WEAKLY HENSELIAN RINGS

THOMAS MCKENZIE

1. Introduction.

Throughout this paper we will assume that all rings are commutative rings with identity, that ring homomorphisms preserve identities, and that a ring and its subrings have the same identity. We say that a ring is connected if it has exactly two idempotents. By a local ring we mean a (not necessarily Noetherian) ring with a unique maximal ideal. For the remainder of this paper we assume that R is a local ring with maximal ideal M.

In this paper we give a definition of a weakly Henselian ring. The main result of this paper is Theorem 1.5. In this theorem we give a characterization of weakly Henselian rings. A version of this Theorem appears as Theorem 4.15 on page 176 of [5]. But in [5] the author assumes that the residue class field of R is infinite. In this paper we have no such restriction.

2. Weakly Henselian Rings.

If S is a connected ring and $f \in S[x]$ then f is said to be a separable polynomial if f is monic and there exist $u, v \in S[x]$ such that uf + vf' = 1 where f' is the formal derivative of f.

Definition 1.1. We say that R is a weakly Henselian ring if whenever $f \in R[x]$ is a separable polynomial and there exist monic polynomials $g_0, h_0 \in (R/M)[x]$ with $\overline{f} = g_0 h_0$ then there exist monic polynomials $g, h \in R[x]$ such that $f = gh, \overline{g} = g_0$, and $\overline{h} = h_0$

Note that since f is separable the polynomials g, h, g_0 , and h_0 in Definition 1.1 are also separable by Lemma 1.2 on page 22 of [2]. By the same lemma there exist $u, v \in R[x]$ and $u_0, v_0 \in (R/M)[x]$ such that ug + vh = 1 and $u_0g_0 + v_0h_0 = 1$.

If S is a ring and $f \in S[x]$ we write deg(f) for the degree of f. If f is a monic polynomial then we say that f is indecomposable if whenever there exist monic polynomials $g, h \in S[x]$ such that f = gh it follows that

g=1 or h=1. If T is a finite projective separable extension of S and P is a maximal ideal of T then $Q=P\cap S$ is a maximal ideal of S since T is an integral extension of S. We call the degree of the field T/P over S/Q the inertial degree of P over Q.

The next lemma is Theorem 3.5 on page 172 of [5]. We include it for the convenience of the reader.

Lemma 1.2. If S is a connected ring, f is an indecomposable separable polynomial in S[x], Q is a maximal ideal of S, and f_1, \ldots, f_n are monic polynomials in S[x] such that $\overline{f} = \overline{f_1} \cdot \ldots \cdot \overline{f_n}$ is the unique factorization of \overline{f} in S/Q, and T = S[x]/(f) then:

- (i) The maximal ideals in T which lie over Q are precisely the ideals of the form $P_i = Q \cdot T + (f_i + (f)) \cdot T$;
 - (ii) The inertial degree of P_i over Q equals the $deg(f_i)$.

If $F \subseteq L$ is an extension of fields we let deg(L:F) denote the degree of L over F. In order to prove the main result in this section we need the following technical lemma regarding the existence of irreducible polynomials over finite fields.

Lemma 1.3. Let F be a finite field with q elements, $F \subseteq L$ be an extension of finite fields, and M be a positive integer. There exists a monic polynomial $g \in F[x]$ such that:

- (i) g is irreducible in L[x];
- (ii) there exist at least M distinct monic irreducible polynomials in F[x] of degree $deg(g) \cdot deg(L:F)$.

Proof: Let n be a positive integer, and let $N_q(n)$ denote the number of irreducible polynomials in F[x] of degree n. By Example 3.26 on page 86 of [4]

$$N_q(i) \ge (1/i)(q^i - q^{i-1} - q^{i-2} - \dots - q).$$

Thus

$$\lim_{i\to\infty}N_q(i)=\infty.$$

So we may choose a positive integer M_0 such that whenever $i > M_0$ it follows that $N_q(i) > M$.

Let j be positive integer such that $j > M_0$ and j is relatively prime to deg(L:F). Since $j > M_0$ there exists a monic irreducible polynomial g in

F[x] of degree j. By Corollary 3.47 on page 100 of [4], the fact that j and deg(L:F) are relatively prime implies g is irreducible over L. Also, since $j \cdot deg(L:F) > M_0$ it follows that $N_q(j \cdot deg(L:F)) > M$. This completes the proof.

If S is a connected ring we let Ω_S denote the separable closure of R. If T is a ring extension of R we say that T has a primitive element over S if there exists $\alpha \in T$ such that $T = R[\alpha]$

Lemma 1.4. Assume that R/M is a finite field and Ω_R is not a local ring. Then there exists a separable indecomposable polynomial $f \in R[x]$ such that \overline{f} is not irreducible in (R/M)[x].

