THE PROPERTY SPECIAL (DF) FOR UNIT-REGULAR RINGS

Mamoru KUTAMI

In this paper, we shall consider about the property special (DF) for unit-regular rings. A unit-regular ring R is said to have the property special (DF) provided that nP is directly finite for every directly finite projective R-module P and each positive integer n. It is unknown that the property special (DF) holds or not for unit-regular rings.

In §1, we shall give the sufficient condition about the property special (DF) for unit-regular rings (Theorem 1.5), and using this resulut, we show that all factor rings of the following unit-regular rings have the property special (DF):

- (1) regular rings whose primitive factor rings are artinian
- (2) unit-regular rings satisfying general comparability
- (3) \aleph_0 -continuous regular rings
- (4) simple directly finite regular rings satisfying weak comparability (Corollary 1.8)
- (5) unit-regular rings satisfying s-comparability (Corollary 1.11). In §2, we shall give the characterization of the property special (DF) for unit-regular rings (Theorem 2.2).

Throughout this paper, R is a ring with identity and R-modules are unitary right R-modules.

§1. Preliminaries and the property special (DF).

Notation. For two R-modules P and Q, we use $P \lesssim Q$ (resp. $P \lesssim_{\oplus} Q$) to mean that P is isomorphic to a submodule of Q (resp. a direct summand of Q). For a submodule P of an R-module Q, $P \leq_{\oplus} Q$ means that P is a direct summand of Q. For a cardinal number k and an R-module P, kP denotes a direct sum of k-copies of P.

Definition. An R-module P is directly finite provided that P is not isomorphic to a proper direct summand of itself. If P is not directly finite, then P is said to be directly infinite. A ring R is said to be unit-regular ring if, for each $x \in R$, there exists a unit element (i.e. invertible element)

u of R such that xux = x.

All basic results concerning regular rings can be found in a K.R. Goodearl's book [3].

Lemma 1.1 ([1, Lemma 3.3]). Let R be a regular ring, and let A and B be finitely generated projective R-modules with $A \lesssim nB$ for some positive integer n. Then there exists a decomposition $A = A_1 \oplus A_2 \oplus \ldots \oplus A_n$ such that $B \gtrsim A_1 \gtrsim A_2 \gtrsim \ldots \gtrsim A_n$.

Lemma 1.2 ([5,Lemma 1]). Let R be a unit-regular ring, and P be a projective R-module with a cyclic decomposition $P = \bigoplus_{i \in I} P_i$. Then the following conditions (a) \sim (c) are equivalent:

- (a) P is directly infinite.
- (b) There exists a nonzero principal right ideal X of R such that $X \lesssim \bigoplus_{I \setminus \{i_1, \dots, i_n\}} P_i$ for all finite subsets $\{i_1, \dots, i_n\}$ of I.
- (c) There exists a nonzero principal right ideal X of R such that $\aleph_0 X \lesssim_{\mathfrak{M}} P$.

Definition. A regular ring R is said to have the property *special* (DF) provided that nP is directly finite for every directly finite projective R-module P and each positive integer n.

Note that a regular ring R has the property special (DF) if and only if 2P is directly finite for every directly finite projective R-module P.

Lemma 1.3 ([3,Proposition 2.18]). Let I be a two-sided ideal in a regular ring R, and let f_1, f_2, \ldots be a finite or countably infinite sequence of orthogonal idempotents in R/I. Then there exist orthogonal idempotents $e_1, e_2, \ldots \in R$ such that $\bar{e}_n = f_n$ for all n. Moreover, if $f_1 + \ldots + f_k = 1$ for some positive integer k, then the e_n can be chosen so that $e_1 + \ldots + e_k = 1$.

Lemma 1.4 ([3,Proposition 2.19]). Let I be a two-sided ideal in a regular ring R, and let A_1, \ldots, A_n be finitely generated projective R-modules such that the modules A_i/A_iI are pairwise isomorphic. Then there exist decompositions $A_i = B_i \oplus C_i$ for each i such that the modules B_i are pairwise isomorphic and each $C_i = C_iI$.

Theorem 1.5. Let R be a unit-regular ring. Assume that there exists a positive integer n such that for all $x, y \in R$

$$(2n)(xR) \lesssim 2(yR)$$
 implies $xR \lesssim yR$

Then R/I has the property special (DF) for all two-sided ideals I of R.

