ON THE DIFFERENTIAL SUBMODULES OF MODULES

MAMORU FURUYA and HIROSHI NIITSUMA

§1. Introduction.

In [17], A. Seidenberg proved that if R is a Noetherian Ritt algebra, then any differential ideal of R has a primary decomposition of a differential version. This is extended by W. C. Brown and W. E. Kuan [5], and S. Sato [12], under the assumption that the ring R is Noetherian. In [6], we extend this result for differential ideals of rings which may be non-Noetheian. Furthermore we showed some detailed results for differential ideals. In this paper, we extend some results of higher derivations of rings introduced in [6] to modules, using similar methods to those of [6].

In $\S 2$, we show some of the basic facts of a module over a commutative ring. In $\S 3$, we consider the problem of determining conditions under which the weak prime divisors of a differential submodule are also differential. In $\S 4$, we study the class of modules in which primary decomposition of a differential version holds. In paticular we show that if M is a strongly Laskerian module over a commutative ring, then any differential submodule of M has a primary decomposition of a differential version.

§2. Preliminaries.

In this section we collect some definitions and results for later use. All rings in this paper are assumed to be commutative with a unit element and all modules are assumed to be unitary. Furthermore we always denote a ring by R and an R-module by M.

Let t be an indeterminate over R and R[[t]] the formal power series ring over R. Put $R_m = R[[t]]/(t^{m+1})$ and $M_m = M \otimes_R R_m$ (m = 1, 2, ...). Then M_m is an R_m -module. Furthermore we put $M[[t]] = \varprojlim_{m \to \infty} M_m$. Then M[[t]] is an R[[t]]-module. Particularly put $R_{\infty} = R[[t]]$ and $M_{\infty} = M[[t]]$ (cf. [11], p.28).

A prime ideal P of R is called a weak associated pime of M if there exists $x \in M$ such that P is a minimal element of the set of prime ideals

containing $\operatorname{ann}_R(x)$ (the annihilator of x); We denote by $\operatorname{Ass}_R^f(M)$ the set of weak associated primes of M (cf. [3, IV, §1, Exercise17]). For a submodule N of M, the weak associated primes of the R-module M/N are referred to as the weak prime divisors of N.

We say that $a \in R$ is a zero-divisor of M if there exists a non-zero $x \in M$ such that ax = 0. The set of zero-divisors of M is written $Z_R(M)$.

For a submodule Q of M, if $\operatorname{Ass}_R^f(M/Q)$ consists of one element, then we say that Q is *primary* in M. Furthermore if $\operatorname{Ass}_R^f(M/Q) = \{P\}$, then we say that Q is P-primary in M (cf. [3, IV, §2, Exercise 12]).

Let M be a finitely generated R-module. We say that a P-primary submodule Q of M is strongly primary in M if $\operatorname{ann}_R(M/Q)$ contains a power of P (cf. [3, IV, §2, Exercise 27]).

We say that M is a (strongly) Laskerian R-module if M is finitely generated as an R-module and every submodule of M can be written as an intersection of a finite number of (strongly) primary submodules. We say a ring is (strongly) Laskerian if it has the property as a module over itself. It is well known that if a module is Laskerian, or strongly Laskerian, then so is any factor module, and any quotient module with respect to a multiplicative subset in the ring. Particularly, a ring with a faithful module of one of these types is also a ring of that type (cf. $[3, IV, \S 2, Exercise 23, 28], [8], [9])$.

Let S be a multiplicative subset of R, that is, S is a subset of R which contains the product ab for all $a, b \in S$, and which contains 1 but not 0. Let $f: M \longrightarrow S^{-1}M$ be the natural mapping defined by f(x) = x/1 for $x \in M$. For a submodule N of M, the inverse image $f^{-1}(S^{-1}N)$ of $S^{-1}N$ under f is called the saturation of N in M with respect to S, and denoted by $\operatorname{sat}_S(N)$. For a prime ideal P of R, $\operatorname{sat}_P(N)$ denote the saturation of N in M with respect to R - P.

The following proposition is needed to prove Theorem (3.1).

