ON VALUES OF CYCLOTOMIC POLYNOMIALS. III

KAORU MOTOSE

In this paper, we shall consider relations between Lucas' test (or Pépin's test) and values of cyclotomic polynomials $\Phi_n(x)$.

For Pépin's test, the next well known result shows this relations (see [1, p.378] and [2, Corollary 4(3)]).

Assume n is an odd integer. Then n is prime if and only if there exists an integer c > 1 such that $\Phi_{n-1}(c) \equiv 0 \mod n$.

In this note, for an algebraic integer γ , \mathcal{O}_{γ} will represents the ring of all algebraic integers in $\mathbf{Q}(\gamma)$.

The next is essential for our purpose.

Theorem 1. Let P be a proper ideal in a ring R with the identity $1 \neq 0$. If P contains p and $\Phi_n(\gamma)$ for a prime integer p and $\gamma \in R$, then $n = p^e |\gamma|_P$ where $|\gamma|_P$ is the order of $\gamma \mod P$.

Proof. It follows from the condition that $\gamma^n \equiv 1 \mod P$ and so $|\gamma|_P$ is a divisor of n. Thus we can set $n = tp^e|\gamma|_P$ with (t,p) = 1. Assume t > 1. Then noting $\gamma^{\frac{n}{t}} \equiv 1$ and $\Phi_n(x)$ divides $\frac{x^n-1}{x^{\frac{n}{t}}-1} = (x^{\frac{n}{t}})^{t-1} + \cdots + x^{\frac{n}{t}} + 1$, we have

$$t \equiv (\gamma^{\frac{n}{t}})^{t-1} + \dots + \gamma^{\frac{n}{t}} + 1 \equiv 0 \mod P.$$

Thus we have a contradiction P contains the identity 1 by (t, p) = 1.

Theorem 2. If there exists an algebraic integer γ of the degree ≤ 2 satisfying $\Phi_{n+1}(\gamma) \equiv 0$ or $\Phi_{n-1}(\gamma) \equiv 0 \mod n\mathcal{O}_{\gamma}$, then n is prime.

Proof. Assume $\Phi_{n+1}(\gamma) \equiv 0$ and let P be a prime ideal of \mathcal{O}_{γ} containing n. Then $n \in P \cap \mathbf{Z} = p\mathbf{Z}$ and p be a divisor of n. Since $n+1 \notin P$ and $\Phi_{n+1}(\gamma) \equiv 0 \mod P$, we have $n+1 = |\gamma|_P$ by Theorem 1 and hence n+1 is a divisor of $p^2 - 1$. Thus we obtain the next for some k > 0

$$p^2 - 1 = k(n+1) \ge k(p+1)$$
 and $k \equiv -1 \mod p$.

Hence $p \ge k+1 = ps$ for some s > 0 and p = k+1. This shows n = p. Similarly, we can prove from $\Phi_{n-1}(\gamma) \equiv 0$ that n is prime.

It is not so easy to find γ in Theorem 2. The next lemmas shall help us to find γ .

116 K. MOTOSE

Lemma 1. Assume p > 3 is prime. Then we have the following (1) there exists an integer c > 1 such that $\Phi_{p-1}(c) \equiv 0 \mod p$ and $\left(\frac{c}{n}\right) = -1.$

(2) there exists an integer c > 1 such that $(c^3 - c, p) = 1, \left(\frac{c^2 - 1}{p}\right) =$ $-1, \ \gamma = c + \sqrt{c^2 - 1}, \ \Phi_{p+1}(\gamma) \equiv 0 \ and \ \gamma^{\frac{p+1}{2}} \equiv -1 \ \text{mod} \ p\mathcal{O}_{\gamma}.$

Proof. (1): Assume that p is prime and c is a primitive root of p. Then $\prod_{d|p-1} \Phi_d(c) = c^{p-1} - 1 \equiv 0 \mod p$ and so $\Phi_d(c) \equiv 0$ for some d. Thus $c^d \equiv 1$ and p-1 is a divisor of d. Hence d=p-1 and $\left(\frac{c}{p}\right) \equiv c^{\frac{p-1}{2}} \equiv -1$.

