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A REMARK ON TORSION-FREE SUBGROUPS
IN GROUP RINGS

TOru FURUKAWA

Introduction. Let RG be the group ring of a group G over a com-
mutative ring R with identity. For any normal subgroup N of G we write
ARg(G, N) for the kernel of the natural map RG — R(G/N). Also, for any
ideal I of RG, we put U(1 +I) = {u € U(RG) | u — 1 € I}, where U(RG)
is the unit group of RG. Note that U(1 + I) forms a normal subgroup of
U(RG).

We shall denote by TN the set of torsion elements in a group N. The
aim of this note is to prove the following theorem which generalizes (2,
Theorem B]. The theorem bellow was proved in [2] under the condition
that N is periodic or finitely generated.

Theorem. Let R be an integral domain of characteristic 0 in which
no rational prime is invertible. Let N be a nilpotent normal subgroup of
a group G and let A be an abelian normal subgroup of G with N D A.
Assume that N/TN is finitely generated. Then U(1+ Agr(G,N)Agr(G, A))
is torsion-free.

In what follows, unless otherwise stated, R denotes a commutative ring
with identity. Also, for simplicity of notation, we omit the subscript R from
ARg(G, N), which will be denoted by A(G, N).

1. Preliminaries. For the proof of our theorem we shall establish
some lemmas concerning augmentation ideals. Let IV be any group and
let A(XN) denote the augmentation ideal of RN. Let L be a subgroup of
N, and T a right transversal for L in N with T 3 1. Then each element
g of N can be written uniquely in the form ¢ = tz, t € T, z € L and
so, setting #(g) = x, we have an R-linear map # : RN — RL. It is easy
to see that € is a right RL-homomorphism and that 8(A(N)) = A(L).
We write 8§ = (N, L,T). Recall that the projection map 7 : RN — RL,

which is defined by m(}°,cy a(9)g) = 3 er a(g)g, is also a right RL-
homomorphism.

Lemma 1.1. Let C be a normal subgroup of N and &/ a nonempty
set of normal subgroups of N which contain C. Suppose that Ly N Ly € &
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whenever Ly, Ly € /. Then
Nrew (AN, L)A(N,C)) = AN, Npexy L)A(N, C).

Proof. We have only to verify that the left-hand side is contained in the
right-hand side. Let @ € (¢, (A(N,L)A(N,C)) and set M = (¢ L.
Then, choosing a transversal T for M in N, a can be written uniquely in
the form a = 3"} tia;, o; € RM, t; € T. By the property of o, we may
take some L € & such that {t;'t;|1 <i <n} N L = {1}. Then, under the
projection map 7 : RN — RL,

a1 = m(t; ) € T(A(N, L)A(N, C)) = A(L)A(L, C).
Let S be a transversal for M in L with § 3 1, and consider the map 6 =
6(L,M,S) : RL —- RM. Then we have a; = 6{a;) € 8(A(L)A(L,C)) =
A(M)A(M,C). Similarly, we see that all a;'s are in A(M)A(M, C) so that
a € A(N,M)A(N,C). This completes the proof.

Lemma 1.2. Let L O A be normal subgroups of N and let B be
a nonempty set of normal subgroups of A. Suppose that (\pcg(A(A)? +
A(A, B)) = A(A)2. Then

Npea(A(N,L)A(N,A) + RNA(B)) = A(N, L)A(N, A).

Proof. We have only to show that the left-hand side is contained in
the right-hand side. Take o € e z(A(N,L)A(N,A)+RNA(B)) and let
T be a transversal for L in N. Then a can be written uniquely as a finite
sum of the form o = ), .rto; with o; € RL. Similarly, let us fix t € T
and write a; = ) g 808, Bs € RA where S (3 1) is a transversal for A in
L. Then , under the projection map 7 : RN — RL,

a; = n(t la) € T(A(N,L)A(N, A) + RNA(B)) = A(L)A(L, A) + RLA(B)
for any B € . Therefore, considering 8 = 6(L, A, S) : RL — RA,
Y ses Bs = 0(oy) € 0(A(L)A(L, A) + RLA(B)) = A(A)* + A(A,B)

for all B € %, and hence }  .¢8; € A(A)> by hypothesis. Since o; €
A(L,A), Bs € A(A) for all s € S. Thus a; € A(L)A(A) because oy =
Y ses(8—1)Bs+ ,cs Bs- Thisis trueforanyt € T',s0 a € A(N, L)A(N, A)
and the lemma is proved.