Proof. We can take a positive integer m such that $n \leq 2^{m-1}$. (Claim I). Assume that there exists a nonzero principal right ideal X of R such that

$$X \lesssim 2Q_1,\tag{1}$$

$$X \lesssim 2Q_2,\tag{2}$$

. . .

and

$$X \lesssim 2Q_{m+1} \tag{m+1}$$

,where the Q_i is a finitey generated projective R-module. Then we claim that $X \lesssim Q_1 \oplus Q_2 \oplus \ldots \oplus Q_{m+1}$. From Lemma 1.1 and (1), there exists a decomposition $X = X_1 \oplus X_1^*$ with $Q_1 \gtrsim X_1 \gtrsim X_1^*$, and so $2X_1^* \lesssim X$. By (2), we see that $X_1^* \lesssim X \lesssim 2Q_2$. Using Lemma 1.1, there exists a decomposition $X_1^* = X_2 \oplus X_2^*$ with $Q_2 \gtrsim X_2 \gtrsim X_2^*$, and so $4X_2^* \lesssim 2X_1^* \lesssim X$. Continuing this procedure to (m), there exists a decomposition $X = X_1 \oplus X_2 \oplus \ldots \oplus X_m \oplus X_m^*$ such that $2^m X_m^* \lesssim X$ and $X_1 \oplus X_2 \oplus \ldots \oplus X_m \lesssim Q_1 \oplus Q_2 \oplus \ldots \oplus Q_m$. We have that $X \lesssim 2Q_{m+1}$ by (m+1), and so there exists a decomposition $X = X_{m+1} \oplus X_{m+1}^*$ with $Q_{m+1} \gtrsim X_{m+1} \gtrsim X_{m+1}^*$. Hence $(2n)X_m^* \leq 2^m X_m^* \lesssim X \lesssim 2X_{m+1}$. By the assumption, we have that $X_m^* \lesssim X_{m+1} \lesssim Q_{m+1}$ and $X = X_1 \oplus \ldots \oplus X_m \oplus X_m^* \lesssim Q_1 \oplus \ldots \oplus Q_m \oplus Q_{m+1}$ as desired.

(Claim II). Set $\bar{R}=R/I$, and so \bar{R} is a unit-regular ring. We claim that \bar{R} has the property special (DF). Let \bar{P} be a projective \bar{R} -module with a cyclic decomposition $\bar{P}=\oplus_{i\in I}\bar{P}_i$, and assume that $2\bar{P}$ is directly infinite. From Lemma 1.2, there exists a nonzero principal right ideal \bar{X} of \bar{R} such that

$$\bar{X} \lesssim 2\bar{Q}_1,$$
 $\bar{X} \lesssim 2\bar{Q}_2,$

. . .

$$ar{X} \lesssim 2ar{Q}_{m+1}$$
 and $ar{Q}_1 \oplus ar{Q}_2 \oplus \ldots \oplus ar{Q}_{m+1} \leq P,$

where the \bar{Q}_i is a finite direct sum of \bar{P}_i' s. Now we put $\bar{Q}_i = \bar{P}_1^i \oplus \ldots \oplus \bar{P}_k^i$ for $i=1,\ldots,m+1$. Then $\bar{X} \lesssim 2(\bar{P}_1^i \oplus \ldots \oplus \bar{P}_k^i)$, and so using [3, Theorem 2.8], $\bar{X} \cong (\bar{P}_{11}^i \oplus \bar{P}_{12}^i) \oplus \ldots \oplus (\bar{P}_{k1}^i \oplus \bar{P}_{k2}^i)$ for some submodules \bar{P}_{j1}^i and \bar{P}_{j2}^i of \bar{P}_j^i for $j=1,\ldots,k$. Putting $\bar{C}_j^i = \bar{P}_{j1}^i \cap \bar{P}_{j2}^i$, we have decompositions $\bar{P}_{j1}^i = \bar{Y}_{j1}^i \oplus \bar{C}_j^i$ and $\bar{P}_{j2}^i = \bar{Y}_{j2}^i \oplus \bar{C}_j^i$ such that $\bar{P}_{j1}^i + \bar{P}_{j2}^i = \bar{Y}_{j1}^i \oplus \bar{Y}_{j2}^i \oplus \bar{C}_j^i \leq \bar{P}_j^i$. Hence there exists a decomposition $\bar{X} = \bigoplus_{j=1}^k (\bar{X}_{j1}^i \oplus \bar{X}_{j2}^i \oplus \bar{D}_{j1}^i \oplus \bar{D}_{j2}^i)$ such that