(2): Step 1. Existence of c > 1 and $(c^3 - c, p) = 1$. There exists a square free integer m > 1 such that $\left(\frac{m}{p}\right) = -1$. It follows from $\left(\frac{m}{p}\right) = -1$ that $P_m = p\mathcal{O}_{\sqrt{m}}$ is prime and $|\mathcal{O}_{\sqrt{m}}/P_m| = p^2$. Let ω be a generator of the multiplicative group of $\mathcal{O}_{\sqrt{m}}/P_m$ and let $\eta \in \mathcal{O}_{\sqrt{m}}$ such that $\eta \mod P_m = \omega^{p-1}$. Then $p+1 = |\eta|_{P_m}$. Hence $\prod_{d|p+1} \Phi_d(\eta) = 0$ $\eta^{p+1}-1\equiv 0$ and so $\Phi_d(\eta)\equiv 0$ mod P_m for some d. Thus $\eta^d\equiv 1$ and p+1is a divisor of d. Hence d=p+1 and $\Phi_{p+1}(\eta)\equiv 0$. As for $\eta\in\mathcal{O}_{\sqrt{m}}$, $\eta^2 - u\eta + v = 0$ for some $u, v \in \mathbf{Z}$. We can set $u \equiv 2c$ $(c \ge 0)$. Using Frobenius automorphism, we can see $\eta^p(\not\equiv \eta)$ is a root of $x^2 - ux + v \equiv 0$ and so $v \equiv 1 \mod P_m$. If $c^3 \equiv c \mod p$, then we have a contradiction p = 3using the above equations. In particular, c > 1.

Step 2. $\left(\frac{c^2-1}{p}\right) = -1$.

In case $\overline{m \equiv 2, 3 \mod 4}$, setting $\eta = a + b\sqrt{m}$, we have $2a \equiv 2c$ and $a^2 - b^2 m \equiv 1$, and so $c^2 - 1 \equiv b^2 m \mod p$. In case $m \equiv 1 \mod 4$, setting $\eta = a + b \frac{1 + \sqrt{m}}{2}$, we have $2a + b \equiv 2c$ and $a^2 + ab + \frac{1 - m}{4}b^2 \equiv 1$, and so $4(c^2-1) \equiv b^2 m \mod p$. In any case, $\left(\frac{c^2-1}{p}\right) = \left(\frac{m}{p}\right) = -1$.

Step 3. $\Phi_{p+1}(\gamma) \equiv 0$ and $\gamma^{\frac{p+1}{2}} \equiv -1 \mod p\mathcal{O}_{\gamma}$ where $\gamma = c + \sqrt{c^2 - 1}$. First, we note $\Phi_{p+1}(\eta^{-1}) \equiv \Phi_{p+1}(\eta^p) \equiv 0 \mod P_m$ and $P_{\gamma} = p\mathcal{O}_{\gamma}$ is prime by $\left(\frac{c^2-1}{p}\right)=-1$. Let $\mathcal{P}\ni p$ be a prime ideal of the ring of algebraic integers in $Q(\sqrt{m}, \sqrt{c^2-1})$. Then $\eta \equiv \gamma$ or $\eta \equiv 2c - \gamma = \gamma^{-1}$, and so $\Phi_{p+1}(\gamma) \equiv 0$ and $\gamma^{\frac{p+1}{2}} \equiv -1 \mod \mathcal{P}$. It follows from $\mathcal{O}_{\gamma} \cap \mathcal{P} = P_{\gamma}$ that $\Phi_{p+1}(\gamma) \equiv 0 \text{ and } \gamma^{\frac{p+1}{2}} \equiv -1 \text{ mod } P_{\gamma}.$

Lemma 2. Let p be an odd prime and let c > 1 be an integer with $(c^3-c, p)=1$. We set $\gamma=c+\sqrt{d}$ where $d=c^2-1$. Then we have the following

$$(1) \gamma^{p - \left(\frac{d}{p}\right)} \equiv 1 \bmod p \mathcal{O}_{\gamma}.$$

