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ANTI-INTEGRAL ELEMENTS AND COEFFICIENTS
OF THEIR MINIMAL POLYNOMIALS

SusuMU ODA and KEn-icHI YOSHIDA

Let R be a Noetherian domain and R[X] a polynomial ring. Let o be
a non-zero element of an algebraic field extension L of the quotient field
K of R and let 7 : R[X] — R[a] be the R-algebra homomorphism sending
X to a. Let ¢o(X) be the monic minimal polynomial of o over K with
deg o (X) = d and write

Pa(X) =X+ mXT 4ty

Then 7; (1 < i < d) are uniquely determined by a. Let I, := R :g n;
and Ijq) := ﬂ?zl I;, the latter of which is called a generalized denominator
ideal of a. We say that « is an anti-integral element over R if Kerm =
Iigpa(X)R[X]. For f(X) € R[X], let C(f(X)) denote the ideal of R gen-
erated by the coefficients of f(X). For an ideal J of R[X], let C(J) denote
the ideal generated by the coefficients of the elements in J. If a is an anti-
integral element, then C(Ker ) = C(Ijq)pa(X)R[X]) = I[o)(1, 71, s 7a).
Put Jio) = I[gj(L, M1, .. ,na). Let Jpg) := Io)(Lim,. .. yna-1)- I Jiq) € p
for all p € Dp,(R) := {p € Spec(R) | depth R, = 1}, then a is called
a super-primitive element over R. It is known that a super-primitive ele-
ment is an anti-integral element (cf.[7,(1.12)]). It is known that any alge-
braic element over a Krull domain R is anti-integral over R (cf.[7,(1.13)]).
When « is a non-zero element in K, ¢o(X) = X — a. So we have
Jo) = I[a](l,a) =I1,(1,0) =Ia+aly, =14+ I,-1, where I, := R:gp c, a
denominator ideal of o € K.

In this paper, we use the following notation unless otherwise specified:

Let R be a Noetherian domain with quotient field K. Let L be an
algebraic field extension of K and let a be a non-zero element in L which
is of degree d over K. Let po(X) := X%+ X9 1 4+ ... 4 4 denote the
minimal polynomial of o over K (that is, 7; € K). Put A := R[a] and
B := R[n,... ,n4).

Our general reference for unexplained technical terms is [4].

§1. Ring-Extensions Generated by the Coefficients of a
Polynomial.
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The objective of this section is to investigate some relations between
the ring-extensions A/R and B/R.

Lemma 1.1 (cf.[7,(3.4)], [1,Proposition 6]). Assume that a is anti-
integral over R. Then
(1) A is flat over R if and only if Joy=R;
(2) A is faithfully flat over R if and only if j[a] = R.

Lemma 1.2. Assume that o is anti-integral over R. If IigA = A,
then A is flat over R.

Proof. Since j[a] 2 Ij,), the equality Ij;jA = A induces .j[a]A = A.
Hence A is flat over R by (1,Theorem 15).

Proposition 1.3. Assume that o is anti-integral over R. If IgA= A4,
then R — B is an open immersion.

Proof. Since IlgA = A, A is flat over R by Lemma 1.2. So we have
Ja] = Tjo(1,m;.-.,nq)R = R by Lemma 1.1. Take p € Spec(R). If
i) € p, then n; € Ry, for all . Thus B, = R,. Assume that Iy C p.
Then Ij)(1,m,. .. ,n4)Rp = Rp and hence Ijq7i R, = Ry for some i. Thus
we have IRy = I, R,. It follows that I, B, = B, and that pB, = B,.
Hence B, is flat over R,. Since B and R are birational, R < B is an open
immersion.

Theorem 1.4. Assume that a is anti-integral over R. If A is flat
over R, then B and B[a] are flat over R and Bla] is flat over B.