Proposition (2.1). Let R be a ring, t an indeterminate over R and M a strongly Laskerian R-module. If Q is a primary submodule of M with $Ass_R^f(M/Q) = \{P\}$, then Q[[t]] is a primary submodule of M[[t]] with $Ass_{R[[t]]}^f(M[[t]]/Q[[t]]) = \{P[[t]]\}.$

Proof. Replacing M[[t]] by M[[t]]/Q[[t]] (= M/Q[[t]]), we may assume Q[[t]] = (0). Thus Q = (0) is a primary submodule of M with $\operatorname{Ass}_{R}^{f}(M) = (0)$

 $\{P\}$, whence $\operatorname{ann}_R(M)$ is a P-primary ideal of R. Furthermore we may suppose that $\operatorname{ann}_{R[[t]]}(M[[t]])=(0)$. Then we have $\operatorname{ann}_R(M)=(0)$ and so (0) is a P-primary ideal of R. Suppose that $a\in R[[t]]-P[[t]]$. Then we shall show that a is not a zero-divisor of M[[t]]. Write $a=a_0+a_1t+\cdots$, where $a_0,a_1,...,a_{m-1}\in P$ and $a_m\notin P$. Since $P=\sqrt{(0)}$, we have that $a_0,a_1,...,a_{m-1}$ are nilpotent and so $b:=a_0+a_1t+\cdots+a_{m-1}t^{m-1}$ is nilpotent. Therefore it is enough to show that a-b is not a zero-divisor of M[[t]]. Since $a-b=a_mt^m+\cdots$ and $a_m\notin P=Z_R(M)$, we have that a-b is not a zero-divisor of M[[t]]. Now suppose that ax=0 and $x\neq 0$ ($a\in R[[t]]$ and $x\in M[[t]]$). Then we shall show that $a\in \sqrt{\operatorname{ann}_{R[[t]]}(M[[t]])}$. Since $\operatorname{ann}_{R[[t]]}(M[[t]])$ is P[[t]]-primary, $\sqrt{\operatorname{ann}_{R[[t]]}(M[[t]])}=P[[t]]$. If $a\notin P[[t]]$, then a is not a zero-divisor of M[[t]], which is a contradiction. Thus (0) is a primary submodule of M[[t]] with $\operatorname{Ass}_{R[[t]]}(M[[t]])=\{P[[t]]\}$.

A derivation of R is an additive endomorphism $d: R \longrightarrow R$ such that d(ab) = d(a)b + ad(b) for every $a, b \in R$. The set of all derivations of R is denoted by Der(R).

For $m \leq \infty$ we define a higher derivation of length m of R to be a sequence $d=(d_0,d_1,...,d_m)$ of additive endomorphisms $d_n:R\longrightarrow R$, satisfying the conditions $d_0=1$ (the identity mapping of R) and $d_n(ab)=\sum_{i+j=n}d_i(a)d_j(b)$ for $1\leq n\leq m$ and $a,b\in R$. The set of all

higher derivations of length m of R is denoted by $HDer^m(R)$. Note that the set $HDer^m(R)$ has a group structure (cf. [10]).

A derivation of M is an ordered pair (d, D), satisfying the following two conditions:

- (1) $d \in Der(R)$ and
- (2) $D: M \longrightarrow M$ is an additive endomorphism such that D(ax) = d(a)x + aD(x) for $a \in R$ and $x \in M$.

We denote the set of all derivations of an R-module M by Der(R, M). It becomes an R-module in a natural way.

For $m < \infty$, a higher derivation of length m of M is an ordered pair (d, D), satisfying the following two conditions:

- (1) $d = (d_0, d_1, ..., d_m) \in HDer^m(R)$
- (2) $D = (D_0, D_1, ..., D_m)$ is a sequence of additive endomorphisms $D_n : M \longrightarrow M$ such that $D_0 = 1$ (the identity mapping of M) and

$$D_n(ax) = \sum_{i+j=n} d_i(a)D_j(x)$$
 for $a \in R, x \in M$ and $1 \le n \le m$.

We denote the set of all higher derivations of length m of an R-module M by $HDer^m(R, M)$.

