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ON THE DIFFERENTIAL SUBMODULES OF
MODULES

MaMORU FURUYA and HirosHI NIITSUMA

§1. Introduction.

In [17], A. Seidenberg proved that if R is a Noetherian Ritt algebra,
then any differential ideal of R has a primary decomposition of a differential
version. This is extended by W. C. Brown and W. E. Kuan [5], and S.
Sato [12], under the assumption that the ring R is Noetherian. In [6],
we extend this result for differential ideals of rings which may be non-
Noetheian. Furthermore we showed some detailed results for differential
ideals. In this paper, we extend some results of higher derivations of rings
introduced in [6] to modules, using similar methods to those of [6].

In §2, we show some of the basic facts of a module over a commutative
ring. In §3, we consider the problem of determining conditions under which
the weak prime divisors of a differential submodule are also differential.
In §4, we study the class of modules in which primary decomposition of
a differential version holds. In paticular we show that if M is a strongly
Laskerian module over a commutative ring, then any differential submodule
of M has a primary decomposition of a differential version.

§2. Preliminaries.

In this section we collect some definitions and results for later use. All
rings in this paper are assumed to be commutative with a unit element and
all modules are assumed to be unitary. Furthermore we always denote a
ring by R and an R-module by M.

Let t be an indeterminate over R and R|[[t]] the formal power series
ring over R. Put R, = R[[t]]/(t™*') and My, = M ®r Ry, (m =1,2,...).
Then M, is an Rp,-module. Furthermore we put M([[t]] = %iLan‘ Then
M]|[t] is an R[[t]]-module. Particularly put Ry = R[[t]] and My = M([[t]]
(cf. [11], p.28).

A prime ideal P of R is called a weak associated pime of M if there
exists z € M such that P is a minimal element of the set of prime ideals
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containing anng(z) (the annihilator of z); We denote by Ass{z(M ) the set of
weak associated primes of M (cf. [3, IV, §1, Exercisel7]). For a submodule
N of M, the weak associated primes of the R-module M/N are referred to
as the weak prime divisors of N.

We say that a € R is a zero-divisor of M if there exists a non-zero
z € M such that axz = 0. The set of zero-divisors of M is written Zgr(M).

For a submodule @ of M, if Ass{i(JW /@) consists of one element, then
we say that Q is primary in M. Furthermore if Ass{z(M /Q) = {P}, then
we say that Q is P-primary in M (cf. [3, IV, §2, Exercise 12] ).

Let M be a finitely generated R-module. We say that a P-primary
submodule Q of M is strongly primary in M if anng(M/Q) contains a
power of P (cf. [3, IV, §2, Exercise 27]). _

We say that M is a (strongly) Laskerian R-module if M is finitely
generated as an R-module and every submodule of M can be written as
an intersection of a finite number of (strongly) primary submodules. We
say a ring is (strongly) Laskerian if it has the property as a module over
itself . It is well known that if a module is Laskerian, or strongly Laskerian,
then so is any factor module, and any quotient module with respect to a
multiplicative subset in the ring. Particularly, a ring with a faithful module
of one of these types is also a ring of that type (cf. (3, IV, §2, Exercise 23,
28], (8], [9])-

Let S be a multiplicative subset of R, that is, S is a subset of R which
contains the product ab for all a,b € S, and which contains 1 but not 0.
Let f : M — S™!M be the natural mapping defined by f(z) = z/1 for
z € M. For a submodule N of M, the inverse image f~}(S7!N) of S7!N
under f is called the saturation of N in M with respect to S, and denoted
by satg(N). For a prime ideal P of R, satp(N) denote the saturation of N
in M with respect to R — P.

The following proposition is needed to prove Theorem (3.1).

