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ORTHOGONALITY IN THE CATEGORY OF
COMPLEXES

EpGer E. ENOCHS, OVErRTOUN M. G. JENDA and JiNzHONG XU

1. Definitions and Preliminaries.

In this section, C will be an abelian category. If £ is a class of objects
of C, a morphism ¢ : E — X of C is called an £-precover of X if E € £ and
if Hom (F, E) — Hom (F, X) is surjective for all F' € £. If, moreover, any
f : E — E such that ¢ = ¢ o f is an automorphism of E then ¢: E — X
is called an &£-cover of X. If an &£-cover of X exists, it is unique up to
isomorphism. An &-preenvelope and an £-envelope X — FE are defined
dually.

Auslander and Smalg [3] and Auslander and Reiten [2] use the termi-
nology left and right approximations and minimal left and right approxi-
mations for precovers, preenvelopes, covers and envelopes.

We sometimes name the £-(pre)covers and £-envelopes by the name of
the class £. For example, a flat cover in the category of left R-modules is
an £-cover where £ is the class of flat left R-modules.

Using a simple version of the argument in ([8], Proposition 4.1) we
see that if B; — X; are &-covers for 1 = 1,2,...,n for a class of objects
such that @7, E; € £ then &1, E; —» &%, X; is an £-cover. Similarly
O, X; - @, E; is an £-envelope if each of X; = E;, i=1,2,...,nis
and if @], E; € €.

An E-precover E — X in a category C is not necessarily an epimor-
phism. But if C has enough projective objects and these are in £ then such
an F — X is an epimorphism, for then any epimorphism P — X with
P projective can be factored through £ — X. Similarly, if C has enough
injectives and if £ contains the injective objects of C then an £-preenvelope
X — FE is a monomorphism. If £ is a class of objects of C such that ev-
ery object X of C has an £-preenvelope X — FE, then we can construct a
complex

0X—->E"S5E' 5 E2— ...

(not necessarily exact) such that all E* € £ and such that Hom (F, —)
makes the complex exact when F' € £. Such a complex will be called a
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right £-resolution of X. Then we get the usual uniqueness up to homotopy.
If every X also has an £-envelope then there is a minimal such resolution
0—> X — E% = E! - ..., This means that if

0 X— E- E'- E?2...

I { } {

0 X— E°- E'-5 E2...

is commutative, each of the maps E® — E™ is an isomorphism.

Dually we have left £-resolutions or minimal left £-resolutions of the
objects of C when every object has an £-precover or every object has an
E-cover. If F and £ are two classes of objects of C such that every object
has an F-precover and every object has an &£-preenvelope, we say that
Hom (—, —) is right balanced by F x £ if for every left F-resolution

a1l 52X =0

of an object X of C, Hom (—, E) makes the sequence exact for all E € £
and if for every right £-resolution 0 = Y — E® — E! — ... of an object
Y, Hom (F, —) makes the sequence exact for all F € £.

The usual argument then allows us to construct right derived functors
of Hom (—, —), say (R"Hom)(X,Y’) using either left F-resolutions of X or
right £-resolutions of Y.

If, on the other hand, Hom (E, —) makes each such --- =+ F; - Fy —
X — 0 exact when F € £ and Hom (—, F') makes each such 0 - Y —
E% 5 E' — ... exact when F € F then we say Hom (—, —) is left balanced
by £ x F and define the left derived functors (L,Hom)(Y, X) (see [9] for
examples and applications of these notions).

When all objects have £-preenvelopes we define the right £-dimension
of an object to be the least n such that there is a right £-resolution of
the fom 0 - Y — E® - ... - E™ — 0 if there is such an n and say
that right £-dimension is oo otherwise. In a dual manner we define the left
F-dimension of objects when every object has an F-precover.

For a class of objects £ of C we let £+ be the class of objects Y such
that Ext}(E,Y) = 0 for all E € £, ie. such that all short exact sequences
0-5Y = Z— E— 0 with E € £ split. And we let ~£ consist of objects
X such that Ext!(X,E) = 0 for all E € £. Note that £ C + (+£) and
£ C (€)1, The following proposition is called Wakamatsu’s lemma by
Auslander and Reiten [2].
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Proposition 1.1. If the class £ is closed under extensions and ¢ : £ —
X is an E-cover of an object X of C then Ker (¢) € £t and if¢p: X - E
is an E-envelope then Coker (¥) € €.

For a proof see [13].

Now let R be any ring and let C be the abelian category of complexes
of left R-modules. An object

xS o1 Gy,
will be denoted X. We let Z™*(X) = Ker (0") and B*(X) = Im (0"7}).
We will use the notation suggested by Brown [5] and let Hom (X,Y) de-
note the usual complex formed from the two complexes X and Y. Then
Z'Hom (X,Y) will be the group Hom (X,Y) of cochain maps (or mor-
phisms) from X to Y.

