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ON VALUES OF CYCLOTOMIC POLYNOMIALS. III
Kaoru MOTOSE

In this paper, we shall consider relations between Lucas’ test (or Pépin’s
test) and values of cyclotomic polynomials &, (z).

For Pépin’s test, the next well known result shows this relations
(see [1, p.378] and [2, Corollary 4(3)] ).

Assume n 18 an odd integer. Then n is prime if and only if there ezists
an integer ¢ > 1 such that ®,_1(c) = 0 mod n.

In this note, for an algebraic integer v, O, will represents the ring of
all algebraic integers in Q(v).

The next is essential for our purpose.

Theorem 1. Let P be a proper ideal in a ring R with the identity
1 # 0. If P contains p and ®,(7) for a prime integer p and v € R, then
n = p¢|y|p where |y|p is the order of ¥ mod P.

Proof. It follows from the condition that ¥* = 1 mod P and so |y|p is
a divisor of n. Thus we can set n = tp®|y|p with (¢,p) = 1. Assume ¢ > 1.
Then noting 4% =1 and ®,(z) divides ;%;_Tll =(zt) 1+ 2t +1, we
have

t=(yH) 4+ 49t +1=0 mod P.
Thus we have a contradiction P contains the identity 1 by (¢,p) = 1.

Theorem 2. If there ezists an algebraic integer vy of the degree < 2
satisfying ®n41(7) =0 or &,_1(y) = 0 mod nO,, then n is prime.

Proof. Assume ®,41(7y) = 0 and let P be a prime ideal of O, containing
n. Thenn € PNZ = pZ and p be a divisor of n. Since n+1 ¢ P and
®,41(y) = 0mod P, we have n + 1 = |y|p by Theorem 1 and hence n + 1
is a divisor of p? — 1. Thus we obtain the next for some & > 0

pP—1=k(n+1)>k(p+1) and k = —1 mod p.

Hence p > k + 1 = ps for some s > 0 and p = k + 1. This shows n = p.
Similarly, we can prove from ®,_1(y) = 0 that n is prime.

It is not so easy to find 7y in Theorem 2. The next lemmas shall help
us to find 7.
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Lemma 1. Assume p > 3 is prime. Then we have the following
(1) there ezists an integer ¢ > 1 such that ®,_1(c) = 0 mod p and

€)= —
p—l.

(2) there exists an integer ¢ > 1 such that (3 — ¢, p) = 1, (%) =
-1, y=c+vVc? -1, $pri(y) =0 and ,},% = -1 mod pO,.

Proof. (1): Assume that p is prime and ¢ is a primitive root of p.
Then Hd|p—1 ®4(c) = "1 -1 = 0mod p and so ®4(c) = 0 for some d. Thus

c¢®=1and p—1is a divisor of d. Hence d = p — 1 and (}9)) =7 = 1.
(2): Step 1. Existence of ¢ > 1 and (¢ — ¢,p) = 1.
There exists a square free integer m > 1 such that (%—) = —1. It follows

m

from (;) = —1 that P, = pO s is prime and |O /Pn| = p?. Let w
be a generator of the multiplicative group of O s /Pm and let n € O &
such that n mod P, = wP~1, Then p + 1 = |5|p,. Hence [ups1 @aln) =
7Pt — 1 =0 and so ®4(5) = 0 mod P, for some d. Thus 7 =1 and p+1
is a divisor of d. Hence d = p + 1 and ®p41(n) = 0. As for n € O s,
7 —un +v = 0 for some u,v € Z. We can set u = 2¢ (¢ > 0). Using
Frobenius automorphism, we can see nP(Z n) is a root of 22 —uz + v =0
and so v = 1 mod Py,. If ¢ = ¢ mod p, then we have a contradiction p = 3
using the above equations. In particular, ¢ > 1.

Step 2. (Czp_l) = —1.

In case m = 2,3 mod 4, setting n = a + by/m, we have 2a = 2¢ and
a®? —b*m =1, and so ¢ — 1 = b*m mod p. In case m = 1 mod 4, setting
n = a+blﬁ2@, we have 2a + b = 2c and @® + ab + 5% = 1, and so

4(c® — 1) = b>m mod p. In any case, (Czp‘l) = (%) =-1

Step3. ®p41(v) =0 and 7;,;_1 = —1 mod pOy where y =c+ vc? — 1.
First, we note ®,+1(n71) = ®p11(7?) = 0 mod P, and Py = pO, is

prime by (c _1) = —1. Let P 5 p be a prime ideal of the ring of algebraic
integers in Q(y/m, \/ —1). Thenn = yorn = 2c—v = v}, and so
®,11(y) = 0 and 'y B = —1mod P. It follows from OyNP = P, that

®py1(y) =0and y B = —1mod P,

Lemma 2. Let p be an odd prime and let ¢ > 1 be an integer with
(3 —c, p)=1 Wesety=c+ Vd where d = ¢ — 1. Then we have the
following
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M’(

¢
P) = 1 mod pO,.
Cp2)5'~/2 if ¥7~1 = 1 mod p0O,.
(3) (i}g) = ~"F if v#*! = 1 mod pOs.
Proof. (1): We have the assertion from the next equation.