Proof. Since A is flat over R, we have Jjq) = I[o)(1,71,... ,74¢) = R.
Since 71, ... ,n¢ € B, we have I}y B = B. Take p € Spec(R). If p 2 Iy}, we
have By = Rp because n1,... ,nq4 € Rp. 1f p D Ijy), then pB = B. Hence
B is flat over R. Since Bla] is free B-module of rank d, B O BJa] is a flat
extension. Therefore R C Bla] is also a flat extension.

Example 1.5. Let R be a polynomial ring k[a, ] over a field k. An
element « is a root of an irreducible polynomial p,(X) = X%+ (1/a)X +
1/b. Then @q(X) is the minimal polynomial of @ and « is an anti-integral
element over R because R is a Noetherian normal domain. We have Jj,) =
(a,b)R # R and B = R[1/a,1/b]. Since B is obtained by localizations, B
is flat over R. But since Jjo) # R, A = R[a] is not flat over R. Thus the
converse statement of Theorem 1.4 is not always valid.
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Theorem 1.6. The following statements are equivalent :
(1) A is integral over R,
(2) B 1s integral over R.

Proof. Let R denote the integral closure of R in K.
(2) = (1) : Since B is integral over R, we have B C R. Since « is integral
over B, a is integeral over R. So « is integral over R.
(1) = (2) : Since R is Noetherian domain, R is a Krull domain. So
R =N Rp P € Hty(R), where Rp is a DVR. Since « is anti-integral and
integral over a DVR Rp, we have ¢q(X) € Rp[X). Hence n; € Rp for all
i. So 7; € R, which implies that B is integral over R.

Lemma 1.7  (cf.[1, The proof of Theorem 8]). Assume that o is
anti-integral over R. Then Qr(A) = A/Ijq)¢h(a)A, where ¢, (X) denotes
the derivative of po(X) and Qr(A) denotes the module of differentials.

Theorem 1.8. Assume that o is anti-integral over R. If A is un-
ramified over R, then B[a| is unramified over B and B is unramified over
R.

Proof. Note that Qr(4) = A/I5¥,(a)A by Lemma 1.7. Since A is
unramified over R, we have Ijq 5 (@) A = A. Thus Ii@,(a)Alm, ... ,nd) =
Alm,... ,nd] = Blo]. Since ¢, (a) € A[n,... ,n4), ¢h(a) is an invertible
element in Bla]. Hence B|o] is unramified over B. Note here that Bla] =
B[X]/wa(X)B[X]. So Bla] is flat over B. Moreover we know that Bla] =
la)pa(@)Bla] C IjqBle] C Bla]. Hence [joB[o] = Blal. Since B[a] is
flat over B and Bla] is integral over B, B[a] is faithfully flat over B. So
we have Ij,)B = B. Thus R < B is an open immersion by Proposition 1.3
and hence unramified.

§2. Constant Terms of Minimal Polynomials and Flat
Elements.

In this section, we characterize the ring A N K under the condition
A=A

We begin with recalling the following lemma which is easy to prove.

Lemma 2.1 (cf. [3,Lemma 3(2)]) The equality Ijo-1) = nal|o) holds.

Lemma 2.2. Let p be a prime ideal of R. If pR[a] = R[a], then ™!
is integral over R,.
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Proof. Since pR[a] = R|a], we have ag +aja+-- -+ alaf =1 for some
a; € p (0 <i < £). Thus « satisfies the equation : agal+---+ap_jo+ (ag—
1) = 0. Hence o~ ! satisfies the equation : a; + a1+ a4
(a0 —1)(a1)¢ = 0. Since ag — 1 is a unit in Ry, we can conclude that o1
is integral over R,.

Proposition 2.3. Assume that « is anti-integral over R. Consider
the following statements :
(1) IgA=A4A;
(2) I[a] + I[a—l] =R;
(3) Ijo) = I, and I,(1,n4)R = R.
Then the following implications hold : (1) = (2) < (3).