Proposition (2.1). Let R be a ring, t an indeterminate over R
and M a strongly Laskerian R-module. If Q is a primary submodule of M
with Ass{z(M/Q) = {P}, then Q[[t]] is a primary submodule of M{[t]] with

Asslyn (MII)/QUA) = {PLEN)-

Proof. Replacing M([[t]] by M([t]]/Q[[t]](= M/Q[[t]]), we may assume
Q[[t]] = (0). Thus Q = (0) is a primary submodule of M with Ass{-{(M )=
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{P}, whence anng(M) is a P-primary ideal of R. Furthermore we may
suppose that annp; (M([t]]) = (0). Then we have anng(M) = (0) and so
(0) is a P-primary ideal of R. Suppose that a € R[[t]] — P[[t]]. Then we
shall show that a is not a zero-divisor of M[[t]]. Write a = ap + a1t +---,
where ag,a1,...,am—1 € P and a,, ¢ P. Since P = m, we have that
g, a1, .., Gm—1 are nilpotent and so b := ag + a1t + -+ + ap_1t™ ! is
nilpotent. Therefore it is enough to show that a — b is not a zero-divisor of
M([[t]]. Since a—b = apt™+--- and ay, ¢ P = Zg(M), we have that a—b is
not a zero-divisor of M|[t]]. Now suppose that az = 0 and = # 0 ( a € R|[t]]
and z € M([t]] ). Then we shall show that a € \/annR[[t]](M [[t]]). Since

annpye (M[[t]) is P([t]]-primary, \/ annp (M([t]) = P[[]]. If a ¢ P[[t],
then a is not a zero-divisor of M[[t]], which is a contradiction. Thus (0) is
a primary submodule of M[[t]] with Assgyy (M[[t]]) = {P[[t]]}-

A derivation of R is an additive endomorphism d : R — R such that
d(ab) = d(a)b + ad(b) for every a,b € R. The set of all derivations of R is
denoted by Der(R).

For m < oo we define a higher derivation of length m of R to be a
sequence d = (dyp,d1,...,dy) of additive endomorphisms d, : R — R,
satisfying the conditions dp = 1 ( the identity mapping of R ) and
dn(ab) = Y di(a)d;(b) for 1 < n < m and a,b € R. The set of all

i+j=n
higher deriv;tions of length m of R is denoted by HDer™(R). Note that
the set HDer™(R) has a group structure (cf. [10]).

A derivation of M is an ordered pair (d, D), satisfying the following
two conditions:

(1) d € Der(R) and :

(2) D: M — M is an additive endomorphism such that D(az) =
d(a)r +aD(z) fora€ Rand z € M.

We denote the set of all derivations of an R-module M by Der(R, M). It
becomes an R-module in a natural way.

For m < oo, a higher derivation of length m of M is an ordered pair
(d, D), satisfying the following two conditions:

(1) d = (do, d1, ...,dm) € HDer™(R)

(2) D = (Do, Dy, ..., D) is a sequence of additive endomorphisms
D, : M — M such that Dy = 1 ( the identity mapping of M ) and
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Dy(az) = Z di(a)Dj(z) fora € R,z € M and1 <n < m.

i+j=n
We denote -i{:—ljle set of all higher derivations of length m of an R-module M
by HDer™(R, M).

We say that an ordered pair (d, D) is a higher derivation of length oo
of M if d = (dg, d1,...) and D = (Dy, Dy, ...) are infinite sequences such that
((do,d1, .-y dm), (Do, D1, ..., Drp)) € HDer™(R, M) for every 0 < m < oo.
The set of all higher derivations of length oo of an R-module M is denoted
by HDer*(R, M).

For any (d, D) € HDer™(R, M)(m < 00), put

fala) = Z( Z di(aj))tk for a = Zaiti € Ry, (a; € R).
k=0 i+j=k i=0

Then f4 is an automorphism of the ring R, such that fy(a) = amodt (a €
R) and fu(t) =t.
Furthermore put

m m
gp(z) = Z( z Di(z;))t* for z = inti € My, (z; € M).
k=0 i+j=k i=0

Then gp satisfies the following four conditions.