(2)
$$\left(\frac{2c-2}{p}\right) \equiv \gamma^{\frac{p-1}{2}} \text{ if } \gamma^{p-1} \equiv 1 \mod p\mathcal{O}_{\gamma}$$

$$(2) \left(\frac{2c-2}{p}\right) \equiv \gamma^{\frac{p-1}{2}} \text{ if } \gamma^{p-1} \equiv 1 \mod p\mathcal{O}_{\gamma}.$$

$$(3) \left(\frac{2c+2}{p}\right) \equiv \gamma^{\frac{p+1}{2}} \text{ if } \gamma^{p+1} \equiv 1 \mod p\mathcal{O}_{\gamma}.$$

Proof. (1): We have the assertion from the next equation.

$$\gamma^p \equiv c^p + (\sqrt{d})^p \equiv c + d^{\frac{p-1}{2}} \sqrt{d} \equiv c + \left(\frac{d}{p}\right) \sqrt{d} = \gamma^{\left(\frac{d}{p}\right)} \mod p\mathcal{O}_{\gamma}.$$

(2): First we note that $\gamma^2 - 1 \mod p\mathcal{O}_{\gamma}$ is invertible since $4(c^2 - 1) =$ $(\gamma - \gamma^{-1})^2$ is relatively prime to p. The next equation shows our assertion.

$$\begin{pmatrix} \frac{2c-2}{p} \end{pmatrix} \equiv (2c-2)^{\frac{p-1}{2}} = ((\gamma-1)(1-\gamma^{-1}))^{\frac{p-1}{2}} \\
= \gamma^{-\frac{p-1}{2}} (\gamma-1)^{p-1} \equiv \gamma^{\frac{p-1}{2}} (\gamma^p-1)(\gamma-1)^{-1} \\
\equiv \gamma^{\frac{p-1}{2}} (\gamma-1)(\gamma-1)^{-1} = \gamma^{\frac{p-1}{2}} \mod p\mathcal{O}_{\gamma}.$$

(3): This proof is similar to (2). In fact, $\gamma^2 - 1 \mod p\mathcal{O}_{\gamma}$ is invertible as stated in (2) and the next equation shows our assertion.

Remark 1. The next equation shows all assertions in Lemma 2.

$$\left(rac{2c-2\left(rac{d}{p}
ight)}{p}
ight)\equiv \gamma^{rac{p-\left(rac{d}{p}
ight)}{2}} mod p\mathcal{O}_{\gamma}.$$

The next follows from Theorem 2 and Lemmas 1, 2.

Theorem 3. Let p > 3 be an integer. Then we have the following.

- (1) p is prime if and only if there exists an integer c > 1 such that $\left(\frac{c}{p}\right) = -1$ and $\Phi_{p-1}(c) \equiv 0 \mod p$.
- (2) p is prime if and only if there exists an integer c>1 such that $(c^3-c,p)=1, \gamma=c+\sqrt{c^2-1}, \left(\frac{2c+2}{p}\right)=\left(\frac{c^2-1}{p}\right)=-1$ and $\Phi_{p+1}(\gamma)\equiv$ $0 \bmod p\mathcal{O}_{\gamma}$.

Remark 2. Let $n=M_q=2^q-1$ be a Mersenne number where q is an odd prime and let $\gamma=2+\sqrt{3}$ in the above, we set $S_k=\gamma^{2^k}+\gamma^{-2^k}$.

118 K. MOTOSE

Then $\left(\frac{3}{M_q}\right) = -1$, $S_0 = 4$ and $S_{k+1} = S_k^2 - 2$. We have from Theorem 3(2) and Lemma 2 that

 M_q is prime if and only if $S_{q-2} \equiv 0 \mod M_q$.

Remark 3. Let $n = F_m = 2^{2^m} + 1$ $(m \ge 1)$ be a Fermat number. $\left(\frac{3}{F_m}\right) = -1$ follows from $n \equiv 2 \mod 3$. Thus Theorem 3(1) shows that

 F_m is prime if and only if $3^{\frac{F_m-1}{2}} \equiv -1 \mod F_m$.

We set $3s \equiv 1 \mod n$ and $S_i = 3^{2^i} + s^{2^i}$. Then we have $S_0 = 3 + s$ and $S_{i+1} \equiv S_i^2 - 2 \mod n$. Thus

 F_m is prime if and only if $S_{2^m-2} \stackrel{.}{\equiv} 0 \mod F_m$.