Proof. (1) = (2) : Suppose that there exists p € Spec(R) such that
o] + Ijo-1) € p. Since Ij)A = A, a~! is integral over R, by Lemma 2.2.
Since « is anti-integral over R, so is o~! by [2,Theorem 6]. Hence o !
is anti-integral and integral over R,. Thus ¢,-1(X) € R,[X] and hence
Iio-1Ry = Rp, which contradicts the assumption Jj,-1 C p.
(2) = (3) : Since Ij-1)] = nalje) by Lemma 2.1, we have Ijg) + [[o-1) =
I1q)(1,ma) R = R. So we have Iy = I, and Jyp, = I;,,(1,74)R = R.
The converse implication (3) = (2) can be seen by tracing the above argu-
ment backward.

Example 2.4. The following example shows that the implication
(2) = (1) is not valid in general. Let R be a polynomial ring k[a, b] over a
field k. Let « is a solution of the equation : @4 (X) := X2+ (b/a®>) X +((a—
1)/a)? = 0. Then « is anti-integral over R because R is a Noetherian normal
domain. We have I = a®R, po-1(X) = X2+ (b/(a— 1)?)X +(a/(a—1))?
and Ijp-1; = (@ — 1)?R. Thus Ijg) + Ijp-1) = R. Moreover we have
Jio) = R and j[a] = a%(1,b/a®)R = (a?,b)R. Since gra.de(j[a]) > 1, we
have \/3; # +/Ija)- Hence I|5jA # A, which implies that the implication
(2) = (3) does not always hold.

An element o € L is called ezclusive over R if Rla]N K = R (cf. [6]).

Now we study the exclusiveness for a while. We start the following
Lemma.

Lemma 2.5 ([6, Theorem 5]). Assume that R contains an infinite
field k and that « is super-primitive over R. Then the following statements
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are equivalent :

(1) « is exclusive over R ;
@) NEL L, € Iy,

(3) grade(J[a]) >1or J[Q] =

Proposition 2.6. Assume that a is super—primitive over R and that
R contains an infinite field. If either grade(Ji,)) > 1 or Jio) = R, then both
o and o~ ! are ezclusive, i.e., Rlo)NK = Rla™'|NK = R.

Proof. By Lemma 2.5, we have the following equivalences :
(a) a is exclusive over R & grade(j[a]) >1;
(b) a~! is exclusive over R & grade(ljq-1)(m /74, - - - s Md-1/14, 1)) > 1
& grade(I[q)(m,--- ,7ma)) > 1
where the last equivalence follows from Lemma 2.1. These equivalence
induce our conclusion.

Proposition 2.7. Assume that o is super-primitive over R. If A is
faithfully flat over R, then o is ezclusive.

Proof. From Lemma 1.1, it follows the equivalence : R[] is faithfully
flat over R < Jjo) = R. So we have our conclusion by Lemma 2.5.

Proposition 2.8. Assume that o is super-primitive over R and that
R contains an infinite field. If A, is faithfully flat over R, for each p €
Dp,(R), then « is exclusive, i.e., R[e] N K = R.

Proof. By Lemma 2.5, note that R[], is faithfully flat over R, for
each p € Dp;(R) = grade(J[a]) >1or J[Q] = R, by Lemma 1.1. The latter
condition give rise to the statement that « is exclusive over R by Lemma
2.5.

Lemma 2.9. Assume that « is super-primitive over R. If I|)A = A,
then B C A.

Proof. Since Ij,)A = A, A is flat over R by Lemma 1.2. Take P €
Dp;(A) and put p:= PN R. Then p € Dp;(R). Since ¢ is super-primitive
over R, the ideal I[ Ry is a principal ideal. So there exists a € [ [o] Such that
Iq)Rp = aRp. Hence aAp = A, by the assumption Ij5)4 = A. Since Iiq €
I, by definition, putting 7; = b;/a with b; € R. Since a is an invertible
element in Ap, we have 7; € Ap C Ap. Thus n; € (\pepp, (4) AP = A.
Therefore B = R[n1,... ,7q4] C A.
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Theorem 2.10. Assume that a is super-primitive over R. The fol-
lowing statements are equivalent :
(D) [gA=4;
(2) BC A and I|,)B = B.
If the condition (2) holds, B is flat over R.