Lemma 1.3. Let A be a nontrivial elementary abelian p-group for



A REMARK ON TORSION-FREE SUBGROUPS IN GROUP RINGS 111

some prime p and let 9B be the set of all mazimal subgroups of A. Then

Npeca(A(A)> + A(A, B)) = A(A4)>

Proof. We need only to prove the following:

*) Naes(A(A? + A4, B)) C A(4)*.

To do this, we first assume that A is finite and let |4| = p". We proceed
by induction on n, the case n = 1 being trivial. Let n > 2 and assume that
(*) holds for n — 1. Take a € (\gca(A(A)> + A(A,B)) and let B € #
so that |B| = p"~!. Then clearly there is a subgroup C of A such that
A = B x C. Consider here the map 6 = §(A4, B,C) : RA — RB. Then, for
any maximal subgroup M of B, MC € & so a € A(A)* + A(A, MC), and
hence 0(a) € A(B)? + A(B, M) because 6 is a ring homomorphism with
Ker 8 = A(A,C). Therefore (a) € A(B)? by induction hypothesis. On
the other hand, since a € A(A)?+ A(A, B) = A(A)?>+ A(B), we can write
a=v+08,v€ A(A)?, B € A(B), and so 6(a) = 6(vy) + 8. Thus we obtain
B € A(B)? so that a € A(A)? and hence (*) follows here.

Next, assume that A is infinite. Let o = ) ., o(z)z be a nonzero
element in (g g(A(A)* + A(A,B)) and let Ay be the subgroup of A
generated by {z € A | a(z) # 0}. Then, A = Ay x C for some subgroup
C of A. Taking here the map 6 = §(A, Ay, C) : RA — RAy, by the same
argument as above, we see that 8(a) € A(A,)?*+A(A,, M) for any maximal
subgroup M of Ay. Therefore, since Ag is finite, the previous case ensures
that 0(c) € A(Ay)%. Thus a = 6(a) € A(A)? and (*) is established.

Remark. The above result is trivial in case R = Z, the ring of rational
integers. For, in this case, it is known that the map f: A - A(A)/A(A)?
defined by f(a) = a — 1 + A(A)? is an isomorphism of abelian groups.
Moreover, for any subgroup C of A, f(C) = (A(A)? + A(C))/A(A)? =
(A(A)? + A(A,C))/A(A)?. Therefore, { A(A)?> + A(A,B)|B € &} is
the set of all maximal subgroups of A(A) which contain A(A)?. Since
the Frattini subgroup of A(A4)/A(A)? is 0, it follows that (e g(A(A)? +
A(A,B)) = A(A).

Lemma 1.4. Let N be a nilpotent group such that N/TN is finitely
generated and let C be a normal subgroup of N. If C is a p-group of bounded
exponent for some prime p, then
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Proof. Since N/TN is a finitely generated torsion-free nilpotent group,
it is residually ‘a finite p-group’ (see [3,Theorem 2.1]). Therefore, denoting
by & the set of all normal subgroups L of N such that L O TN and N/L
is a finite p-group, we have (., L = T'N. So it follows from Lemma 1.1
that

Niew (AN, L)A(N,C)) = A(N,TN)A(N,C).

Now, the additive group A(C)/A(C)? is a p-group of bounded exponent,
because R@(C/C') ~ A(C)/A(C)? (see e.g. [4, p.23]). Thus p'!A(C) C
A(C)? for some integer | > 0. Set I = (o2, (A(N)*A(N,C)). Let L € &
and consider the natural map f : RN — S(N/L) where S = R/p'R. Then,
since the augmentation ideal of S(N/L) is nilpotent, f(A(N)*) = 0 for
some integer n > 0. This implies that A(N)» C A(N,L) + p'RN and
hence

I C A(N,L)A(N,C) +p'A(N,C).

Furthermore, since p!A(N,C) C A(N,C)?>, we obtain I C
A(N,L)A(N,C). This holds for any L € & andso I C A(N,TN)A(N,C)
as asserted.