$$\begin{split} \bar{X}^i_{j1} &\cong \bar{Y}^i_{j1}, \\ \bar{X}^i_{j2} &\cong \bar{Y}^i_{j2} \quad \text{and} \\ \bar{D}^i_{j1} &\cong \bar{D}^i_{j2} \cong \bar{C}^i_{j}. \end{split}$$

Putting $\bar{X}^j = \bar{X}^i_{j1} \oplus \bar{X}^i_{j2} \oplus \bar{D}^i_{j1} \oplus \bar{D}^i_{j2}$, we have a decomposition $X^j = X^i_{j1} \oplus X^i_{j2} \oplus D^i_{j1} \oplus D^i_{j2}$ ($\leq R$) from Lemma 1.3. Note that $\bar{D}^i_{j1} \cong \bar{D}^i_{j2}$. Using Lemma 1.4 and [3,Proposition 2.17], we have decompositions $D^i_{j1} = E^i_{j1} \oplus F^i_{j1}$ and $D^i_{j2} = E^i_{j2} \oplus F^i_{j2}$ such that

$$\begin{split} E^i_{j1} &\cong E^i_{j2}, \\ F^i_{j1} &= F^i_{j1}I \quad \text{and} \quad F^i_{j2} = F^i_{j2}I. \end{split}$$

Hence there exists a principal right ideal X_i of R such that $X_i = \bigoplus_{j=1}^k X_j \lesssim \bigoplus_{j=1}^k 2(X_{j1}^i \oplus X_{j2}^i \oplus F_{j1}^i \oplus F_{j2}^i \oplus E_{j1}^i)$ and $\bar{X}_i = \bar{X}$ for $i = 1, \ldots, m+1$. Noting that $\bar{X} = \bar{X}_1 = \ldots = \bar{X}_{m+1} (\neq 0)$, there exist decompositions $X_i = B_i \oplus C_i$ such that the B_i 's are pairwise isomorphic and each $C_i = C_i I$ by Lemma 1.4. Then we see that $B_i \nleq I$. Putting $B_1 = eR$ for some idempotent e in R, we have that $\bar{e}\bar{R} = \bar{X}_i = \bar{X}$, and we have decompositions

$$eR \lesssim \bigoplus_{j=1}^{k} 2(X_{j1}^{1} \oplus X_{j2}^{1} \oplus F_{j1}^{1} \oplus F_{j2}^{1} \oplus E_{j1}^{1}),$$

$$eR \lesssim \bigoplus_{j=1}^{k} 2(X_{j1}^{2} \oplus X_{j2}^{2} \oplus F_{j1}^{2} \oplus F_{j2}^{2} \oplus E_{j1}^{2}), \dots$$

and

$$eR \lesssim \oplus_{j=1}^k 2(X_{j1}^{m+1} \oplus X_{j2}^{m+1} \oplus F_{j1}^{m+1} \oplus F_{j2}^{m+1} \oplus E_{j1}^{m+1}).$$

Using (Claim I), we have that

$$eR \lesssim \bigoplus_{i=1}^{m+1} \bigoplus_{j=1}^{k} (X_{j1}^{i} \oplus X_{j2}^{i} \oplus F_{j1}^{i} \oplus F_{j2}^{i} \oplus E_{j1}^{i}),$$

and so

$$\begin{aligned} (0 \neq) \bar{X} &= \bar{e} \bar{R} \lesssim (\oplus_{i=1}^{m+1} \ominus_{j=1}^{k} (\bar{X}_{j1}^{i} \oplus \bar{X}_{j2}^{i} \oplus \bar{E}_{j1}^{i})) \\ &\lesssim (\oplus_{i=1}^{m+1} \oplus_{j=1}^{k} (\bar{Y}_{j1}^{i} \oplus \bar{Y}_{j2}^{i} \oplus \bar{C}_{j}^{i})) \\ &\lesssim (\oplus_{i=1}^{m+1} \oplus_{j=1}^{k} \bar{P}_{j}^{i}) \\ &\lesssim \bar{Q}_{1} \oplus \ldots \oplus \bar{Q}_{m+1}. \end{aligned}$$