Proof. (1) = (2) : The first statement is shown in Lemma 2.9. The
assumption Ijq)4 = A implies that A is flat over R by Lemma 1.2 and that
B is flat over R by Lemma 1.3. Hence Jlo] = R. Since a is anti-integral

over B and since a is integral over B, it follows that I[(cﬁ) = B, where

I[(og) = B[X] :p @a(X). Thus [|5)B = I[(,ﬁ) because B is flat over R.
(2) = (1) :Since B C A, I|)B = B induces I A = A

Proposition 2.11. Assume that o is super-primitive over R and that
R contains an infinite field. If R[ng] is flat over R, then AN K C R[ng).

Proof. Since R and R[ng] have the same quotient field K, the
element o is of degree d over both R and R[ng]. Put I[(;]{["d])

ﬂgzl I(R[ﬂd])’ where Lgf-[nd]) = R[’qd] ‘Rng "h: Then I[a] C I[(al]i[nd])’ SO

7

that Ji) = Jpa)(L,mu,---,ma) € JETD = 18P (1,my,. . ng), where

J[(;]Z[""D =1 (f[""]) (1,m1,...,7m4)- Since « is super-primitive over R, we have

grade(Jjq]) > 1. Since R[ng] is flat over R, we have grade(JjqR[ng]) > 1
and hence gra,de(J[(aI]%[""‘])) > 1. So o is super-primitive over Rng). Since

74 € R[na], we have N4} I,(,,E[n“']) c I,(,f[""]) = R[ng]. So applying Lemma
2.5 to the extension A/R[ng], we obtain AN K C R[ng][a] N K = R[ng).

Theorem 2.12. Assume that o is super-primitive over both R and
R[n4) and that R contains an infinite field. Consider the following state-
ments :

(1) IgA =4,

(2) Rlng) C A, Ijq) = In, and R[nq] is flat over R,
(3) ANK = R[nq] = B.

Then the implications (1) < (2) = (3) hold.

Proof. (1) +(2) = (3) : (1) implies that B C A by Lemma 2.9. Since
R[nq] is flat over R, R[n4] 2 AN K by Proposition 2.11. Hence we have
ANK = R[ny) 2 B = R[m,...,nd4)-

(1) = (2) : We have R[ng| C B C R[a] by Theorem 2.10, and I = I, by
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Proposition 2.3. Since R < R[ng] — B is an open immersion by Lemma
1.3, R = R[ng] is flat. (2) = (1) : Since R[ng] is flat over R, we have
I [((ﬁ[""] = Iy, R[n4]. Thus the fact n4 € R[ng] implies that I[(ﬁ[""] = R[na).
So it follows that I;,A = A because R[ns] C A. Since I = I,, we
conclude ]| [Q]A = A.

§3. Coeflicients of Minimal Polynomials.

Remark 3.1. Assume that o is anti-integral over R and that ng € R.
Then A is faithfully flat over R if and only if A is flat over R. In-
deed, since g € R, we have I = ﬂle I, = ﬂfz_ll I, and hence
J[a] = I[a](l,’lh,... ,nd) = I[a](l,’r)l,... 3nd—1) = J[a]. Hence J[a] = R.
Thus our conclusion follows Lemma 1.1.

Proposition 3.2. Assume that o is a super-primitive element of de-
gree d over R. Assume that the polynomial p(X) := X4 14 X424 4
ng—1 18 irreducible in K[X] and let 8 is a solution of p(X) = 0. Assume
more that ng € R. Then [ is super-primitive over R, and R[a] is flat over
R if and only if R[F] is flat over R.

Proof. Since ng € R, noting that Jjq) = Ijo)(1,m1,. .. ,ng) by definition,
we conclude that Ijy) = Ijg) and hence Jj,) = Jig)-

Theorem 3.3. Assume that K contains a field of characteristic zero
and that ng € R. Let 3 be a solution of ¢, (X) = 0. Then |
(1) if o is super-primitive over R, then so is (3,

(2) R[a] is flat over R if and only if R[8] is flat over R.