Since C has enough injectives and projectives, we can compute the right
derived functors Ext?(X,Y) of Hom (—, —). (This extension functor is not
the same as that of Avramov and Foxby [4]).

We will use subscripts to distinguish complexes and use superscripts
to denote homogeneous components, e.g. X denotes the degree m term
of the complex X,. So using the topologist’s trick, X_, can be thought of
as indexed by a superscript of n.

Let £ be the class of exact complexes of left R-modules. We will use
Foxby and Avramov’s terminology [4] and call a complex P DG-projective
if each P™ is projective and if Hom (P, F) is an exact complex for all £ € £.
A complex I is called DG-injective if each I" is injective and if Hom (E, I)
is exact for all E € £. The classes of DG-projective and DG-injective
complexes are closed under taking finite sums and taking summands.

For examples, if I is such that all I" are injective and such that for some
ng, I™ =0 for n < ng (i.e. I is bounded below), then I is DG-injective. If
l.gl.dim R < oo then any complex I with all I™ injective is DG-injective
(see Dold [7] and Avramov, Foxby [4]). A bounded above complex P with
all P™ projective is DG-projective and if l.gl.dim R < oo, any P with all
P™ projective is DG-projective. For any n, X[n] denotes the complex such
that X[n]™ = X"*™ and whose boundary operators are (—1)"8"+™, If X
is DG-projective (injective), then so is X[n] for any n.

Given a morphism f : X — Y of complexes, we let M(f) denote
the mapping cone and write the associated exact sequence as 0 - Y —
M(f) = X[1] — 0 (see Dold [7]). Here M(f)" = X"*1 @Y™ and 9(z,y) =
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(—0z, f(z) + Oy) for (z,y) € X" @Y™ A morphism f : X = Y of
complexes such that H(f) : H(X) — H(Y) is an isomorphism will be
called a quasi-isomorphism.

If M is any injective left R-module, then the complex --- -0 = M ig
M — 0 — .- is injective (with the first M in the n-th place). In fact,
any injective complex is uniquely up to isomorphism the direct sum of such
complexes (one such complex for each n € Z).

2. The Main Theorem and Remarks.

Theorem. If R is any ring and C is the abelian category of complezes
of left R-modules and £ is the class of exact complezes of left R-modules,
then the following hold:

a) L& consists of the DG-projective complexes

b) EL consists of the DG-injective complezes

c) (&Lt =€

d) () =¢

e) ENLE is the class projective complezes

f) ELXNE is the class of injective complezes

g) every complex X has an E-cover (so an ezact cover)

h) every complez X has an £L-envelope (so a DG-injective enve-
lope by b))

i ) every object X of C has an E-preenvelope

) every object X of C has an 1&-precover

k) Hom (—,—) is right balanced by ~& x £+

| ) Hom (—,—) is left balanced by € x &

m) the projective dimension of each P € L€ is 0 or co

n) the injective dimension of each I € EL is 0 or o

0)if0 Y = Iy = I_; = I o — --- is a minimal right £*-
resolution of X then each of I_1,1_9,... are injective complezes
and Iy will be injective if and only if Y € £

p)if - > Ey - Ey = Ey = X — 0 is a minimal left £-
resolution of X the terms Ej, Es,... are injective complezes.
Ey will be injective if and only if X € £+ (so by b), if and only
if X is DG-injective).

The proofs of a) - p) will be given separately in the next section. We
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comment that part of the interest in the properties a) - p) arises from their
occurence in other settings (with some modifications in their statements).
For example, if R is Iwanaga Gorenstein (i.e. left and right noetherian and
of finite self injective dimension on either side [16]) and if £ is the class of
left R-modules of finite projective dim and C the category of left R-modules,
then with £ replacing £ in a) - p) we get the corresponding claims but where
1L and £ are the classes of Gorenstein projective and injective modules
(see [10], [11], [12], [13]). If R is artinian and Iwanaga Gorenstein we can
take C to be the category of finitely generated left R-modules. Then with
the corresponding £ (which is denoted P* by Auslander and Reiten) we
get a) - p) still hold. In Auslander and Reiten’s terminology, g) says that
P> is contravariantly finite in C.

If C is the category of left R-modules for any ring R and O is the class
of objects of C, then with O replacing £ in the theorem we get a series of
familiar statements (some trivial). Here O+ is the class of injective modules
and so h) says every module has an injective envelope. The statement g)

becomes a triviality (M —> M is an O-cover of the module M) and i) is
the usual balance giving two ways to compute the groups Ext} ?(M,N) for
modules M and N.