Theorem 4. (1) Let $n = 2^{\ell}h + 1$, where $2^{\ell} > h \ge 1$ is odd, and let c > 1 be an integer with (c, n) = 1. We set $cc_0 \equiv 1 \mod n$ and

$$S_0 = c^h + c_0^h, \ S_{j+1} = S_j^2 - 2.$$

If $S_{\ell-2} \equiv 0 \mod n$, then n is prime.

(2) Let $n=2^{\ell}h-1$, where $2^{\ell}>h\geq 1$ is odd, and let c>1 be an integer. We set $\gamma=c+\sqrt{c^2-1}$ and

$$S_0 = \gamma^h + \gamma^{-h}, \ S_{j+1} = S_j^2 - 2.$$

If $S_{\ell-2} \equiv 0 \mod n$, then n is prime.

Proof. (1): Assume that $S_{\ell-2} \equiv 0 \mod n$. Then we have the next for a prime divisor p of n and $b = c^h$,

$$\Phi_{2^{\ell}}(b) = \Phi_2(b^{2^{\ell-1}}) = b^{2^{\ell-1}} + 1 \equiv 0 \bmod p$$

Thus by Theorem 1, we have $2^{\ell} = |b|_p$. Since $b^{p-1} \equiv 1 \mod p$, 2^{ℓ} is a divisor of p-1 and $p \geq 2^{\ell}+1$. The inequality $p^2 \geq (2^{\ell}+1)^2 > 2^{\ell}h+1 = n$ implies n is prime.

(2): Assume that $S_{\ell-2} \equiv 0 \mod n$. Then we have the next for a prime divisor p of n and $\eta = \gamma^h$,

$$\Phi_{2^{\ell}}(\eta) = \Phi_2(\eta^{2^{\ell-1}}) = \eta^{2^{\ell-1}} + 1 \equiv 0 \bmod p\mathcal{O}_{\gamma}.$$

Thus by Theorem 1, we have $2^{\ell} = |\eta|_{p\mathcal{O}_{\gamma}}$. Since η^{p-1} or $\eta^{p+1} \equiv 1 \mod p\mathcal{O}_{\gamma}$ by Lemma 2 (1), 2^{ℓ} is a divisor of $p \pm 1$. If $p = 2^{\ell} - 1$, then $0 \equiv n = 1$

 $h(p+1)-1 \equiv h-1 \mod p$ and so h=1 by $h-1 < 2^{\ell}-1 = p$. Thus $n=2^{\ell}-1=p$. Hence, we may assume $p>2^{\ell}$ and so the inequality $p^2>2^{\ell}h>n$ implies n is prime.

Remark 4. If we want to find primes using Theorem 4, then conditions on c as in Theorem 3 are useful for calculations though the condition $S_{\ell-2} \equiv 0$ contains these.

Example 1. If we set c=23, then we can see from Theorem 4 (1) that numbers $n=15\cdot 2^{\ell}+1$ ($4\leq \ell\leq 1000$) are prime for ℓ (digits) =

4(3), 9(4), 10(5), 27(10), 37(13), 38(13), 48(16), 112(35), 229(71), 339(104), 522(159), 654(199), 900(273).

Example 2. If we set c=25, then we can see from Theorem 4 (2) that numbers $n=15\cdot 2^{\ell}-1$ ($4\leq \ell \leq 1000$) are prime for ℓ (digits) =

4(3), 5(3), 10(5), 14(6), 17(7), 31(11), 41(14), 82(26), 125(39), 172(53), 202(62), 266(82), 293(90), 463(141).

Theorem 5. (1) Assume $n=2^{\ell}3^k+1$ $(k,\ell\geq 1)$ and c>1 is an integer with (c,n)=1 and $\left(\frac{c}{n}\right)=-1$. We set $cc_0\equiv 1 \bmod n$. We consider two sequences

$$R_0 = c + c_0$$
, $R_{i+1} = R_i^3 - 3R_i$ and $S_0 = R_{k-1}$, $S_{i+1} = S_i^2 - 2$.