P =P+ (Vd)P =c+dTViz=c+ (%)\/E:fy(%) mod pO,.

(2): First we note that ¥2 — 1 mod pO, is invertible since 4(c? — 1) =
(v — v~ 1)? is relatively prime to p. The next equation shows our assertion.

(252) = 2e-2)%" = (v- D -7

-1
=y (y - 1P =4 (a7 —1)(7—1) !
-1
=T (y-D(r=-1)" =" mod pO,.

(3): This proof is similar to (2). In fact, ¥ — 1 mod pO, is invertible as
stated in (2) and the next equation shows our assertion.

(2£2) = (2c4+2)F = (r+ DA+

=y (1P =T (P )y + 1)
-1 _ _p-1 _
=y T (T )+ )=y

= 791;_1 mod p0O,.

Remark 1. The next equation shows all assertions in Lemma 2.
2e—2(d —(£)
(CT(’)) =7 7 mod rO,.

The next follows from Theorem 2 and Lemmas 1, 2.

Theorem 3. Let p > 3 be an integer. Then we have the following.

(1) p is prime if and only if there exists an integer ¢ > 1 such that
(f)) = —1 and ®,_1(c) = 0 mod p.
(2) p is prime if and only if there exists an integer ¢ > 1 such that

(B —cp)=1,vy=c+ V-1, (26+2> = (627"1) = —1 and @p41(y) =
0 mod pO,.

Remark 2. Let n = M; = 27 — 1 be a Mersenne number where q is
an odd prime and let v = 2 + /3 in the above, we set S} = 72k + 7‘2k.
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Then (It%,) = —1,50 = 4 and Sk4+1 = SZ — 2. We have from Theorem 3(2)
and Lemma 2 that

M, is prime if and only if S;_3 = 0 mod M,,.

Remark 3. Let n = F,, = 22" +1 (m > 1) be a Fermat number.
(%) = —1 follows from n = 2 mod 3. Thus Theorem 3(1) shows that

F,, is prime if and only if 3% = —1 mod .
We set 3s = 1mod n and S; = 32" 4+ s?'. Then we have So = 3+ s and
Sit1 = S? — 2 mod n. Thus

F,, is prime if and only if Som_o = 0 mod F,.

Theorem 4. (1) Let n = 2°h + 1, where 2¢ > h > 1 is odd, a.nd let
c > 1 be an integer with (c, n) = 1. We set ccg = 1 mod n and

S():C +CO, Sj+1=Sj - 2.

If S¢_9 = 0 mod n, then n is prime.
(2) Let n = 2th — 1, where 28 > h > 1 is odd, and let ¢ > 1 be an
integer. We set y=c++vc2 -1 and

So=v"+v7" Sj1 =57 -2
If Sg_o =0 mod n, then n is prime.

Proof. (1): Assume that Sz_o = 0 mod n. Then we have the next for
a prime divisor p of n and b = c?,

By (b) = o (b

Y= +1=0modp
Thus by Theorem 1, we have 2¢ = |b]p. Since 5~! = 1 mod p, 2¢ is a divisor
ofp—1landp > 2£+ 1. The inequality p? > (2¢4+1)%2 > 2¢h+1 = n implies
n is prime.

(2): Assume that S;_ = 0 mod n. Then we have the next for a prime
divisor p of n and n = ¥*,

Dge(n) = P2(n

Thus by Theorem 1, we have 2¢ = [nlpo, - Since n?~! or pP*! =1 mod pO,
by Lemma 2 (1), 2¢ is a divisor of p£ 1. If p = 2 — 1, then 0 = n =

2[1

)=n*" +150modp(97.
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hip+1)—1=h—-1modpandsoh=1byh-1< 2t — 1 = p. Thus
n = 2¢ — 1 = p. Hence, we may assume p > 2¢ and so the inequality
p? > 2¢h > n implies n is prime.

Remark 4. If we want to find primes using Theorem 4, then conditions
on ¢ as in Theorem 3 are useful for calculations though the condition S;_» =
0 contains these.

Example 1. If we set ¢ = 23, then we can see from Theorem 4 (1)
that numbers n = 15-2¢ + 1 (4 < £ < 1000) are prime for ¢ (digits) =

4(3),9(4), 10(5), 27(10), 37(13), 38(13), 48(16), 112(35), 229(71), 339(104),
522(159), 654(199), 900(273).

Example 2. If we set ¢ = 25, then we can see from Theorem 4 (2)
that numbers n =15-26 —1 (4 < ¢ < 1000) are prime for ¢ (digits) =

4(3),5(3), 10(5), 14(6), 17(7), 31(11), 41(14), 82(26), 125(39), 172(53),
202(62), 266(82), 293(90), 463(141).

Theorem 5. (1) Assumen = 23% +1 (k,£ > 1) and c > 1 is an
integer with (c, n) =1 and (£) = —1. We set cco = 1 mod n. We consider
two sequences

Ry =c+co, Riy1 =R} —3R; and Sy = Rg_y, Sj11 =57 — 2.
Under this setting, we obtain that
S¢—1 = 1 mod n if and only if n is prime and Sp_; Z —2 mod n.