We say that an ordered pair (d, D) is a higher derivation of length ∞ of M if $d = (d_0, d_1, ...)$ and $D = (D_0, D_1, ...)$ are infinite sequences such that $((d_0, d_1, ..., d_m), (D_0, D_1, ..., D_m)) \in HDer^m(R, M)$ for every $0 \le m < \infty$. The set of all higher derivations of length ∞ of an R-module M is denoted by $HDer^{\infty}(R, M)$.

For any $(d, D) \in HDer^m(R, M) (m \leq \infty)$, put

$$f_d(a) = \sum_{k=0}^m (\sum_{i+j=k} d_i(a_j)) t^k$$
 for $a = \sum_{i=0}^m a_i t^i \in R_m \ (a_i \in R).$

Then f_d is an automorphism of the ring R_m such that $f_d(a) \equiv a \mod t$ $(a \in R)$ and $f_d(t) = t$.

Furthermore put

$$g_D(x) = \sum_{k=0}^m (\sum_{i+j=k} D_i(x_j)) t^k$$
 for $x = \sum_{i=0}^m x_i t^i \in M_m \ (x_i \in M).$

Then g_D satisfies the following four conditions.

- (1) $g_D: M_m \longrightarrow M_m$ is a bijection.
- (2) $g_D(x+y) = g_D(x) + g_D(y) \ (x, y \in M_m).$
- (3) $g_D(x) \equiv x \mod t \ (x \in M).$
- (4) $g_D(ax) = f_d(a)g_D(x) \ (a \in R_m, x \in M_m).$

We note that for (d, D), (f_d, g_D) is uniquely determined. Conversely, let $g: M_m \longrightarrow M_m$ be a mapping satisfying the above conditions (1), (2), (3) and (4). Then, for an ordered pair (f_d, g) , there exists a unique ordered pair $(d, D) \in HDer^m(R, M)$ such that $g = g_D$. Furthermore note that the sets $HDer^m(R, M) (m \leq \infty)$ have a group structure like that of $HDer^m(R)$ and a higher derivation of a module has a unique extension to the localizations (cf. [13],[14],[15]).

§3. Weak prime divisors of differential submodules.

Let R be a ring and M an R-module. Let $(d, D) \in Der(R, M)$. An ideal I of R is called d-differential if $d(I) \subset I$, and a submod-

ule N of M is called (d, D)-differential if $D(N) \subset N$. Similarly, let $(d, D) \in HDer^m(R, M)$ $(m \leq \infty)$. An ideal I of R is called d-differential if $d_i(I) \subset I$ for all $i \geq 0$, and a submodule N of M is called (d, D)-differential if $D_i(N) \subset N$ for all $i \geq 0$.

In this section we consider the problem of determining conditions under which the weak prime divisors of a differential submodules are also differential.

Theorem (3.1). Let R be a ring and M a strongly Laskerian R-module. Suppose N is a submodule of M with $Ass_R^f(M/N) = \{P_1, ..., P_n\}$ and $(d, D) \in HDer^{\infty}(R, M)$. If N is (d, D)-differential, then $P_1, ..., P_n$ are d-differential.

Proof. Let $N = Q_1 \cap \cdots \cap Q_n$ be an irredundant primary decomposition. Put $\operatorname{Ass}_R^f(M/Q_i) = \{P_i\}$ (i = 1, ..., n). Then $\operatorname{Ass}_R^f(M/N) = \{P_1, ..., P_n\}$. Let t be an indeterminate over R. Then we have that $N[[t]] = Q_1[[t]] \cap \cdots \cap Q_n[[t]]$, and each $Q_i[[t]]$ is a $P_i[[t]]$ -primary submodule of M[[t]] by Proposition (2.1). Therefore we have that

$$\operatorname{Ass}^f_{R[[t]]}(M[[t]]/N[[t]]) = \{P_1[[t]], ..., P_n[[t]] \}.$$

In the group $HDer^{\infty}(R,M)$, we have that $HDer^{\infty}(R,M)\ni (d,D)^{-1}=(d^{-1},D^{-1})$, where $d^{-1}=(1,-d_1,-d_2+d_1^2,\cdots)$ and $D^{-1}=(1,-D_1,-D_2+D_1^2,\cdots)$. Since N is (d,D)-differential, N is $(d,D)^{-1}$ -differential. Thus we have that $g_D(N[[t]])\subset N[[t]]$ and $g_{D^{-1}}(N[[t]])=g_D^{-1}(N[[t]])\subset N[[t]]$, where $g_D:M[[t]]\to M[[t]]$ is the mapping corresponding to D. Hence we get $g_D(N[[t]])=N[[t]]$. It is clear that $g_D(N[[t]])=g_D(Q_1[[t]])\cap \cdots\cap g_D(Q_n[[t]])$, and each $g_D(Q_i[[t]])$ is a $f_d(P_i[[t]])$ -primary submodule of M[[t]], where $f_d:R[[t]]\to R[[t]]$ is the mapping corresponding to d. It follows that