3. The Proofs and Other Results.

We will let C be the category of cochain complexes of left R-modules
and let £ be the class of exact such complexes throughout this section . So
the term complex will mean a cochain complex of left R-modules.

Lemma 3.1. IfI € £+ then each I™ is injective.

Proof. Let S C M be a submodule of a left R-module and let f: S —
I™ be linear. Form the pushout

S - M
{ X
" —» I"eosM

and then form the obvious complex

I: s resM-sI"M e M/S— M2 5
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We have an exact sequence of complexes
0=I—=I—-E—0

where E is the exact complex

0= M/S S MIS 50

By hypothesis, this sequence splits (in the category of complexes). But
then the existence of a retraction I” ®g M — I™ at the module level shows
that S — I™ can be extended to M — I™. O

We will use the easy:

Lemma 3.2. Let f: X 5 Y bea morphism of complezes. Then the
exact sequence 0 - Y — M(f) — X[1] - 0 associated with the mapping
cone M(f) splits in C if and only if f is homotopic to 0.

Proof. If the sequence splits and if z — (z, —s(z)) is a section, the
definition of the boundary operator in M(f) gives that s is a homotopy
between f and 0. Conversely, if s is such a homotopy, z — (z, —s(x)) is a
section for M(f) —» X[1]. O

Corollary 3.3. If X is a complez, then Hom (X,I) is exact for
a complex I such that I'™ is injective for oll m € Z if and only if
Ezt'(X,I[n]) =0 for alln € Z.

Proof. Hom (X, I) being exact is equivalent to the claim that for each
n each morphism X — I[n] is homotopic to 0.

For n € Z, any exact sequence 0 — I[n] = Y — X — 0 of complexes
splits at the module level since each I[n]™ is injective. So this sequence is
isomorphic to a sequence 0 — I[n] - M(f) - X — 0 where f: X[-1] —
I[n] (or f : X — I[n+1]) is a morphism of complexes. Since n is arbitrary,
the claim then follows from the preceeding Lemma. O

Proposition 3.4. £1 is the class of DG-injective complezes.

Proof. If I € £, by Lemma 3.1 all I* are injective. Then by the
previous Corollary we get that Hom (E, I) is exact for all £ € £ and so I
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is DG-injective. O
Dual arguments give
Proposition 3.5. & is the class of DG-projective complezes.
Proposition 3.6. (1) =¢.

Proof. Clearly £ C L(&1), solet E € +(£1). We show that E is exact.
By the previous Corollary, Hom (E,I) is exact when I (and so also any
I[n], n € Z) is DG-injective. Let I be a complex of injective modules
concentrated at 0, i.e. such that I™ = 0 if n # 0. Then I is DG-injective
and so Hom (E, I) is exact. But Hom (E, I) is the complex

.-+ — Hom (E*, %) — Hom (£°,1°) - Hom (E~1,1%) — ---

Since the injective module I° is arbitrary, we see that E is exact. O.

Remark. If I € £1 then Ext!(E,I) =0forall E € £ and all 1 > 1.
Forif 0 - § - P —» E — 0 is an exact sequence of complexes with P
projective (and so exact), then S is exact. So 0 = Ext!(S, I) = Ext?(E, I).
Using this proceedure and induction we get Ext!(E,T) = 0 for all ¢ > 1.

Similarly, if P € &£, Ext*(P, E) = 0 for all i > 1. Then by Proposition
3.4 and these remarks we see that if 0 - I — I — I" — 0 is an exact
sequence of complexes and I’ and I" are DG-injective, then so is I. And if
I' and I are DG-injective, then so is I' .

Similarly, if 0 — P' - P — P" 5 0is an exact sequence of complexes,
and P’ and P” are DG-projective, so is P. And when P and P” are DG-
projective, so is P'.

Proposition 3.7. £ N L& is the class of projective complezes and
ELNE is the class of injective complexes.

Proof. Let I € £+ NE. Let I C J where J is an injective complex.
Then if E is exact, Ext'(E, J/I) = Ext?(E, J) = 0. Hence by Proposition
3.4, J/I is DG-injective. But then since I is exact Ext!(Z,J/I) = 0 and so
0—1—J— J/I— 0 splits. Hence I is a direct summand of J and so is
injective. Similar arguments give that £ N L& consists of all the projective
complexes. O
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Arguments dual to those given in the proof of Proposition 3.6 give
Proposition 3.8. (+&)L =&

Theorem 3.9 (Spaltenstein [18]). For every complex X there are
quasi-isomorphisms P — X and X — I where P is DG-projective and I is
DG-injective.

Corollary 3.10. FEvery compler X has a DG-projective precover and
a DG-injective preenvelope.