(1) gp : M, — M,, is a bijection.
(2) gp(z+y) =gp(z) +90(Y) (z.y € Mn).
(3) gp(z)=z mod t (z € M).

(4) gp(az) = fala)gp(z) (a € R,z € Mp).
We note that for (d, D), (f4,9p) is uniquely determined. Conversely, let
g : M,, — M,, be a mapping satisfying the above conditions (1), (2), (3)
and (4). Then, for an ordered pair (f4, g), there exists a unique ordered pair
(d, D) € HDer™(R, M) such that g = gp. Furthermore note that the sets
HDer™(R, M)(m < oo) have a group structure like that of H Der™(R) and
a higher derivation of a module has a unique extension to the localizations
(cf. [13],[14],[15]).

§3. Weak prime divisors of differential submodules.

Let R be a ring and M an R-module. Let (d,D) € Der(R,M).
An ideal I of R is called d-differential if d(I) C I, and a submod-
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ule N of M is called (d,D)-differential if D(N) C N. Similarly, let
(d,D) € HDer™(R, M) (m < oc). Anideal I of R is called d-differential if
d;(I) C I'foralli > 0, and a submodule N of M is called (d, D)-differential
if D;(N) C N for alli > 0.

In this section we consider the problem of detemining conditions un-
der which the weak prime divisors of a differential submodules are also
differential.

Theorem (3.1). Let R be a ring and M a strongly Laskerian R-
module. Suppose N is a submodule of M with Ass{z(JVI/N) ={Py,..., Pn}
and (d,D) € HDer*(R,M). If N is (d, D)-differential, then P, ..., P, are
d-differential.

Proof. Let N = Q1N --NQy, be an irredundant primary decomposition.
Put Assh,(M/Q;) = {P} (i = 1,...,n). Then Assh(M/N) = {P, ..., P,}.
Let t be an indeterminate over R. Then we have that N[[t]] = Q:[[t]] N
-+ N Qn[[t]], and each Q;[[t]] is a P;[[t]]-primary submodule of M([t]] by
Proposition (2.1). Therefore we have that

Asshyey (MIEY/NTE) = (P - PallE]) }-

In the group HDer™(R, M), we have that HDer®(R,M) > (d,D)™! =
(d~!,D7 '), whered™! = (1, —dy, —da+d?,---) and D™} = (1,—-D;, - Do+
D?,...). Since N is (d, D)-differential, N is (d, D) ~!-differential. Thus we
have that gp(N[[t]]) C N[[t] and gp-s(N[[t]}) = gp'(N[[t]) c NI,
where gp : M[[t]] = M][[t]] is the mapping corresponding to D. Hence
we get gp(N[[t]]) = N[[t]]. It is clear that gp(N[[t]]) = gn(@u[[t]}) N
---Ngp(Qx[[t]]), and each gp(Q;[[t]]) is a f4(F;[[t])-primary submodule of
M{[[t]], where f4 : R[[t]] — R[[t]] is the mapping corresponding to d. It
follows that

Assty (MI/NIE) = {fa(Pr[E]), -, fa(Ball)}-

Therefore, for any ¢, fq(P;[[t]]) = Pj[[t]] for some j. Hence we can eas-
ily check that i = j, and so f4(Bi[[t]]) = PFi[[t]] - Consequently P; is
d-differential.

Next we examine the problem on the Laskerian case. We show the fol-
lowing lemma by making use of the Krull intersection theorem for Laskerian
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modules ( cf.[8, Corollary 3.2] ).

Lemma (3.2). Let R be a ring containing the rational numbers and
M a Laskerian R-module. Suppose (d, D) € Der(R, M) and a is an element
of the Jacobson radical of R. If d(a) is a unit in R, then a ¢ Zr(M).

ocC
Proof. ff ax =0 (z € M), thenz € ﬂ a"M. By Corollary 3.2 of [8],

n=1

oo
we have ﬂ a®M = (0), and thus z = 0.

n=1

Proposition (3.3). Let R be a ring containing the rational num-
bers and M a Laskerian R-module. Suppose N is a submodule of M with
Ass{i(M/N) = {P~,...,P,} and (d,D) € Der(R,M). If N is (d,D)-
differential, then P, ..., P, are d-differential.