$$\operatorname{Ass}^f_{R[[t]]}(M[[t]]/N[[t]]) = \{f_d(P_1[[t]]), ..., f_d(P_n[[t]])\}.$$

Therefore, for any i, $f_d(P_i[[t]]) = P_j[[t]]$ for some j. Hence we can easily check that i = j, and so $f_d(P_i[[t]]) = P_i[[t]]$. Consequently P_i is d-differential.

Next we examine the problem on the Laskerian case. We show the following lemma by making use of the Krull intersection theorem for Laskerian modules (cf.[8, Corollary 3.2]).

Lemma (3.2). Let R be a ring containing the rational numbers and M a Laskerian R-module. Suppose $(d, D) \in Der(R, M)$ and a is an element of the Jacobson radical of R. If d(a) is a unit in R, then $a \notin Z_R(M)$.

Proof. If
$$ax = 0$$
 $(x \in M)$, then $x \in \bigcap_{n=1}^{\infty} a^n M$. By Corollary 3.2 of [8], we have $\bigcap_{n=1}^{\infty} a^n M = (0)$, and thus $x = 0$.

Proposition (3.3). Let R be a ring containing the rational numbers and M a Laskerian R-module. Suppose N is a submodule of M with $Ass_R^f(M/N) = \{P_1, ..., P_n\}$ and $(d, D) \in Der(R, M)$. If N is (d, D)-differential, then $P_1, ..., P_n$ are d-differential.

Proof. If $P(\in \operatorname{Ass}_R^f(M/N))$ is not d-differential, then there exists $a \in P$ such that $d(a) \notin P$. Now we consider the R-module M/N. Let $\bar{D}: M/N \to M/N$ be the mapping defined by $\bar{D}(x+N) = D(x) + N$ $(x \in M)$. Then we have $(d, \bar{D}) \in Der(R, M/N)$. We further consider the $S^{-1}R$ -module $S^{-1}(M/N)$, where S = R - P. Let $(d^*, \bar{D}^*) \in Der(S^{-1}R, S^{-1}(M/N))$ be a unique extension of (d, \bar{D}) . Put b = a/1 $(\in S^{-1}P)$. Then $d^*(b)$ is a unit in $S^{-1}R$, since $d^*(b) \notin S^{-1}P$. Therefore $b \notin Z_{S^{-1}R}(S^{-1}(M/N))$ by Lemma (3.2). On the other hand, we may assume that $P_i \cap S = \phi$ $(i = 1, \ldots, t)$ and $P_i \cap S \neq \phi$ $(i = t + 1, \ldots, n)$. Then, we have $\operatorname{Ass}_{S^{-1}R}^f(S^{-1}(M/N)) = \{S^{-1}P_1, \ldots, S^{-1}P_t\}$. It follows that $Z_{S^{-1}R}(S^{-1}M/S^{-1}N) = S^{-1}P_1 \cup \cdots \cup S^{-1}P_t$. Since $P = P_i$ for some i $(1 \le i \le t)$ and $a \in P$, we have $b \in S^{-1}P \subset Z_{S^{-1}R}(S^{-1}(M/N))$. Thus we get a contradiction.

Proposition (3.4). Let R be a ring containing the rational numbers and M a Laskerian R-module. Suppose N is a submodule of M with $Ass_R^f(M/N) = \{P_1, ..., P_n\}$ and $(d, D) \in HDer^m(R, M)$ $(m \leq \infty)$. If N is (d, D)-differential, then $P_1, ..., P_n$ are d-differential.