Remark. The above result does not hold in general without the condi-
tion that N/TN is finitely generated. For example, take the direct product
N = Q/ZxQ, where Q is the field of rational numbers. Then N is a divisi-
ble abelian group such that N/TN is not finitely generated. Let C =< ¢ >
be a cyclic subgroup of prime order p in N and consider the case when
R = Z. Then, for any g € N there exists z € IV such that g = zP, and thus
g—1=(z-1)? mod pZN. So it follows that A(N) C A(N)? + pA(N),
and hence A(N)A(N,C) C A(N)2A(N,C), since pA(C) C A(C)?. Con-
sequently, A(N)A(N,C) = A(N)*A(N,C) for all n > 1. Therefore, con-
sidering an element o = (z — 1)(c — 1) with z € N\ TN, it is sure that
a € oz (A(N)"A(N,C)). However o ¢ A(N,TN)A(N,C). For, if
a € A(N,TN)A(N,C), then a = B(c— 1) for some 8 € A(N,TN), and so
we can write x — 1 — 8 =vé, v € RN, where ¢ =1+ c+---+cP~L. Then
under the natural map — :ZN — Z(N/TN), we have £ — 1 = p¥ and
hence Z =1 i.e. z € TN, contrary to our choice of z.

Lemma 1.5. Let N be a nilpotent group such that N/TN is finitely
generated and let A be o central subgroup of N. Suppose that A is an ele-
mentary abelian p-group for some prime p and that p is not a zero divisor
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in R. Then, for an additive subgroup I of RN,
I C A(N)A(N,A), pICI?P = I CA(N,TN)A(N,A).

Proof. The case A = {1} being trivial, so let A # {1}. In case |A| = p,
we have A(N,A)? = pA(N, A) (see e.g. [1, Lemma 3.4]). Therefore, if
I C A(N)"A(N, A) then

pI C I? C A(N)"PA(N, A)P = pA(N)"PA(N, A)

and so I C A(N)"PA(N, A), since p is not a zero divisor in R. Thus
I C A(N)"A(N,A) for all n > 1 and hence by Lemma 1.4, I C
A(N,TN)A(N, A).

For the general case, let & be the set of all maximal subgroups of A and
take B € 2. Then, under the natural map — : RN — R(N/B), || =p
and so the previous case shows that I C A(N,TN)A(N, A) + A(N, B).
Thus

I - nBGQ(A(IVa TIV)A(N7 A) + A(N7 B))

On the other hand, Lemma 13 and Lemma 1.2 ensure that
Npeza(AN,TN)A(N, A)+A(N, B)) = A(N,TN)A(N, A) and hence the
lemma is proved.

2. Proof of Theorem. We see that for any normal subgroup L of
Gconsider G=G/L, and then N/TN is finitely generated. Therefore, as in
the proof of [2, Theorem B|, we may harmlessly assume that A is central
inN.

Now, let u € TU(1 + A(G,N)A(G, A)). Then, to show that u = 1
we may assume that u? = 1 for some prime p. Let T,(A) be the set of
p-elements in A and consider the natural map ~— : RG — R(G/Tp(A)).
Then, since T,(4) = {1}, we know from [2, Lemma 2.3] that T,(U(1 +
A(G,A))) = {1}. Thus u =1 and so it follows from [2, Lemma 1.3] that

u—1¢€ A(G,N)A(G, A)NA(G, T,(4)) = A(G, N)A(G,Tp(A)).
Therefore u — 1 can be written in the form
u—1=3%", Mgi(zi = 1)(a; = 1) (M €R, gi €G,z; €N,a; € TH(A)).

Set B = {a),+-- ,a,) so that u — 1 € A(G, N)A(G, B®), where B is the
normal closure of B in G. Note here that BY is of bounded exponent(see
[2, Lemma 2.1]). We may therefore assume that A is a p-group of bounded
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exponent and hence that AP" = {1} for some n > 0. We proceed by
induction on n. The case n = 0 is trivial, so let n > 1 and put C = AP

Then, under the natural map ~— : RG — R(G/C) we have =
{1} and hence @ = 1 by induction. Thus u — 1 € A(G,N)A(G,C) and
consequently we may assmue that A is an elementary abelian p-group.

Set I = RG(u — 1)RG and let 7 : RG — RN be the projection map.
Then, since pI C I?, we obtain pr(I) C n(I)?. Furthermore, n(I) C
A(N)A(N, A) and so, by virtue of Lemma 1.5, #(I) C A(N,TN)A(N, A).
Thus I C RGw(I) C A(G,TN)A(G, A) and hence we see that u € U(1 +
A(G,TN)A(G, A)). So we conclude from [2, Theorem B] that u = 1, which
completes the proof of the theorem.
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