Proof. By the similar argument in the proof of Proposition 3.2, we
have J[a] =-J[ﬂ].

Example 3.4. Consider the case d = 2 in Theorem 3.3. Put ¢, (X) :=
X? +nX + e with @ € R. Let a is a solution of an equation ¢, (X) = 0.
Then o is flat element over R, that is, R[e] is flat over R < 7 is a flat
element over R. In this case, « is characterized by 7.

Lemma 3.5. If I}y is an invertible ideal of R, then a is a super-
primitive element over R.

Proof. For each p € Spec(R), (I[4])p is a principal ideal of R,. So the
conclusion follows (7,(2.11)].
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Proposition 3.6. Assume that Ijq) = I, and that n; is a flat element
over R for some i, then « is a flat element over R. Moreover if i # d, then
A is faithfully flat over R.

Proof. Let 7; is flat element over R. Then J,, = I;(1,7;) = R, so
that 7; is super-primitive over R by Lemma 3.5. Since Ilo) = I, and
Jla} = Lja)(1;715- - -sma) 2 Jy; = R, we have Jia) = R. So a is a flat element
over R. Assume that i % d. Then Jy) 2 Iy, (1,7;) = R and hence J,) = R.

Theorem 3.7. Assume that R is a local ring with mazimal ideal m.
Then A 1s flat over R if and only if Ijo) = I, and 7; is flat over R for some
i.

Proof. (<) is shown in Proposition 3.6.
(=) We have only to show this in the case I;) C m. Since Jjo =
Iig)(1,m,... ;na) = R by the assumption, there exists i such that 7;ljo) =
R. Thus Iy = I,. Since I,(1,m) = Ijq)(1,m) = R, I, is an invertible
ideal. So by Lemma 3.5, 7; is super-primitive over R. Thus we conclude
that 7; is a flat element over R.

Remark 3.8. Let (R, m) be a local ring. If there exists a prime ideal
p of R such that none of 71, ... ,7q is flat element over R, then R[a] is not
flat over R. Such p is the one not containing Jj,).

Example 3.9. Let R be a local ring k[a, b](,3), where k[a,b] is a
polynomial ring over a field k.
(1) Let o is a solution of the equation: ¢, (X) := X2 + (b/a)X +a/b=0.
Then ¢, (X) is a minimal polynomial of @ over K and « is anti-integral
over R because R is a Noetherian normal domain. We have Ij5) = abR
and Jio) = Ijo)(1,b/a,a/b)R = ab(1,b/a,a/b)R = (ab,b%,a?>)R # R. So
A := R[a] is not flat over R. We see that 7; := b/a and 72 := a/b and that
neither Iy, nor I, is equal to R. Note here that Ijq) # Ip, and Ijy) # In,.
(2) Let o is a solution of the equation : @q(X) := X3+ (b/a) X2+ (a/b)X +
1/a = 0. Then « is anti-integral over R as in (1). It follows that 1/a is a
flat element. But Ijq) = abR is equal to non of Ij/q, Iy and Iy/,. Since
Jio] # B, R[a] is not flat over R.

Theorem 3.10. Assume that Ij) is an invertible ideal of R. If A is
flat over R, then for each p € Spec(R) there exists i such that n; is a flat
element over Rp and that Ijq)Rp = Iy, Rp.
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Proof. Since Ij,) is an invertible ideal, a is super-primitive over R by
Lemma 2.16. So A is flat over R if and only if Jj5) = R. Take p € Spec(R).
Localizing at p, we may assume that R is a local ring with maximal ideal m.
Since Ijq is invertible, we have Ij;) =aR and n; = b; /a for some a,b; € R.
Assume first that a € m. Then n; € R and hence 7; is a flat element over
R. Assume next that a € m. Then Jj,) = R and hence there exists ¢ such
that b; € m. So n; = bi/a is a flat element and Ij,) = Iy,.
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