Under this setting, we obtain that

 $S_{\ell-1} \equiv 1 \mod n$ if and only if n is prime and $S_{\ell-1} \not\equiv -2 \mod n$.

(2) Assume $n=2^{\ell}3^k-1$ $(k,\ell\geq 1)$ and c>1 is an integer with $(c^3-c,\ n)=1$ and $\left(\frac{c^2-1}{n}\right)=\left(\frac{2c+2}{n}\right)=-1$. We set $\gamma=c+\sqrt{c^2-1}$. We consider two sequences

$$R_0 = 2c$$
, $R_{i+1} = R_i^3 - 3R_i$ and $S_0 = R_{k-1}$, $S_{j+1} = S_i^2 - 2$.

Under this setting, we obtain that

 $S_{\ell-1} \equiv 1 \mod n$ if and only if n is prime and $S_{\ell-1} \not\equiv -2 \mod n$.

Proof. (1): we set $b = c^{3^{k-1}}$ and assume that $S_{\ell-1} \equiv 1 \mod n$. Then $S_{\ell-1} \not\equiv -2$ and we have

$$\Phi_{n-1}(c) = \Phi_{3^k \cdot 2^\ell}(c) = \Phi_6(b^{2^{\ell-1}}) = (b^{2^{\ell-1}})^2 - b^{2^{\ell-1}} + 1 \equiv 0 \bmod n.$$

Thus by Theorem 2, we have n is prime.

We shall prove the converse. We obtain $c^{\frac{n-1}{2}} \equiv (\frac{c}{n}) = -1$. Thus we shall prove the converse. We obtain $b^{2} = \binom{n}{n} - 1$. Thus $(b^{2^{\ell-1}})^3 + 1 \equiv c^{\frac{n-1}{2}} + 1 \equiv 0$. It follows from $S_{\ell-1} \not\equiv -2$ that $b^{2^{\ell-1}} + 1 \not\equiv 0$ and so $b^{2^{\ell}} - b^{2^{\ell-1}} + 1 \equiv 0$ which means $S_{\ell-1} \equiv 1 \mod n$.

(2): We set $\eta = \gamma^{3^{k-1}}$ and assume that $S_{\ell-1} \equiv 1 \mod n$. Then $S_{\ell-1} \not\equiv 1 \mod n$.

-2 and we have

$$\Phi_{n+1}(\gamma) = \Phi_{3^{k} \cdot 2^{\ell}}(\gamma) = \Phi_{6}(\eta^{2^{\ell-1}}) = (\eta^{2^{\ell-1}})^{2} - \eta^{2^{\ell-1}} + 1 \equiv 0 \bmod n.$$

Thus by Theorem 2, we have n is prime.

We shall prove the converse. We obtain $\gamma^{\frac{n+1}{2}} \equiv -1$ from the conditions and Lemma 2. Thus $(\eta^{2^{\ell-1}})^3 + 1 \equiv \gamma^{\frac{n+1}{2}} + 1 \equiv 0$. It follows from $S_{\ell-1} \not\equiv -2$ that $\eta^{2^{\ell-1}} + 1 \not\equiv 0$ and so $\eta^{2^{\ell}} - \eta^{2^{\ell-1}} + 1 \equiv 0$ which means $S_{\ell-1} \equiv 1 \mod n$

Example 3. If we set c = 13, then we can see from Theorem 5 (1) that numbers $n = 2^6 3^{\ell} + 1$ ($4 \le \ell \le 1000$) are prime for ℓ (digits) =

7(6), 11(8), 13(9), 31(17), 41(22), 61(31), 121(60), 127(63), 157(77), 167(82), 181(89), 203(99), 229(112), 415(200), 427(206), 463(223), 503(242), 559(269).

Example 4. If we set c = 72, then we can see from Theorem 5 (2) that numbers $n = 2^{12}3^{\ell} - 1$ (8 $\leq \ell \leq 1000$) are prime for ℓ (digits) = 19(13), 23(15), 25(16), 67(36), 773(373).

We would like to state that computations in Examples $1 \sim 4$ were executed in virtue of a personal computer NEC PC9821 Xa and a program that was written in Ubasic developed by Y. Kida.