There exists a decomposition $\bar{P} = \bar{Q}_1 \oplus \ldots \oplus \bar{Q}_{m+1} \oplus \bar{P}'$ for some submodule \bar{P}' of \bar{P} , and we can apply above discussion to \bar{P}' by Lemma 1.2. Continuing this procedure, we see that $\aleph_0 \bar{X} \lesssim_{\oplus} \bar{P}$ and so \bar{P} is directly infinite as desired. This theorem is complete.

Corollary 1.6. Let R be a unit-regular ring with the property that for all finitely generated projective R-modules A and B

 $nA \lesssim nB$ for some positive integer n implies $A \lesssim B$.

Then R/I has the property special (DF) for all two-sided ideals I of R.

Note. It is OPEN PROBREM 27[3] that the assumption of Corollary 1.6 holds or not for unit-regular rings R. We see that unit-regular rings R have the property special (DF) if this open problem holds.

From Corollary 1.6 and [3, OPEN PROBLEM 27(p.347)], we see that all factor rings of the following rings (1) \sim (3) have the property special (DF):

- (1) regular rings whose primitive factor rings are artinian.
- (2) unit-regular rings satisfying general comparability.
- (3) \aleph_0 -continuous regular rings.

Now we shall show that simple directly finite regular rings satisfying weak comparability have the property special (DF).

The following definition was given by K.C. O'Meara[6].

Definition. A regular ring R satisfies weak comparability if each nonzero $y \in R$, there exists a positive integer n such that for all $x \in R$

$$n(xR) \lesssim R$$
 mplies $xR \lesssim yR$.

6 M. KUTAMI

Notation. Given finitely generated projective R-modules P and Q we write $P \prec Q$ to mean that P is isomorphic to a proper submodule of Q.

Lemma 1.7 ([2, Corollary 4.4]). Let R be a stably finite simple regular ring. Then the following conditions are equivalent:

- (a) R satisfies weak N^* -comparability.
- (b) R satisfies the doubling condition.
- (c) R satisfies weak comparability.
- (d) The class of finitely generated projective R-modules is strictly unperforated.
- (e) For any $x, y \in R$ and a positive integer n, if $n(xR) \prec n(yR)$, then $xR \prec yR$.

Corollary 1.8. Let R be a simple directly finite regular ring satisfying weak comparability. Then R has the property special (DF).

Proof. It is well-known from [6, Theorem 1] that R is a unit-regular ring. Assume that $(2 \times 2)(xR) \lesssim 2(yR)$, and let $x \neq 0$. Then we have that $2(xR) \prec 2(yR)$ from the directly finiteness of R, and so $xR \prec yR$ by Lemma 1.7. Thus $xR \lesssim yR$. This corollary holds from Theorem 1.5.

Definition. Let R be a regular ring, and let s be a positive integer. Then R is said to satisfy s-comparability provided that for any $x, y \in R$, either $xR \lesssim s(yR)$ or $yR \lesssim s(xR)$ holds.

Lemma 1.9. Let R be a unit-regular ring, and let $x, y \in R$. If $(2n)(xR) \leq 2(yR)$ for some positive integer n, then we have a decomposition $xR = x_1R \oplus \ldots \oplus x_{2^n}R$ such that $n(x_iR) \leq yR$ for $i = 1, \ldots, 2^n$.

Proof. Noting that $xR \lesssim (2n)(xR) \lesssim 2(yR)$, there exists a decomposition $xR \cong a_1R \oplus a_1'R$ for some right ideals a_1R and $a_1'R$ of yR. Putting $c_1R = a_1R \cap a_1'R (\leq yR)$, there exist decompositions $a_1R = b_1R \oplus c_1R$ and $a_1'R = b_1'R \oplus c_1R$, and so $a_1R + a_1'R = b_1R \oplus b_1'R \oplus c_1R (\leq yR)$. Hence there exists a direct summand y_1R of yR such that $yR = (a_1R + a_1'R) \oplus y_1R$. Noting again that $(2n)(xR) \lesssim 2(yR)$, we see that