Proof. If P — X is as in the theorem, we first note we can assume
P — X is surjective. For C has enough projectives. If Q — X is surjective
with @ projective, we can replace P — X with P®Q — X. Since H(Q) =0
we still have a homology isomorphism. Hence we have an exact sequence
0—=E— P — X — 0 of complexes with F exact and P DG-projective. If
P is also DG-projective, then Extl(P',E) = 0 by Proposition 3.5 and so
Hom(P', P) = Hom(P', X) — 0is exact. Hence P — X is a DG-projective
precover.

Similarly we get that every X has a DG-injective preenvelope X — I O

We see that such precovers P — X preenvelopes X — I are necessarily
surjective and injective respectively since projective complexes are DG-
projective and injective complexes are DG-injective.

Lemma 3.11. If E € £ and E — I is an injective envelope, then
E — I is a DG-injective envelope.

Proof. Let 0 = E - I — E — 0 be exact. Since E and I are exact,
sois E'. Hence if I' is DG-injective, Ext'(E',I') = 0 and so Hom (I,I') —
Hom (E,I') — 0 is exact. So since I is DG-injective, E — I is a DG-
injective preenvelope. But then since it is an injective envelope, we see
that it is a DG-injective envelope. O.

Theorem 3.12. Every complex X has a DG-injective envelope X — I.
Such an envelope is injective and is a quasi-isomorphism. A morphism
X — I of complezes is a DG-injective envelope of X if and only if it is
injective, if I is DG-injective, if X — I is a quasi-isomorphism, and if
there are no ezact subcomplezes E C I such that XN E =0 and E # 0.
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Proof. The proof that X has a DG-injective envelope is a straight-
forward modification of the proof of Theorem 6.1 in [13]. In that proof we
replace the class of modules of finite projective dimension with the class
of exact complexes and note that this class of complexes is closed under
inductive limits.

Since every DG-injective preenvelope X — [ is injective, so is such an
envelope. So then if X — I is a DG-injective envelope, I/X € 1(£1) =&
by Proposition 3.6 and by Lemma 3.11. But I/X exact implies that X — I
is a homology isomorphism.

For an alternate argument note that if X — I is an injective homology
isomorphism with I' DG-injective (which exists by Spaltenstein), then an
envelope X — I is a retract of X — I'. Hence I/X is a retract of the exact
I'/X and so is exact.

If X — I is a DG-injective envelope (so X — I is an injection), let
E C I be an exact complex with X N E = 0. Since the injective envelope,
say J, of E is the DG-injective envelope and since I is DG-injective, E — I
can be extended to a map f : J — I. f is injective since E is essential
in J. But then X N f(J) = 0 since F is essential in f(J). Since J is
also exact, we see we can assume the original E is injective. Then I/F
is also DG-injective. Since X — I is a homology isomorphism and since
H(E)=0, X — I/FE is a homology isomorphism.

This gives an exact sequence 0 -+ X — I/E — F — 0 with F ex-
act. But then X — I/FE is a DG-injective preenvelope. Hence there is a
commutative diagram

I
7

X o IJE
N4
I

with I — I/E the canonical surjection. Since X — [ is an envelope,
I - I/E — I is an automorphism of I and so E = 0.
Conversely, if X — I is an injective DG-injective preenvelope of X,
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which is a homology isomorphism, there is a commutative diagram

b
v 1N\
~ e N~

Since I — I' — I is an automorphism of I, J = Ker (I — I) is a retract
of I and so is DG-injective. Since X — I and X — I' are homology
isomorphisms, J is exact, so J € £L NE. So by Proposition 3.7, J is
injective. Since X NJ = 0 we get that J = 0 and so I' 5 Iis an
isomorphism. Hence X — I "is an envelope. O

Corollary 3.13. The DG-injective envelope X — I of a complez X
1s such that I is injective if and only if X is ezact.

Proof. By Lemma 3.11, the DG-injective envelope of an exact complex
is injective.

Now let X — I be a DG-injective envelope and assume [ is injective.
If0 - X -1 — E — 0 is exact then we know E is an exact complex by
the preceeding theorem, then since I and E are exact, so is X. O

Corollary 3.14. If0 =2 X 5 Iy = Iy — I_9 = -+ i3 a minimal
DG-injective resolution of X then each I_; for i > 1 is injective. Iy is
injective if and only if X is ezact.

Proof. By Theorem 3.12, X — I, is injective and a quasi-isomorphism,
so Ip/X is exact. So by Lemma 3.11, I_, is injective. Repeating this
argument we get I_o, I_3, ... injective.

If X is exact, then since Io/X is exact, Iy is exact. So Iy € £+ NE and
so by Proposition 3.7, Iy is injective. Conversely, if I is injective, then I
is exact and so X is exact. O

Proposition 3.15. For a DG-injective complez I, the following are
equivalent:

a) if E C I is an ezact complez, then E =0
b) if J C I is an injective subcomplez, then J =0
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c) for each n, Z"(I) is essential in I".

