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WEAKLY HENSELIAN RINGS

THOMAS MCKENZIE

1. Introduction.

Throughout this paper we will assume that all rings are commutative
rings with identity, that ring homomorphisms preserve identities, and that
a ring and its subrings have the same identity. We say that a ring is
connected if it has exactly two idempotents. By a local ring we mean a
(not necessarily Noetherian) ring with a unique maximal ideal. For the
remainder of this paper we assume that R is a local ring with maximal
ideal M.

In this paper we give a definition of a weakly Henselian ring. The main
result of this paper is Theorem 1.5. In this theorem we give a character-
ization of weakly Henselian rings. A version of this Theorem appears as
Theorem 4.15 on page 176 of [5]. But in [5] the author assumes that the
residue class field of R is infinite. In this paper we have no such restriction.

2. Weakly Henselian Rings.

If S is a connected ring and f € S[z] then f is said to be a separable
polynomial if f is monic and there exist u,v € S[z] such that uf +vf =1
where f’ is the formal derivative of f.

Definition 1.1. We say that R is a weakly Henselian ring if whenever
f € R[z] is a separable polynomial and there exist monic polynomials
90, ho € (R/M)[z) with f = gohg then there exist monic polynomials g, h €
R[z] such that f = gh,g = go, and h = hy

Note that since f is separable the polynomials g, &, go, and hg in Defi-
nition 1.1 are also separable by Lemma 1.2 on page 22 of [2|. By the same
lemma there exist u,v € R[z] and ug,vg € (R/M)|[z] such that ug+vh =1
and wuggo + vohg = 1.

If S is a ring and f € S[z] we write deg(f) for the degree of f. If f
is a monic polynomial then we say that f is indecomposable if whenever
there exist monic polynomials g, h € S[z] such that f = gh it follows that
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g =1or h=1. If T is a finite projective separable extension of S and P
is a maximal ideal of T' then Q = PN S is a maximal ideal of S since T is
an integral extension of S. We call the degree of the field T/P over S/Q
the inertial degree of P over Q.

The next lemma is Theorem 3.5 on page 172 of [5]. We include it for
the convenience of the reader.

Lemma 1.2. If S is a connected ring , f is an indecomposable separa-
ble polynomial in S(z], Q is a mazimal ideal of S, and fi,... , fn are monic
polynomials in S[z] such that f = f,-... f, is the unique factorization of
fin 8/Q, and T = S[z]/(f) then:

(1) The mazimal ideals in T which lie over Q are precisely the ideals
of the form P, =Q - T + (fi+ (f)) - T;

(ii) The inertial degree of P; over Q equals the deg(f;).

If F C L is an extension of fields we let deg(L : F') denote the degree of
L over F'. In order to prove the main result in this section we need the fol-
lowing technical lemma regarding the existence of irreducible polynomials
over finite fields.

Lemma 1.3. Let F be a finite field with q elements, F' C L be an
extension of finite fields, and M be a positive integer. There ezists a monic
polynomial g € F[z] such that:

(i) g is irreducible in L(z);

(ii) there exist at least M distinct monic irreducible polynomials in F[z]
of degree deg(g) - deg(L : F).

Proof : Let n be a positive integer, and let Ny(n) denote the number
of irreducible polynomials in F[z] of degree n. By Example 3.26 on page
86 of (4]

No(d) > (1/i)(d' — ¢ =g 2 — ... —q).
Thus
lim Ny(4) = oo.
1—00

So we may choose a positive integer My such that whenever i > M it
follows that IV, (i) > M.

Let 7 be positive integer such that j > My and j is relatively prime to
deg(L : F). Since j > My there exists a monic irreducible polynomial g in
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F[z] of degree j. By Corollary 3.47 on page 100 of [4], the fact that j and
deg(L : F) are relatively prime implies g is irreducible over L. Also, since
j-deg(L : F) > Mj it follows that Ny(j -deg(L : F)) > M. This completes
the proof.

If S is a connected ring we let g denote the separable closure of R.
If T is a ring extension of R we say that T has a primitive element over S
if there exists o € T such that T = R[¢]

Lemma 1.4. Assume that R/M is a finite field and Qg is not a local
ring. Then there ezists a separable indecomposable polynomial f € R[x]
such that f is not irreducible in (R/M)|z].

Proof : Since Qg is not local there exists a finite projective connected
Galois extension S of R such that S is not a local ring. Let Q,...,Q,
be the distinct maximal ideals of S. By Lemma 1.3 there exists a monic
irreducible polynomial go € (R/M)[z] such that:

(1) go is irreducible in S/Q;

(ii) There exist at least n distinct irreducible polynomials in (R/M)[z]
of degree deg(go) - deg(S/Q1: R/M).

Let g € R[z] be monic such that § = g in (R/M)[z]. Note that g is
separable in R[x] since g is separable in (R/M)[z]. Also, g is indecompos-
able in S[z] since g is irreducible in (S/Q1)[z]. Thus T = S[z]/(g) is a
finite projective separable connected extension of S.

Since S is Galois over R, Lemma 2.2 on page 167 of [5] implies that

deg(S/Q1: R/M) = deg(S/Q; : R/M),Vj € {1,... ,n}.

So by Corollary 3.47 on page 100 of [4], g is irreducible in (S/@Q;)[z] for all
j € {1,...,n}. Thus by Lemma 1.2, T has exactly one maximal ideal P;
which lies over Q; for all j € {1,... ,n}. Further the inertial degree of P;
over Q; equals deg(g) for all j € {1,... ,n}. Hence

T/(MT)~T/P, x...xT/Pp,

the inertial degree of Q; over M equals deg(go) - deg(S/Q: : R/M) for all
j € {1,...,n}, and there are at least n irreducible polynomials of degree
deg(go) - deg(S/Q1 : R/M) in (R/M)[z]. Let hy,... ,hy be n distinct poly-
nomials in (R/M)([z] each of degree equal to the inertial degree of Q; over
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M. Then
T/Py x ... x T/ Py~ (R/M)[z]/(h1) X ... x (R/M)[z]/(hn).
Also,
(R/M)[z]/(h1) x ... x (R/M)[z]/(hn) = (R/M)[z]/(h1 - ... " hn)

since hi...h, are pairwise relatively prime. A standard argument now
shows that T'/(M - T') has a primitive element over R. Using this fact and
an application of Nakayama's Lemma one can show that T has a primitive
element over R. So by Theorem 3.3 page 171 of [5] there exists an inde-
composable separable polynomial h € R[z] such that T ~ R[z]/(h) and by
Lemma 1.2 h is not irreducible in (R/M)(z]. This completes the proof.

We can now prove the main result in this paper.

Theorem 1.5. R is weakly Henselian if and only if Qg is a local
ring.

Proof : If R/M is an infinite field then the theorem follows from
Theorem 4.15 on page 176 of [5]. Thus we assume that R/M is finite. If
QR is not local then by Lemma 1.4 R is not weakly Henselian. If R is
not weakly Henselian then by Lemma 1.2 there exists a finite projective
separable extension of R which is not local. Thus Qg is not local. This
completes the proof.

Corollary 1.6. Henselian local rings have local separable closures.

Proof : This is clear.
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