(2) Assume n = 2f3% — 1 (k,€ > 1) and ¢ > 1 is an integer with
(G ~¢, n)=1and (czn—"l) = (&2) = —1. Wesety=c++VcZ—1. We
consider two sequences

Ry =2c, Riy1 =R} —3R; and So = Ry_1, Sjy1 = SJ? —9,
Under this setting, we obtain that

S¢—1 = 1 mod n if and only if n is prime and S;_; # —2 mod n.

Proof. (1): we set b= ¢3*”" and assume that S¢_; = 1 mod n. Then
Se_1 # —2 and we have

By 1(c) = Dargec) = Be(b2 ) = (0¥ )2 = 527 +1 = 0 mod n.
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Thus by Theorem 2, we have n is prime.

We shall prove the converse. We obtain T = (%) = —1. Thus
b* 'Y +1=c"T +1=0. It follows from Sp_; # —2 that 62" +1% 0
and s0 b* — b2 + 1 = 0 which means S;_; = 1 mod n.

(2): We set n ="' and assume that S,_; = 1 mod n. Then Se_1 #
—2 and we have

Bns1(7) = Barge(v) = Bs(n® ) = (1* ) - n* +1= 0 mod .
Thus by Theorem 2, we have n is prime.

We shall prove the converse. We ohtain 72;21-_1_ = —1 from the conditions
and Lemma 2. Thus (1721_1)3 +l=4"7 +1= 0. It follows from S;_; # -2
that 2" +1 % 0 and so 72° — n?*" + 1 = 0 which means S;_; = 1 mod n

Example 3. If we set ¢ = 13, then we can see from Theorem 5 (1)
that numbers n = 263¢ + 1 (4 < £ < 1000) are prime for ¢ (digits) =

7(6),11(8), 13(9), 31(17), 41(22), 61(31), 121(60), 127(63), 157(77), 167(82),
181(89), 203(99), 229(112), 415(200), 427(206), 463(223), 503(242), 559(269).

Example 4. If we set ¢ = 72, then we can see from Theorem 5 (2)
that numbers n = 2123¢ — 1 (8 < ¢ < 1000) are prime for ¢ (digits) =

19(13), 23(15), 25(16), 67(36), 773(373).

We would like to state that computations in Examples 1 ~ 4 were executed
in virtue of a personal computer NEC PC9821 Xa and a program that was
written in Ubasic developed by Y. Kida.

In the remainder of this paper, we should give the complete proof of
[3, Theorems 7.2, and 7.3] because these proof was not complete about
conditions for Legendre symbols by reason of my negligence.

Let u, v be nonzero integers, let a, 3 be distinct roots of the quadratic
equation 22 —uzr 4+ v =0and d = 4?2 — 4v. Then u = a + §8,v = af, and
d= (o — B)% We set V,, = o™ 4 5™

Theorem 6. We set M, = 29 — 1 and F,, = 2°" + 1 where q is an
odd prime and m > 1.
(1) If (vd, My) = 1 and Viagn =0 mod Mo, then My is prime, (Miq) =

-1 and (A—%) = -1.
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(2) If (vd, Fp) = 1 and Vey—1 = 0 mod Fpy,, then Fp, is prime,
2

(%) =1 and (%) =-1.

Proof. (1): We set n = M, and P is a prime ideal of O, containing n.
It follows from (vd,n) =1 that o, 8,« — 8 mod nO, are invertible. We set
v = B! mod nO,. Then we have

Prt1(y) = ﬂ—ﬁ?iVn%l = 0 mod nO,

Thus we have p = n is prime from Theorem 2.

We note |y|p = p + 1 by Theorem 1 and v?*! = 1 mod P. Using
Frobenius automorphism of the finite field O, /P, we can see both {a, 5}
and {aP, 3P} are sets of roots of z2 — uz + v = 0 mod P. Assume that
o = o mod P. Then we have 3 = 3 mod P and so

v =af ty=aPBPy=+P" =1 mod P.

This contradicts to |y|p = p+ 1 > 2. Hence we have o? = 8 and 37 =
a mod P. Thus we obtain the next

(f-i) =d* =(a-B)P ' =(e? - f)(a—B)"! = —1 mod P.

P
It follows from 8P*! = v and ot = —5% mod P that
(%) =57 =yl = —pP*tly~l = —1 mod P.

(2) follows from the same method as in the proof of (1).

REFERENCES

[1] L.E. DicksoN: History of the theory of numbers, vol.1, Chelsea, 1971.

[2] K. MoTose: Values of cyclotomic polynomials, Math. J. Okayama Univ. 35
(1993), 35-40.

[3] K. MoTosE: Values of cyclotomic polynomials. II, Math. J. Okayama Univ. 37
(1995), 27-36.



122 K. MOTOSE

DEPARTMENT OF MATHEMATICAL SYSTEM SCIENCE
FAcuLTY OF SCIENCE AND TECHNOLOGY
HIROSAKI UNIVERSITY
HIROSAKI 036 JAPAN
E-mail: skm@cc.hirosaki-u.ac.jp

(Recived March 24, 1997)



