy(o)t is at
least n+2 and if this is the minimum weight of the codes, then the minimum
weight vectors are the characteristic functions of hyperovals.

Proof. Let v be a vector in Co(X)L, and let ¢ be a point such that
vg = 1. There are n + 1 lines through ¢, and on each of these lines there
exists a point 7 with v, = 1 since v is orthogonal to each of these lines. It
is easy to see that this configuration is an hyperoval.

The proof works for C(c)t since there are n + 1 lines through any
point in o as well. O

This does not guarantee the existence of hyperovals; it only states that
if there are hyperovals then they are the minimum weight vectors.

This Lemma is useful in determining how many hyperovals there are
in a plane when the weight enumerator of the code is known, by applying
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the MacWilliams equations. For example, the weight enumerator of the
unique affine and projective planes of order 2 and 4 are known. It is then
a simple matter to determine that in the projective plane of order 2, there
are 7 hyperovals, and 1 hyperoval in the affine plane. In the projective
plane of order 4 there are 168 hyperovals, and 48 in the affine plane. Note
then for these planes, given any line in the projective plane as the line at
infinity the number of hyperbolic and elliptic ovals remain unchanged; that
is the number of ovals which are hyperbolic and elliptic in these planes is
independent of the choice of the line at infinity.

We shall denote the space generated by the hyperovals of the projective
plane by Cp(H) and the space generated by the hyperovals of the affine
plane as Cp(h).

For n even and p = 2 both Hull,(X) and Hull,(o) are self-orthogonal
codes generated by doubly-even vectors, and as a consequence have only
doubly-even vectors. For n = 0 mod 4 which accounts for all known even
planes except for n = 2 the hyperovals cannot be in the Hull, since n + 2
would be 2 mod 4. At n = 2 the hyperovals are actually differences of lines
in the projective plane and differences of parallel lines in the affine plane,
and are in fact generators of their respective Hulls. This gives the following
relationships for all known planes:

Hully(%) C Gy(H) C Gp(B)*

Hully(o) C Cp(k) C Cplo)*

with the first inequality being strict for all n > 2.
In [9], Pott shows the following:

Theorem 5.1. The characteristic vectors of hyperovals in an abelian
projective plane ¥ of even order generate Co(Z)L.

He also shows that the dual of the code of the desarguesian planes of
even order is generated by the orbit of a hyperoval (coming from a conic)
under a Singer cycle.

Lemma 5.2. In a Singer cycle of a hyperoval in a desarguesian projec-
tive plane of even order there are @_+1¥n_+21 hyperovals that are hyperbolic

and ﬂ%_—ll hyperovals that are elliptic for any choice of L.

Proof. Let O be a hyperoval in II, where II is the desarguesian plane
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of even order. Let O denote the image of a hyperoval in a Singer cycle
with a0 = O. Each point on O has (n + 1) values of i such that o* sends
it to a point on L, but each of these ¢ actually sends two points of O to
L, since any line is either disjoint or secant to a hyperoval.

Hence there are g"—“é”—*’—z)- hyperovals that are hyperbolic in a Singer

(nt1)(n+2) _
2

cycle, leaving n? +n+ 1 — "(nz_l) hyperovals that are elliptic

in a Singer cycle. O

In comparison with Pott’s theorem, there are not enough elliptic hy-
perovals in a Singer cycle to generate Cy(w)+ with 7 = ITLe nor are there
enough hyperbolic hyperovals in a Singer cycle to generate Cy(IT)* alone.
For example at n = 8 there are 28 elliptical hyperovals in a Singer cycle
and dim Cy(m)t = 37. If n = 16 there are 153 hyperbolic hyperovals in a
Singer cycle and dim Ca(IT)+ = 191.

This does not say whether hyperbolic or elliptic hyperovals generate
these codes but only that it does not occur within a single Singer cycle.

Let O be an hyperoval in ¥ disjoint from M, the line at infinity of .
Let ¢1, 492, .- ., ¢n+2 be the points on the hyperoval and let @ be the point in
¥ corresponding to Lo the line at infinity of II. We note that @ is incident
with M, by construction. If we take a line from @ to the points on O we
see that each line is secant to O and the points of O can be arranged into
%2 classes with each class containing two points. By renaming we have
{q1,92},{q3, 94}, ., {@n+1,gn+2} where the line through the two points in
a set is incident with Q.

If t; is the line of 7 corresponding to g;, then we have ). t; = 0.
This is a linear combination of lines involving %+_2 parallel classes with 2
lines from each of these classes. This hyperoval-like linear combination is
the smallest possible linear combination (i.e. fewest non-zero coefficients)
of lines summing to 0 by Lemma 5.1. If v € Ca(0)t then there exists
w € C3(X)+ with w having a 0 on the coordinates of Ly, and w projecting
to v on the remaining n? coordinates. Then we have w = Y hi where h; is
a hyperoval of X. This gives the following:

Theorem 5.2. The vector of coefficients of linear combinations of
lines in a N, contained in a plane w, where the dual of the projective com-
pletion of w is an abelian plane of even order, is of the form 3, hix with hi*
the projection of h;, a hyperoval of T, on the n? coordinates corresponding
to the lines of Ny, where >  h; is 0 on the points of line at infinity of the
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dual plane. Namely, it is the sum of elliptic hyperovals and the sum of
hyperbolic hyperovals summing to 0 on the points of the line at infinity.

Proof. Lemma, 2.2 gives the relationship between the vectors of linear
coefficients and the orthogonal of the dual. Theorem 4.1 and Theorem
5.1 give that the dual is generated by the characteristic vectors of the
hyperovals. O

In [8] Peeters computes all possible p-ranks of desarguesian nets of order
4,8, and 16 where a desarguesian net is a net contained in a desarguesian
affine plane. We also include the computation for order 2 which is trivial.

n=2 n=4 n=8 n=16

k .

17 81
16 81
15 80
14 79
13 78
12 77
11 76
10 75
9 27 74
8 27 73
7 26 68
6 25 63
5 9 24 56;58
4 9 23 51353
3 3 8 19 42
2 3 7 15 31

1 2 4 8 16

It is natural to conjecture that, for desarguesian planes of order n = 27,
dim C3(Ng)— dim Co(Nx_1) = 1forn > k > § + 1, i.e. that Ho(m) =
Hg(N%). The conjecture would be true if the sum of any two lines in the
k-th parallel class, with k > 3 were in Hy(Nz). It would appear that the
structure of the hyperovals, specifically of the image of a single hyperoval
under a Singer cycle, is the reason for these dimensions.

Conjecture. If m is a desarguesian plane of even order n then
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Hy(N3) = Hy(n).
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