Proof. For
$$(d_0, d_1, ...)$$
 and $(D_0, D_1, ...)$, put $\delta_1 = d_1, \, \delta_2 = d_2 - \frac{1}{2}d_1^2, ...$ and $\Delta_1 = D_1, \, \Delta_2 = D_2 - \frac{1}{2}D_1^2, ...$ Then $(\delta_1, \Delta_1), (\delta_2, \Delta_2), ...$ are deriva-

tions of M (cf. [7], [1], [2], [13]). Since N is (d, D)-differential, N is (δ_r, Δ_r) -differential (r = 1, ..., m). Therefore $P_1, ..., P_n$ are δ_r -differential for all r by Proposition (3.3), and thus each P_i is d-differential.

Proposition (3.5). Let R be a ring of characteristic 0 and let M be a Laskerian R-module. Suppose that N is a submodule of M and $(d, D) \in HDer^m(R, M)$ $(m \le \infty)$. Put $\{P_1, ..., P_t\} = \{P \in Ass_R^f(M/N) | P \cap \mathbf{Z} = \{0\}\}$, where \mathbf{Z} $(\subset R)$ is the rational integers. If N is (d, D)-differential, then $P_1, ..., P_t$ are d-differential.

Proof. Put $S = \mathbb{Z} - \{0\}$. Then S is a multiplicative subset of R. Furthermore $S^{-1}R$ contains the rational numbers and $S^{-1}M$ is a Laskerian $S^{-1}R$ -module. Let $(d^*, D^*) \in HDer^m(S^{-1}R, S^{-1}M)$ be a unique extension of (d, D). Since $S^{-1}N$ is (d^*, D^*) -differential and $\operatorname{Ass}_{S^{-1}R}^f(S^{-1}M/S^{-1}N) = \{S^{-1}P_1, ..., S^{-1}P_t\}$, it follows from Proposition (3.4) that $S^{-1}P_1, ..., S^{-1}P_t$ are d^* -differential. Therefore $P_1, ..., P_t$ are also d-differential. In fact, for any $S^{-1}P \in \operatorname{Ass}_{S^{-1}R}^f(S^{-1}M/S^{-1}N)$ and for any $a \in P$, we have $d_n^*(a/1) \in S^{-1}P$ for all n. Thus we have $d_n(a) \in P$, because $d_n^*(a/1) = d_n(a)/1$.

§4. Primary decomposition of differential submodules.

In this section we study the class of modules in which primary decomposition of a differential version holds.

Proposition (4.1). Let R be a ring and M a strongly Laskerian R-module. Suppose N is a submodule of M and $(d,D) \in HDer^{\infty}(R,M)$. If N is (d,D)-differential, then N can be expressed as an irredundant intersection of a finite number of primary submodules of M which are (d,D)-differential.

Proof. Let $N=Q_1\cap\cdots\cap Q_n$ be an irredundant primary decomposition, where Q_i $(i=1,\cdots,n)$ is strongly primary submodules of M. Put $\mathrm{Ass}_R^f(M/Q_i)=\{P_i\}$ (i=1,...,n). Then there exists an integer $k\geq 1$ such that $P_i^kM\subset Q_i$ for all i. Put $N_i^*=P_i^kM+N$. Then we have $N\subset N_i^*\subset Q_i$. By Theorem (3.1), each P_i is d-differential, and hence N_i^* is also (d,D)-differential. Furthermore we have that $P_i^k\subset \mathrm{ann}_R(M/N_i^*)\subset \mathrm{ann}_R(M/Q_i)\subset P_i$ for all i. It follows that P_i is minimal among the prime ideals containing $\mathrm{ann}_R(M/N_i^*)$. Put $Q_i^*=\mathrm{sat}_{P_i}(N_i^*)$. Then Q_i^* is a primary

submodule of M with $\operatorname{Ass}_R^f(M/Q_i^*) = \{P_i\}$ and Q_i^* is a (d, D)-differential. Therefore we have that $N \subset Q_i^* \subset Q_i$. Thus we get $N = Q_1^* \cap \cdots \cap Q_n^*$.

In case of characteristic $q \neq 0$, we have the following theorem.