Proof. a) — b) since injective complexes are exact.

To argue b) — c) assume Z™(I) is not essential in I™. Then there is
an injective submodule M C I" with Z"(J)N M = 0 and M # 0. But
then 0"|M is an injection. But then---0 - M — 9*(M) -0 — - is
non-zero injective subcomplex of I.

c) = b).

An injective complex J C I is the direct sum of complexes of the form
0 M —I—(+1 M — 0 — --- where M is an injective module. But by c),
every such M must be 0. Hence J =0.

b) = a).

If E C I is exact, then as in the proof of Theorem 3.12 we see that we
have E C J C I with J an injective envelope of F. But then J = 0 implies
E=0.0

Definition. A DG-injective complex I is said to be minimal if
satisfies a), b), c) above.

Proposition 3.16. A DG-injective complez is the direct sum of an
injective complex and a minimal DG-injective complezx. This direct sum
decomposition is unique up to isomorphism.

Proof. For each n, we find a maximal submodule J® C I™ such that
J* N Ker (I* = I"*1) = 0. Clearly J" is injective. So I has the injective
subcomplex

e a3 02 I JIY) 50> -

The sum of these complexes is direct and is isomorphic to their external
direct product. Hence this sum is injective. Let I; be the sum. Then
for some I, we have I = I) + I, (direct). By construction we see that
I, is minimal. Now suppose we have another decomposition I = I 1 + I'2
(direct) with I, injective and I, minimal. Then ; NI, =0 for § = 1 N,
an injective envelope of S in I; projects injectively to a submodule of I;
(using the projection I — I, provided by the decomposition). Since I, is
minimal, we see that S = 0.

Hence I; projects injectively into IJI say with image J C Ii. Then J is
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a summand of Iy, so we have a decomposition I = J+ K + I, (direct). But
since I; then projects isomorphically onto J we have I = I+ K +I; (direct).
But then I, = I/I; = K—I—IJz. Since K is injective and I is minimal, K =0
and so I; projects isomorphically onto I;. Hence I = I, + I, (direct) and
so LI/l =1, 0O

Corollary 3.17. Given any complez X, there exists a quasi-
tsomorphism X — I with I a minimal DG-injective complex.

Proof. By Spaltenstein, there is a quasi-isomorphism X — I with / a
DG-injective complex. If I = I + I (direct) with I; injective and I min-
imal, then since H(I;) = 0, X — I is the desired homology isomorphism.
0 :

Theorem 3.18. Ewvery complez X has an ezxact cover E — X. Every
exact cover E — X is surjective and Ker (E — X) is DG-injective. A
morphism E = X of complezes is an ezact cover of X if and only if E is
ezact, E — X 1is surjective and Ker (E — X) is a minimal DG-injective
complez. If E — X is an ezact cover, E is injective if and only if X is
DG-injective.

Proof. Given X, by Spaltenstein’s theorem there is a homology iso-
morphism f : X — I with I DG-injective. So we have an exact sequence
0= I —= M(f) > X[1] = 0. Then M(f) is exact. Let E = M(f)[-1].
Then we have a surjective morphism E — X with the kernel I[-1] DG-
injective.

We claim E — X is an exact precover. For if E' is an exact com-
plex, Ext!(E',I[-1]) = 0 by Proposition 3.4, and so Hom (E',E) —
Hom (E',X) — 0 is exact. We then note that £ is closed under induc-
tive limits and modify the proof of Theorem 2.1 in [8] to argue that X has
an exact cover.

If ¢ : E —» X is an exact cover it is clearly surjective. I = Ker (F —
X) € &% by Proposition 1.1 and so is DG-injective. If I were not minimal,
by Proposition 3.16 it would have an injective subcomplex I; # 0. Then
if E = I + E, (direct), the projection map E — FEj3 gives rise to a map
f : E = E such that ¢o f = ¢ with f not an automorphism. Hence I must
be minimal.
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Conversely, suppose ¢ : E — X is a surjective morphism with F exact
and I = Ker (¢) a minimal DG-injective complex. Let £ — X be an exact
cover. Then noting that £ — X is an exact precover, we see there is a
commutative diagram

b 4— by < b
A VNG
St

But £ - E — E is an automorphism of E. So Ker (E — E) is a direct
summand of E (so is exact) contained in I = Ker (¢). Since I is minimal,
Ker (E = E) = 0 and so E = E is an isomorphism. Hence E — X is a
cover.