Proof. If P(€ ASS{Z(M /N)) is not d-differential, then there exists a € P
such that d(a) ¢ P. Now we consider the R-module M/N. Let D : M/N —
M /N be the mapping defined by D(z + N) = D(z) + N (z € M). Then
we have (d,D) € Der(R,M/N). We further consider the S~!R-module
S~1(M/N), where S = R— P. Let (d*, D*) € Der(S™'R,S™(M/N)) be a
unique extension of (d, D). Put b=a/1 (¢ S7'P). Then d*(b) is a unit in
S-1R, since d*(b) ¢ S™1P. Therefore b ¢ Zg-15(S~}(M/N)) by Lemma
(3.2). On the other hand, we may assume that NS =¢ (1 = 1,...,t)
and NS #¢ (i=t+1,...,n). Then, we have Assﬁ._lR(S‘l(M/N)) =
{S§~'P,,...,S71P}. It follows that Zg_1z(S"'M/S~IN)=S"'PU---U
S~1P,. Since P = P, for some i (1 < i < t) and a € P, we have b €
S™1P C Zg-1x(S~(M/N)). Thus we get a contradiction.

Proposition (3.4). Let R be a ring containing the rational num-
bers and M a Laskerian R-module. Suppose N is a submodule of M with
Ass{z(M/N) ={Py,...,P,} and (d,D) € HDer™(R,M) (m < o00). If N is
(d, D)-differential, then Py, ..., P, are d-differential.

Proof. For (dg,d,,...) and (Dg, D1,...), put 01=d;, d2=da — %d%,
and A; = Dy, Ay =Dy — %D%,. .. . Then (81, A1), (82, A2),... are deriva-
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tions of M (cf. [7], [1], [2], [13] ). Since N is (d, D)-differential, N is
(ér, Ar)-differential (r = 1,... ,m). Therefore Pi,..., P, are é,-differential
for all r by Proposition (3.3), and thus each P; is d-differential.

Proposition (3.5). Let R be a ring of characteristic 0 and let M be
a Laskerian R-module. Suppose that N is a submodule of M and (d, D) €
HDer™(R, M) (m < o0). Put {P,..,P.} = {P € Ass,(M/N)|PN Z =
(0)}, where Z (C R) is the rational integers. If N is (d, D)-differential,
then Pi,..., Py are d-differential.

Proof. Put S = Z — {0}. Then S is a multiplicative subset of R.
Furthermore S~!R contains the rational numbers and S~ M is a Laskerian
S~1R-module. Let (d*, D*) € HDer™(S~ 'R, S~1 M) be a unique extension
of (d, D). Since S™!N is (d*, D*)-differential and Assé_lR(S"ll\/I/S‘lN) =
{S§~'Py,..., 871 P}, it follows from Proposition (3.4) that S~ Py,...,S7' P,
are d*-differential. Therefore Py, ..., P; are also d-differential. In fact, for
any ST'P € Assg_lR(S‘lM/S‘lN) and for any a € P, we have d}(a/1) €
S~1P for all n. Thus we have d,(a) € P, because d},(a/1) = dnp(a)/1.

n

§4. Primary decomposition of differential submodules.

In this section we study the class of modules in which primary decom-
position of a differential version holds.

Proposition (4.1). Let R be a ring and M a strongly Laskerian
R-module. Suppose N is a submodule of M and (d,D) € HDer>*(R, M).
If N is (d, D)-differential, then N can be expressed as an irredundant in-
tersection of a finite number of primary submodules of M which are (d, D)-
differential.