Theorem (4.2). Let R be a ring of characteristic $q \neq 0$ and M a finitely generated R-module. Suppose N is a decomposable submodule of M and $(d, D) \in HDer^m(R, M)$ $(m < \infty)$. If N is (d, D)-differential, then N can be expressed as an irredundant intersection of a finite number of primary submodules of M which are (d, D)-differential.

Proof. Let $N=Q_1\cap\cdots\cap Q_n$ be an irredundant primary decomposition of N. Put $\operatorname{Ass}_R^f(M/Q_i)=\{P_i\}$ and $I_i=\operatorname{ann}_R(M/Q_i)$ (i=1,...,n). Then each I_i is a P_i -primary ideal of R. Let $I_i^{(t)}$ be the ideal of R generated by the set $\{a^t|a\in I_i\}$, where t=(m!)q. Since $d_n(a^t)=0$ for all $a\in R$ and $1\leq n\leq m$ by [6, Lemma 2], $I_i^{(t)}$ is d-differential. Hence the submodule $I_i^{(t)}M$ of M is (d,D)-differential. Furthermore we have $I_i^{(t)}M\subset I_iM\subset Q_i$. Put $N_i=I_i^{(t)}M+N$ (i=1,...,n). Then for each i,N_i is (d,D)-differential, $N\subset N_i\subset Q_i$ and $I_i^{(t)}\subset \operatorname{ann}_R(M/N_i)\subset I_i$. Therefore P_i is minimal among the prime ideals containing $\operatorname{ann}_R(M/N_i)$. It follows that $\operatorname{sat}_{P_i}(N_i)$ is a P_i -primary submodule of M. Put $Q_i'=\operatorname{sat}_{P_i}(N_i)$. Then we have that Q_i' is (d,D)-differential and $N\subset Q_i'\subset Q_i$. Thus we get $N=Q_1'\cap\cdots\cap Q_n'$.

Next we consider the case of characteristic zero.

Proposition (4.3). Let R be a ring containing the rational numbers and M a strongly Laskerian R-module. Suppose N is a submodule of M and $(d,D) \in HDer^m(R,M)$ $(m < \infty)$. If N is (d,D)-differential, then N can be expressed as an irredundant intersection of a finite number of primary submodules of M which are (d,D)-differential.

Proof. Any weak associated prime of N is (d, D)-differential by Proposition (3.4). Thus we can obtain the proof in almost the same way as Proposition (4.1). Therefore we omit the proof.

Proposition (4.4). Let R be a ring of characteristic 0 and M a finitely generated R-module. Suppose N is a decomposable submodule of

M and $(d, D) \in HDer^m(R, M)$ $(m < \infty)$. If N is (d, D)-differential and $\operatorname{ann}_R(M/N) \cap \mathbf{Z} \neq (0)$, where $\mathbf{Z}(\subset R)$ is the rational integers, then N can be expressed as an irredundant intersection of a finite number of primary submodules of M which are (d, D)-differential.

Proof. Put $I = \operatorname{ann}_R(M/N)$, $\bar{R} = R/I$ and $\bar{M} = M/N$. Suppose $I \cap \mathbf{Z} = (q)$ $(q \neq 0)$. Then the ring \bar{R} is of characteristic q and \bar{M} is an \bar{R} -module. Since the ideal I is d-differential and N is (d, D)-differential, (d, D) induces a higher derivation $(\bar{d}, \bar{D}) \in HDer^m(\bar{R}, \bar{M})$ in the natural way, that is, $\bar{d}_n(a+I) = d_n(a) + I$ $(a \in R)$ and $\bar{D}_n(x+N) = D_n(x) + N$ $(a \in N)$. Since (0) is a (\bar{d}, \bar{D}) -differential decomposable submodule of \bar{M} , there are (\bar{d}, \bar{D}) -differential primary submodules $Q'_1, ..., Q'_n$ of \bar{M} such that $(0) = Q'_1 \cap \cdots \cap Q'_n$ by Theorem (4.2). Let $f: M \to \bar{M}$ be the natural mapping, defined by f(x) = x + N. Put $Q_i = f^{-1}(Q'_i)$. Then we have that each Q_i is a (d, D)-differential primary submodule of M and $N = Q_1 \cap \cdots \cap Q_n$.

The following theorem is a main result in the case of characteristic zero.