Proof: Since Ω_R is not local there exists a finite projective connected Galois extension S of R such that S is not a local ring. Let Q_1, \ldots, Q_n be the distinct maximal ideals of S. By Lemma 1.3 there exists a monic irreducible polynomial $g_0 \in (R/M)[x]$ such that:

- (i) g_0 is irreducible in S/Q_1 ;
- (ii) There exist at least n distinct irreducible polynomials in (R/M)[x] of degree $deg(g_0) \cdot deg(S/Q_1 : R/M)$.

Let $g \in R[x]$ be monic such that $\overline{g} = g_0$ in (R/M)[x]. Note that g is separable in R[x] since \overline{g} is separable in (R/M)[x]. Also, g is indecomposable in S[x] since g is irreducible in $(S/Q_1)[x]$. Thus T = S[x]/(g) is a finite projective separable connected extension of S.

Since S is Galois over R, Lemma 2.2 on page 167 of [5] implies that

$$deg(S/Q_1:R/M)=deg(S/Q_j:R/M), \forall j \in \{1,\ldots,n\}.$$

So by Corollary 3.47 on page 100 of [4], \overline{g} is irreducible in $(S/Q_j)[x]$ for all $j \in \{1, \ldots, n\}$. Thus by Lemma 1.2, T has exactly one maximal ideal P_j which lies over Q_j for all $j \in \{1, \ldots, n\}$. Further the inertial degree of P_j over Q_j equals deg(g) for all $j \in \{1, \ldots, n\}$. Hence

$$T/(MT) \simeq T/P_1 \times \ldots \times T/P_n$$

the inertial degree of Q_j over M equals $deg(g_0) \cdot deg(S/Q_1 : R/M)$ for all $j \in \{1, \ldots, n\}$, and there are at least n irreducible polynomials of degree $deg(g_0) \cdot deg(S/Q_1 : R/M)$ in (R/M)[x]. Let h_1, \ldots, h_n be n distinct polynomials in (R/M)[x] each of degree equal to the inertial degree of Q_1 over

M. Then

$$T/P_1 \times \ldots \times T/P_n \simeq (R/M)[x]/(h_1) \times \ldots \times (R/M)[x]/(h_n).$$

Also,

$$(R/M)[x]/(h_1) \times \ldots \times (R/M)[x]/(h_n) \simeq (R/M)[x]/(h_1 \cdot \ldots \cdot h_n)$$

since $h_1
ldots h_n$ are pairwise relatively prime. A standard argument now shows that $T/(M \cdot T)$ has a primitive element over R. Using this fact and an application of Nakayama's Lemma one can show that T has a primitive element over R. So by Theorem 3.3 page 171 of [5] there exists an indecomposable separable polynomial $h \in R[x]$ such that $T \simeq R[x]/(h)$ and by Lemma 1.2 h is not irreducible in (R/M)[x]. This completes the proof.

We can now prove the main result in this paper.

Theorem 1.5. R is weakly Henselian if and only if Ω_R is a local ring.

Proof: If R/M is an infinite field then the theorem follows from Theorem 4.15 on page 176 of [5]. Thus we assume that R/M is finite. If Ω_R is not local then by Lemma 1.4 R is not weakly Henselian. If R is not weakly Henselian then by Lemma 1.2 there exists a finite projective separable extension of R which is not local. Thus Ω_R is not local. This completes the proof.

Corollary 1.6. Henselian local rings have local separable closures.

Proof: This is clear.

REFERENCES

- [1] F. Demeyer and E. Ingrahm, Separable algebras over commutative rings, Lecture Notes in Math. vol. 181, Springer-Verlag, New York, 1971.
- [2] D. K. HARRISON and T. MCKENZIE, Toward an arithmetic of polynomials, Aequationes Math. 43(1992), 21-37.
- [3] G. Janusz, Separable algebras over commutative rings, Trans. Amer. Math. Soc. 122(1966), 461-479.
- [4] R. LIDL and H. NIEDERREITER, Introduction to Finite Fields and their applications,

revised edition, Cambridge University Press, Cambridge, 1994.

[5] T. McKenzie, Separable Polynomials and Weak Henselizations, Rings, extensions, and cohomology (Evenston, IL, 1993), 165-179, Lecture Notes in Pure and Appl. Math., 159, Marcel Dekker, New York, 1994.

T. McKenzie
Department of Mathematics
Bradley University
Peoria, Illinois

(Received August 26, 1996)