Proof. Let N =Q1N---NQy be an irredundant primary decomposi-
tion, where @; (¢ = 1,---,n) is strongly primary submodules of M. Put
Ass{l(M/Qi) = {P} (i = 1,...,n). Then there exists an integer k¥ > 1
such that P*M C @Q; for all i. Put N} = PFM + N. Then we have
N C N} C Q. By Theorem (3.1), each F; is d-differential, and hence N}
is also (d, D)-differential. Furthermore we have that P¥ C anng(M/N}) C
anng(M/Q;) C P; for all 5. It follows that P; is minimal among the prime
ideals containing anng (M /N;). Put QF = satp, (V). Then @Q} is a primary
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submodule of M with Ass{{(ﬂ/[ /QF) = {P;} and Q7 is a (d, D)-differential.
Therefore we have that N C QF C Q;. Thus we get N =Q7N---NQ5.

In case of characteristic ¢ # 0, we have the following theorem.

Theorem (4.2). Let R be a ring of characteristic ¢ # 0 and M
a finitely generated R-module. Suppose N is a decomposable submodule of
M and (d,D) € HDer™(R, M) (m < o0). If N is (d, D)-differential, then
N can be ezpressed as an irredundant intersection of a finite number of
primary submodules of M which are (d, D)-differential.

Proof. Let N = Q1N---NQp be an irredundant primary decomposition
of N. Put Assh,(M/Q;) = {P;} and I; = anng(M/Q;) (i =1,...,n). Then
each I; is a P-primary ideal of R. Let Ii(t) be the ideal of R generated by
the set {a|a € I;}, where t = (m!)q. Since d,(a') = 0 for all a € R and
1 <n < m by [6, Lemma 2], Ii(t) is d-differential. Hence the submodule
1M of M is (d, D)-differential. Furthermore we have IV M c I,M C Q.
Put N; = I M+ N (i = 1,...,n). Then for each i, N; is (d, D)-differential,
N C N; C @; and Ii(t) C anng(M/N;) C I;. Therefore P; is minimal
among the prime ideals containing anng(M/Nj;). It follows that satp, (NV;)
is a P;-primary submodule of M. Put Q; = satp,(V;). Then we have that
Q; is (d, D)-differential and N C Q; C Q;. Thus we get N =@} n---NQ.,.

Next we consider the case of characteristic zero.

Proposition (4.3). Let R be a ring containing the rational numbers
and M a strongly Laskerian R-module. Suppose N is a submodule of M
and (d,D) € HDer™(R,M) (m < oo). If N is (d, D)-differential, then
N can be ezpressed as an irredundant intersection of a finite number of
primary submodules of M which are (d, D)-differential.

Proof. Any weak associated prime of N is (d, D)-differential by Propo-
sition (3.4). Thus we can obtain the proof in almost the same way as
Proposition (4.1). Therefore we omit the proof.

Proposition (4.4). Let R be a ring of characteristic 0 and M a
finitely generated R-module. Suppose N is a decomposable submodule of



ON THE DIFFERENTIAL SUBMODULES OF MODULES 21

M and (d,D) € HDer™(R, M) (m < o0). If N is (d, D)-differential and
anng(M/N)YNZ # (0), where Z(C R) is the rational integers, then N can
be expressed as an irredundant intersection of a finite number of primary
submodules of M which are (d, D)-differential.

Proof. Put I = anng(M/N), R = R/I and M = M/N. Suppose
INZ=(q) (g #0). Then the ring R is of characteristic ¢ and M is an R-
module. Since the ideal I is d-differential and V is (d, D)-differential, (d, D)
induces a higher derivation (d, D) € HDer™(R, M) in the natural way, that
is, dn(a +1I) = dy(a) + I (a € R) and Dy(z + N) = Dp(z) + N (a € N).
Since (0) is a (d, D)-differential decomposable submodule of M, there are
(d, D)-differential primary submodules Q,...,Q}, of M such that (0) =
Q) N---NQ., by Theorem (4.2). Let f : M — M be the natural mapping,
defined by f(z) =z + N. Put Q; = f~1(Q!). Then we have that each Q;
is a (d, D)-differential primary submodule of M and N = Q1 N---N Q.