Theorem (4.5). Let R be a ring of characteristic 0 and M a strongly Laskerian R-module. Suppose that N is a submodule of M and $(d,D) \in HDer^m(R,M)$ $(m < \infty)$. If N is (d,D)-differential, then N can be expressed as an irredundant intersection of a finite number of primary submodules of M which are (d,D)-differential.

Proof. Put $I = \operatorname{ann}_R(M/N)$. We may assume that $I \cap \mathbf{Z} = (0)$ by Proposition (4.4), where $\mathbf{Z}(\subset R)$ is the rational integers. Let $N = Q_1 \cap \cdots \cap Q_n$ be an irredundant primary decomposition such that $P_i \cap \mathbf{Z} = (0)$ (i = 1, ..., t) and $P_i \cap \mathbf{Z} \neq (0)$ (i = t + 1, ..., n), where $\{P_i\} = \operatorname{Ass}_R^f(M/Q_i)$ (i = 1, ..., n). Put $N_1 = Q_1 \cap \cdots \cap Q_t$ and $N_2 = Q_{t+1} \cap \cdots \cap Q_n$. Then we have $\operatorname{ann}_R(M/N_2) \cap \mathbf{Z} \neq (0)$.

First we consider the $S^{-1}R$ -module $S^{-1}M$, where $S=\mathbf{Z}-\{0\}$. The ring $S^{-1}R$ contains the rational numbers and $S^{-1}N$ is a strongly Laskerian $S^{-1}R$ -module. Let $(d^*, D^*) \in HDer^m(S^{-1}R, S^{-1}M)$ be a unique extension of (d, D). Then $S^{-1}N(=S^{-1}N_1)$ is a (d^*, D^*) -differential submodule of $S^{-1}M$. Hence $S^{-1}N$ can be written as an intersection $Q_1' \cap \cdots \cap Q_r'$ of primary submodules Q_i' of $S^{-1}M$ which are (d^*, D^*) -differential by Proposition (4.3). Put $Q_i^* = f^{-1}(Q_i')$ (i = 1, ..., r), where $f: M \to S^{-1}M$

is the natural mapping, defined by f(x) = x/1. Then we have that $N_1 = Q_1^* \cap \cdots \cap Q_r^*$ and $Q_1^*, ..., Q_r^*$ are (d, D)-differential primary submodules of M.

Next we consider the \bar{R} -module \bar{M} , where $\bar{R} = R/I$ and $\bar{M} = M/N$. Then \bar{R} is a ring of characteristic 0 and \bar{M} is a strongly Laskerian \bar{R} -module. Put $N_1/N = \bar{N}_1$ and $N_2/N = \bar{N}_2$. Since $N = N_1 \cap N_2$, we have $\bar{N}_1 \cap \bar{N}_2 = \bar{N}_1 \cap N_2$ (0). Furthermore we have $\operatorname{ann}_{\bar{R}}(\bar{M}/\bar{N}_2) = \operatorname{ann}_{\bar{R}}(M/N_2) = \overline{\operatorname{Ann}_{R}(M/N_2)}$, and hence $\operatorname{ann}_{\bar{R}}(\bar{M}/\bar{N}_2) \cap \mathbf{Z} = (q)$ for some $q \neq 0$. Put $\bar{J} = q\bar{M}$. Then we have that $\bar{N}_2 \supset \bar{J}$ and $\operatorname{ann}_{\bar{R}}(\bar{M}/\bar{J}) \cap \mathbf{Z} \neq (q)$, and so $\bar{N}_1 \cap \bar{J} = (0)$. Since I is d-differential and N is (d, D)-differential, (d, D) induces the higher derivation $(\bar{d}, \bar{D}) \in HDer^m(\bar{R}, \bar{M})$ in the natural way. The submodule \bar{J} is clearly (d,\bar{D}) -differential. It follows from Proposition (4.4) that Jcan be written as an intersection $Q_1'' \cap \cdots \cap Q_s''$ of primary submodules Q_i'' of M which are (\bar{d},\bar{D}) -differential. Put $Q_i^{**}=g^{-1}(Q_i'')$ (i=1,...,s)and $J = g^{-1}(\bar{J})$, where $g: M \to \bar{M}$ is the natural mapping, defined by g(x) = x + N. Then $Q_1^{**}, \dots, Q_s^{**}$ are primary and (d, D)-differential. Therefore we have $N=g^{-1}(0)=g^{-1}(\bar{N}_1\cap \bar{J})=g^{-1}(\bar{N}_1)\cap g^{-1}(\bar{J})=g^{-1}(\bar{N}_1)$ $N_1\cap Q_1^{**}\cap\cdots\cap Q_s^{**}=Q_1^*\cap\cdots\cap Q_r^*\cap Q_1^{**}\cap\cdots\cap Q_s^{**}$. This completes the proof.