Now suppose X is DG-injective and £ — X an exact cover with I =
Ker (E — X). Then since I is DG-injectiveand 0 2 I -+ E - X = 0 is
exact, £ is DG-injective. But since F is also exact, by Proposition 3.7, E
is injective.

If on the other hand £ — X is an exact cover and E is injective, then
with I as above, the exactness of 0 -+ I -+ E — X — 0 along with the fact
that I and E are DG-injective give that X is DG-injective. O

Example. Let X be a complex concentrated at 0, so X = ---0 —
X>50-> - 0> X% > X' 5 X2 5 X% 5 ... is a minimal
injective resolution of the module X°, then the complex E = ---0 —

0 - X% > X! 5 X2 5 X3 - ... with the map E — X which is
the identity on X9 is an exact cover of X since we see that the kernel
++=30—-30— X! 5 X% ... is a minimal DG-injective complex.
Corollary 3.19. If--- =+ Ey - Ey - Eg - X — 0 is a minimal
ezact left resolution of a complez X, then each E;, i > 1 is injective and
Ey is injective if and only if X is DG-injective.
Proof. Immediate from the above theorem. O

Theorem 3.20. In C, Hom (—,~) is right balanced by L& x L.

Proof. f0 Y — Iy > 1y = I_5 — --- is any right £1-resolution of
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Y and P € +£, we must show that Hom (P, —) leaves the sequence exact.
From the construction of the sequence 0 - Y - I =+ 11 > 1.9 — -
we see that we only need show that if Y — I is a DG-injective preenvelope
and if C = Coker (Y — I), then Hom (P,I) — Hom (P,C) — 0 is exact.
Given another such DG-injective preenvelope Y — I with cokernel C, by
the definition of preenvelopes we see that if the diagram

0= Y= I—» C—0

I 4 {
0—- Y- I-> C-=0

is commutative, then the vertical maps give a homotopy equivalence be-
tween the two complexes (of complexes). Hence if Hom (P, —) leaves either
exact, it leaves the other exact. So we only need show Hom (P, —) leaves an
exact sequence 0 = Y — I —» F — 0 exact where E is DG-injective and
E is exact (and such a sequence exists by Theorem 3.12). Now let Q = FE
be a surjection with @ a projective complex. Then K = Ker (Q — F) is
exact so Ext'(P, E) = 0. Hence any map P — E can be lifted to a map
P — Q. Since any map ¢ — F has a lifting @) — I we see that any map
P — E can be lifted to a map P — I. Thus Hom (P,I) - Hom (P, E) = 0
is exact.

A dual argument shows that f 0 - D — P -+ X — 0 is exact
with P — X a DG-projective precover then whenever I is DG-injective,
Hom (P,I) — Hom (D,I) — 0 is exact. O

Lemma 3.21. Let I be a DG-injective complez and let id: I — I give
the ezact sequence 0 — I — M(id) — I[1] - 0. Then M(id) is injective
and M(id) — I[1] is an ezact precover. If I is minimal then I — M(id) is
an injective envelope and M (id) — I[1] is an ezact cover.

Proof. Since id is a homology isomorphism, M (id) is exact. Since I
and I[1] are DG-injective, so is M(id). Then by Proposition 3.7 M (id)
is injective. Since Ext'(E,I) = 0 for any exact E, Hom (E, M(id)) —
Hom (E, I[1]) — 0 is exact. So M(id) — I[1] is an exact precover.

Now suppose I is minimal. If M (id) is not an injective envelope of I,
then there is an injective subcomplex J C M (id) with INJ =0 and J # 0.
But J maps isomorphically to a subcomplex of I[1]. Since J is exact and
I[1] is minimal, we get a contradiction.

When I is minimal we get that M (id) — I[1] is an exact cover by
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Theorem 3.18. O

Corollary 3.22. A DG-injective complez I has injective dimension 0
or 0.

Proof. Immediate. O

Proposition 3.23. If P is a DG-projective complex and if id: P — P
has the associated ezact sequence 0 = P — M (id) — P[1] — 0, then M(id)
is projective and P — M (id) is an ezact preenvelope of P.

Proof. A dual argument. O

Corollary 3.24. A DG-projective complex has projective dimension
0 or <.

Proof. Immediate. O

Lemma 3.25. Let X,Y be complezes, f : X = Y a morphism and
let the exact sequence 0 — Y[-1] —» M(id)[-1] = Y — 0 be gotten from
id:Y =Y. Then f: X =Y has a lifting Y — M(id)[-1] if and only if
f is homotopic to 0.

Proof. Given such a lifting, let s be the composition of ¥ — M (id)[—1]
and the projection map M (id)[—1] — Y[-1]. From the definition of the
boundary operator in M (id)[—1] it follows that s is a homotopy between f
and 0.