The following theorem is a main result in the case of characteristic
zero.

Theorem (4.5). Let R be a ring of characteristic 0 and M a strongly
Laskerian R-module. Suppose that N is a submodule of M and
(d,D) € HDer™(R,M) (m < o). If N is (d, D)-differential, then N can
be expressed as an irredundant intersection of a finite number of primary
submodules of M which are (d, D)-differential.

Proof. Put I = anng(M/N). We may assume that INZ = (0) by
Proposition (4.4), where Z(C R) is the rational integers. Let N = @;N---N
Qr be an irredundant primary decomposition such that P,NZ = (0) (z =
1,..,t) and P,NZ # (0) (i = t + 1,...,n), where {P;} = Assh,(M/Q;) (i =
1,.n). Pt Ny =Qi1N---NQ¢ and Ny = Q41N -+ N Qp. Then we have
anng(M/Nq) N Z # (0).

First we consider the S~!R-module S~!M, where S = Z — {0}. The
ring S~! R contains the rational numbers and S~' N is a strongly Laskerian
S~!R-module. Let (d*, D*) € HDer™(S™!R,S~1M) be a unique exten-
sion of (d, D). Then S~!N(= §~!N;) is a (d*, D*)-differential submodule
of S~'M. Hence S™!N can be written as an intersection @} N---N Q. of
primary submodules @} of S~!M which are (d*, D*)-differential by Propo-
sition (4.3). Put Qf = f~YQ) (i = 1,...,7), where f : M — S™IM
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is the natural mapping, defined by f(z) = z/1. Then we have that
N; = QiN---NQ; and Q1, ..., Q5 are (d, D)-differential primary submodules
of M.

Next we consider the R-module M, where R = R/I and M = M/N.
Then R is a ring of characteristic 0 and M is a strongly Laskerian R-module.
Put N;/N = N; and Np/N = N,. Since N = Ny N N,, we have Ny N Ny =
(0). Furthermore we have anng(M/Ns) = annp(M/N2) = Anngp(M/N>),
and hence anng(M/Ny) N Z = (q) for some g # 0. Put J = gM. Then we
have that Ny O J and anng(M/J)NZ # (g), and so Ny N J = (0). Since
I is d-differential and N is (d, D)-differential, (d, D) induces the higher
derivation (d, D) € HDer™(R, M) in the natural way. The submodule
J is clearly (d, D)-differential. It follows from Proposition (4.4) that J
can be written as an intersection @] N--- N Q% of primary submodules
Q" of M which are (d, D)-differential. Put Q* = ¢~ }(Q}) (i = 1,...,5)
and J = g~!(J), where g : M — M is the natural mapping, defined by
g(z) = z+ N. Then Q3i%,...,Q}* are primary and (d, D)-differential.
Therefore we have N = g71(0) = g~ }(N; N J) = ¢g"{(V) Ng~I(J) =
NNQ7N---NQYy=Q1N---NErNQT* N---NQ;*. This completes the
proof.

As the case of arbitrary characteristic, we have the following theorem,
by (4.1), (4.2) and (4.5).

Theorem (4.6). Let R be a ring and M a strongly Laskerian R-
module. Suppose N is a submodule of M and (d, D) € HDer™(R, M) (m <
oc). If N is (d, D)-differential, then N can be expressed as an irredun-
dant intersection of a finite number of primary submodules of M which are
(d, D)-differential.

The following result is a generalization of Theorem 6 of [12] to the
strongly Laskerian case.

Corollary (4.7). Let R be a ring and M a strongly Laskerian R-
module. Suppose N is a submodule of M and (d,D) € Der(R,M). If
N is (d, D)-differential, then N can be expressed as an irredundaent inter-
section of a finite number of primary submodules of M which are (d,D)-
differential. .
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