In the remainder of this paper, we should give the complete proof of [3, Theorems 7.2, and 7.3] because these proof was not complete about conditions for Legendre symbols by reason of my negligence.

Let u, v be nonzero integers, let α, β be distinct roots of the quadratic equation $x^2 - ux + v = 0$ and $d = u^2 - 4v$. Then $u = \alpha + \beta, v = \alpha\beta$, and $d=(\alpha-\beta)^2$. We set $V_n=\alpha^n+\beta^n$.

Theorem 6. We set $M_q = 2^q - 1$ and $F_m = 2^{2^m} + 1$ where q is an odd prime and $m \geq 1$.

(1) If $(vd, M_q) = 1$ and $V_{\frac{M_q+1}{2}} \equiv 0 \mod M_q$, then M_q is prime, $\left(\frac{d}{M_q}\right) =$ -1 and $\left(\frac{v}{M_{-}}\right)=-1$.

(2) If
$$(vd, F_m) = 1$$
 and $V_{\frac{F_m-1}{2}} \equiv 0 \mod F_m$, then F_m is prime, $\left(\frac{d}{F_m}\right) = 1$ and $\left(\frac{v}{F_m}\right) = -1$.

Proof. (1): We set $n=M_q$ and P is a prime ideal of \mathcal{O}_{α} containing n. It follows from (vd,n)=1 that $\alpha,\beta,\alpha-\beta \mod n\mathcal{O}_{\alpha}$ are invertible. We set $\gamma\equiv\alpha\beta^{-1}\mod n\mathcal{O}_{\alpha}$. Then we have

$$\Phi_{n+1}(\gamma) \equiv \beta^{-\frac{n+1}{2}} V_{\frac{n+1}{2}} \equiv 0 \bmod n \mathcal{O}_{\alpha}$$

Thus we have p = n is prime from Theorem 2.

We note $|\gamma|_P = p+1$ by Theorem 1 and $\gamma^{p+1} \equiv 1 \mod P$. Using Frobenius automorphism of the finite field \mathcal{O}_{α}/P , we can see both $\{\alpha, \beta\}$ and $\{\alpha^p, \beta^p\}$ are sets of roots of $x^2 - ux + v \equiv 0 \mod P$. Assume that $\alpha \equiv \alpha^p \mod P$. Then we have $\beta \equiv \beta^p \mod P$ and so

$$\gamma^2 \equiv \alpha \beta^{-1} \gamma \equiv \alpha^p \beta^{-p} \gamma \equiv \gamma^{p+1} \equiv 1 \mod P.$$

This contradicts to $|\gamma|_P = p + 1 > 2$. Hence we have $\alpha^p \equiv \beta$ and $\beta^p \equiv \alpha \mod P$. Thus we obtain the next

$$\left(\frac{d}{p}\right) \equiv d^{\frac{p-1}{2}} \equiv (\alpha - \beta)^{p-1} \equiv (\alpha^p - \beta^p)(\alpha - \beta)^{-1} \equiv -1 \bmod P.$$

It follows from $\beta^{p+1} \equiv v$ and $\alpha^{\frac{p+1}{2}} \equiv -\beta^{\frac{p+1}{2}} \mod P$ that

$$\left(\frac{v}{p}\right) \equiv v^{\frac{p-1}{2}} \equiv v^{\frac{p+1}{2}}v^{-1} \equiv -\beta^{p+1}v^{-1} = -1 \bmod P.$$

(2) follows from the same method as in the proof of (1).

REFERENCES

- [1] L. E. DICKSON: History of the theory of numbers, vol.1, Chelsea, 1971.
- [2] K. MOTOSE: Values of cyclotomic polynomials, Math. J. Okayama Univ. 35 (1993), 35-40.
- [3] K. Motose: Values of cyclotomic polynomials. II, Math. J. Okayama Univ. 37 (1995), 27-36.

DEPARTMENT OF MATHEMATICAL SYSTEM SCIENCE
FACULTY OF SCIENCE AND TECHNOLOGY
HIROSAKI UNIVERSITY
HIROSAKI 036 JAPAN
E-mail: skm@cc.hirosaki-u.ac.jp

(Recived March 24, 1997)