Conversely such an s gives a lifting ¥ — M(id)[—1] in the obvious
manner. O

Proposition 3.26. FEvery complex X has an &-preenvelope.

Proof. Let N be an infinite cardinal number with Card X < N and
Card (R) < V.

Now let Ebe an exact complex and Sa subcomplex of E with Card(S) <
N. We claim there is an exact subcomplex E' C E with § C E and
Card (E') < N. For let Sy = S. Each element of Z(Sp) is in B(E). If we
choose y; € E with Oy, = z for each z € Z(E) and let S; be generated
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by all y, and by Sp, we get Card (S1) <N, Sg C 81 and Z(Sp) C B(S1).

If we repeat this proceedure with S; replacing Sy, we get a corresponding

Sy with S§; C S3. So then we get a sequence S = Sy C §1 C S C ---

of subcomplexes with Z(S,) C B(Sp+1) and Card (S,) < A for all n. If
o0

E = U S, then E' satisfies our requirements.

NT(LN? let U be some set with Card U > N. We consider the set of all
pairs (F, f) where F is an exact complex, FF C U (asaset) and f: X — F
is a morphism. If £ = IIF (the product over the set of (F, f)) and if
¢ : X — E is the morphism such that ¢ : X — E composed with the
projection map onto the (F, f) component is f we see from the preceeding
that ¢ : X — E is an exact preenvelope. O

Proposition 3.27. InC, Hom (—,—) is left balanced by & x .

Proof. By the preceeding Proposition and by Theorem 3.18 we get the
required resolutions. The other requirement of balance is immediate. O

4. Minimal Injective Resolutions (see [4] or [15] where the term
DG-injective resolution is used).

It is known that if X is bounded below, then X has a so-called " minimal
injective resolution”. This means that there is a quasi-isomorphism X — 7
where [ is a minimal DG-injective complex. Such an I will also be bounded
below.

If I, I, are bounded below minimal DG-injective complexes, any
quasi-isomorphism I; — I3 is an isomorphism. This fact can be used
to prove that a "minimal injective resolution” X — I as above is unique
up to isomorphism.

In this section we show that as a result of Spaltenstein’s work we no
longer need to restrict complexes to those which are bounded below to get
these results.

We use quotation marks with the term "minimal injective resolution”
since the definition above is not in agreement with our usage in this paper.
In the rest of the section we will refer to these resolutions by giving their
properties. ’

Lemma 4.1. If I is a minimal DG-injective compler and E — I is an
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ezact cover with kernel K, then K is a minimal DG-injective complez and
K — E is an injective envelope of K. And conversely if K is a minimal
DG-injective complex and K — E is an injective envelope with cokernel I,
then I is a minimal DG-injective complex and E — I is an ezact cover.

Proof. Given a minimal DG-injective complex I, let £ = M (id)[—1]
for id : I — I. Then we have the exact sequence

0— I[-1] > M(3id)[-1] > I =0

Clearly I[—1] is a minimal DG-injective complex. Also E = M(id)[-1] is
exact (and injective since E is also DG-injective). Then by Theorem 3.18
E — I is an exact cover. So letting K = I[—1] we get the first part of the
claim.

If K — E were not an injective envelope, there would be an injective
subcomplex J C E with KNJ =0, J # 0. But then E — I would map
J isomorphically onto an injective (so exact) subcomplex of I. Since I is
minimal, we get a contradiction. So K — F is an injective envelope.

For the second part of the Proposition, let I = K[1] and construct

0 — I[-1) » M(id)[-1] = T 50

as above. Then I[-1] = K and by the preceeding K = I[-1] —
M(id)[-1] = E is an injective envelope and we also have I = KJ[1] (i.e.
the cokernel of K — F) is a minimal DG-injective complex. O ‘

Lemma 4.2. Let I be a DG-injective complex and let f : X = I be a
morphism of complezes. Then the following are equivalent:

a) f is homotopic to 0.

b) f can be factored through an ezact cover E — I.

¢) f can be factored through some ezact complex F.
d) f can be factored through some injective complex J.

e) H(f)=0.

Proof. For id : I — I we have the exact sequence 0 — I[-1] —
M(id)[-1] = I — 0. By Lemma 3.21, M(id)[-1] — I is an exact cover
of I. By Lemma 3.25 f has a lifting to M (id)[—1] (i.e. f can be factored
through M (id)[—1] — I) if and only if homotopic to 0. Hence a) and b)
are equivalent.
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Since by Lemma 3.21, the exact cover E = M(id)[-1] = I of I is
injective (and of course exact), b) implies c¢) and d).

But each of ¢) and d) implies b) since E — I is a cover (and since
injective complexes I are exact).