As the case of arbitrary characteristic, we have the following theorem, by (4.1), (4.2) and (4.5).

Theorem (4.6). Let R be a ring and M a strongly Laskerian R-module. Suppose N is a submodule of M and $(d, D) \in HDer^m(R, M)$ ($m \le \infty$). If N is (d, D)-differential, then N can be expressed as an irredundant intersection of a finite number of primary submodules of M which are (d, D)-differential.

The following result is a generalization of Theorem 6 of [12] to the strongly Laskerian case.

Corollary (4.7). Let R be a ring and M a strongly Laskerian R-module. Suppose N is a submodule of M and $(d,D) \in Der(R,M)$. If N is (d,D)-differential, then N can be expressed as an irredundant intersection of a finite number of primary submodules of M which are (d,D)-differential.

REFERENCES

- S. ABU-SAYMEH, On Hasse-Schmidt higher derivations, Osaka J. Math., 23(1986), 506-508.
- [2] S. ABU-SAYMEH and M. IKEDA, On the higher derivations of commutative rings, Math. J. Okayama Univ., 29(1987), 83-90.
- [3] N. BOURBAKI, Commutative algebra, Addison-Wesley, Reading, Mass., 1972.
- [4] J. W. Brewer, Power series over commutative rings, Lecture Notes in Pure and Applied Mathematics, Vol. 64, Marcel Dekker, 1981.
- [5] W. C. Brown and W. E. Kuan, Ideals and higher derivations in commutative rings, Canad. J. Math., 24(1972), 400-415.
- [6] M. FURUYA, On the primary decomposition of differential ideals of strongly Laskerian rings, Hiroshima Math. J., 24(1994), 521-527.
- [7] N. HEEREMA, Derivations and embeddings of a field in its power series ring, Proc. Amer. Math. Soc., 11(1960), 188-194.
- [8] W. HEINZER and D. LANTZ, The Laskerian property in commutative rings, J. Algebra, 72-1(1981), 101-114.
- [9] W. Heinzer and J. Ohm, Locally noetherian commutative rings, Trans. Amer. Math. Soc., 158-2(1971), 273-284.
- [10] H. MATSUMURA, Integrable derivations, Nagoya Math. J., 87(1987), 227-245.
- [11] D. G. NORTHCOTT. Lessons on rings, modules and multiplications, Cambridge University Press. 1968.
- [12] A. NOWICKI, The primary decomposition of differential modules, Comment. Math. Prace Mat., 21(1979), 341-346.
- [13] P. RIBENBOIM, Higher derivations of rings. I, Rev. Roum. Math. Pures et Appl., 16(1)(1971), 77-110.
- [14] P. RIBENBOIM, Higher derivations of rings. II, Rev. Roum. Math. Pures et Appl., 16(2)(1971), 245-272.
- [15] P. RIBENBOIM, Higher derivations of modules, Portugaliae. Math. 39(1980), 381-397.
- [16] S. SATO, On the primary decomposition of differential ideals, Hiroshima Math. J., 6(1976), 55-59.
- [17] A. SEIDENBERG, Differential ideals in rings of finitely generated type, Amer. J. Math. Soc., 89(1967), 22-42.

M. Furuya
Department of Mathematics
Meijo University
Shiogamaguchi, Tenpaku
Nagoya, 468, Japan

H. NIITSUMA
FACULTY OF SCIENCE
SCIENCE UNIVERSITY OF TOKYO
1-3, KAGURAZAKA, SHINJUKU-KU
TOKYO, 162, JAPAN

(Received December 8, 1995)