Each of a), b), c) and d) implies e). And e) implies d) by Lemmas 3.21
and 3.25. O

Corollary 4.3. If I is a minimal DG-injective complez and S =
End (I) (the endomorphism ring of I) then any g € S which is homotopic
to 0 is in the Jacobson radical of S.

Proof. By the preceeding Lemma, any such g can be factored through
E — I where E — I is an exact cover of I. Hence, using the notation of
Lemma 4.1 we get a commutative diagram

0—- K- E—> I-0

I ) lid+g
0—- K- FE—- I-0

Since K — F is an injective envelope, £ — FE is an isomorphism. Hence
id + g is an isomorphism. Since the set of g € S homotopic to 0 is a
two-sided ideal of S, the claim is established. O

Theorem 4.4. If I) and Iy are minimal DG-injective complezes, any
quasi-isomorphism f : I; = I» is an isomorphism.

Proof. Let I; — J be an injective where J is an injective complex.
Then I; — I, ® J is an injective homology isomorphism, so we have an
exact sequence

0L ->bLbeJ—oE—-0

with E exact. This splits by Proposition 3.4. Hence we get a homology
isomorphism Iy — Io®J — I where I J — I is a retraction guaranteed
by the splitting. Call this morphism g. Then with id : I; — I; we have
go f —id can be factored through the exact complex J. Hence go f —id
is homotopic to 0. Hence by Corollary 4.3 id+ (go f —id) = go f is an
automorphism of I;.

Similarly, there is a morphism h : Iy — I so that A o g is an automor-
phism of Is.
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Hence f is an isomorphism of complexes. O

Theorem 4.5. Given any complez X, there is a homology isomor-
phism X — I where I is a minimal DG-injective complez. If ¢ : X — I1
and ¢o : X — I are two such morphisms, then there is a morphism
f : I, = Iy such that f o ¢y is homotopic to ¢o. Any such f is an isomor-
phism. Furthermore f is unique up to homotopy.

Proof. In Corollary 3.17 it was established that given X there is a
homology isomorphism X — I with I a minimal DG-injective complex.

Now let ¢; : X — I and ¢2 : X — I be as in the theorem. Let
X — J be an injective envelope of X. Then by familiar arguments we see
that X = I1 & J and X — I, & J are DG-injective preenvelopes, so there
is a commutative diagram

LeJ

/\
X {
Ny
LeaJ

Let f be the composition I; = I) @ J — I, ® J — I,. Then f is a quasi-
isomorphism and f o ¢; — ¢ can be factored through J. Hence by Lemma
4.2, f o ¢, is homotopic to ¢, and by Theorem 4.4 f is an isomorphism. -
The uniqueness of f follows from Lemma 4.2. O

Remarks. Given a complex X and a DG-injective envelope X — I, a
decomposition I = I + I (direct) with I injective and I> minimal gives a
"minimal injective resolution” X — I,. Then I; plays the role of Auslan-
der’s §-invariant in his theory of maximal Cohen-Macaulay approximations
(see [6] and [17]). In order that I; = 0 it is necessary that X have no exact
subcomplexes E # 0. It is not known if this condition guarantees that
I; = 0 but we conjecture that this is so.

IfY — I is a "minimal injective resolution” of ¥ the hypercohomology
groups Ext"(X,Y) are the homology modules of Hom (X, I) where X is
any complex (these are not the groups Ext"(X,Y’) used in this paper).

The results in this paper can be used to show that these hypercohomol-
ogy groups can be computed using a complete resolution (resembling Tate’s
complete resolutions (see [5])) associated withY. Let0 - T - E =Y — 0



44 E. E. ENOCHS, O. M. G. JENDA and J. XU

be an exact cover. Let
O=I—=2E,—-E3—---

be an injective resolution of 7 and let --- = E; - E; — I — 0 be a
minimal left £-resolution of I. Pasting along I, we have the complex

B E S E—E > FE -
Then the homology groups of
++-— Hom (X, F;) - Hom (X, Ey) - Hom (X, E_;) — -

are isomorphic to the hypercohomology groups Ext}(X,Y) as in [14].

If R # 0 then the category of complexes of left R-modules has infinite
global dimension even if R has finite left global dimension (i.e. the category
of left R-modules has finite global dimension). However if L.gl.dim R =n <
oo, then the right DG-injective dimension of every complex is at most n.

Similarly, if R is Iwanaga Gorenstein and the injective dimension of
R as an R-module is n on the left and right, then every module has right
Gorenstein injective dimension at most n even if l.gl.dim R = oco. (see
[10] for the definition of Gorenstein injective modules). This is another of
the many similarities which hold between the categories of complexes over
various rings and the categories of modules over Iwanaga Gorenstein rings.

In both situations there is a natural way to go from an infinite di-
mensional homological setting to a finite dimensional relative homological
setting.
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