$$2(n-1)(xR) \oplus 2(b_1R \oplus b_1'R \oplus c_1R \oplus c_1R)$$

$$\cong 2(n-1)(xR) \oplus 2(xR) \lesssim 2(yR)$$

$$=2(b_1R\oplus b_1'R\oplus c_1R)\oplus 2(y_1R).$$

Using the cancellation property [3, Theorem 4.14], we have that $xR \leq 2(n-1)(xR) \leq 2(y_1R)$. Continuing this procedure, we have decompositions

$$xR \cong a_1 R \oplus a'_1 R$$

$$\cong a_2 R \oplus a'_2 R$$

$$\dots$$

$$\cong a_n R \oplus a'_n R$$

$$(\sharp)$$

such that

$$y_i R = (a_{i+1}R + a'_{i+1}R) \oplus y_{i+1}R,$$

 $2(n-i-1)(xR) \lesssim 2(y_{i+1}R)$ for $i = 1, ..., n-1$ and $a_1^*R \oplus ... \oplus a_n^*R \leq yR,$

where a_i^*R equals a_iR or $a_i'R$ for each i. Thus, from [3,Theorem 2.8], we have a decomposition $xR = x_1R \oplus \ldots \oplus x_{2^n}R$ such that $n(x_iR) \lesssim yR$ for $i = 1, \ldots, 2^n$.

Theorem 1.10. Let R be a unit-regular ring satisfying s-comparability. Then for all $x, y \in R$,

$$2(s+1)(xR) \lesssim 2(yR)$$
 implies $xR \lesssim yR$.

Proof. Putting D=(2s)(xR), we have $2(xR)\oplus D\lesssim 2(yR)$. Note that $xR\lesssim 2(yR)$, and using Lemma 1.1, there exists a decomposition $xR=x_1^*R\oplus x_1^{**}R$ such that $yR\gtrsim x_1^*R\gtrsim x_1^{**}R$. Hence we have a decomposition $yR=y_1^*R\oplus y_1^{**}R$ such that $y_1^*R\cong x_1^*R$, and so

$$2(x_1^*R) \oplus 2(x_1^{**}R) \oplus D = 2(xR) \oplus D$$

 $\lesssim 2(yR) = 2(y_1^*R) \oplus 2(y_1^{**}R).$

Using the cancellation property [3, Theorem 4.14], we have

$$2(x_1^{**}R) \oplus D \lesssim 2(y_1^{**}R)$$
 and $2(x_1^{**}R) \lesssim x_1^{**}R \oplus x_1^{*}R = xR$.

Noting that $2(x_1^{**}R) \oplus D \lesssim 2(y_1^{**}R)$, we can use above discussion to this equation. We put $x^*R, x^{**}R, y^*R$ and $y^{**}R$ as following:

$$x^*R = x_1^*R \oplus \ldots \oplus x_n^*R$$

$$x^{**}R = x_n^{**}R,$$

 $y^*R = y_1^*R \oplus ... \oplus y_n^*R$ and $y^{**}R = y_n^{**}R.$

Then, we have decompositions $xR = x^*R \oplus x^{**}R$ and $yR = y^*R \oplus y^{**}R$ such that

$$x^*R \cong y^*R$$
,
 $2^n(x^{**}R) \lesssim xR$ and
 $D = (2s)(xR) \lesssim 2(y^{**}R)$ for $n = 1, 2, \dots$

From Lemma 1.9, we have a decomposition $xR = x_1R \oplus \ldots \oplus x_{2^s}R$ such that $s(x_iR) \lesssim y^{**}R$ for $i=1,\ldots,2^s$. We may assume that $x^{**}R \neq 0$. Then there exists a positive integer $i(1 \leq i \leq 2^s)$ such that $x^{**}R \lesssim s(x_iR)$. Otherwise $x^{**}R \lesssim s(x_iR)$ for $i=1,\ldots,2^s$, we have that $x_iR \lesssim s(x^{**}R)$ from s-comparability. Taking a positive integer n such that $(s \times 2^s) \leq 2^{n-1}$, we have that

$$xR = x_1R \oplus \ldots \oplus x_{2^s}R \lesssim (s \times 2^s)(x^{**}R)$$

$$\lesssim 2^{n-1}(x^{**}R) \prec 2^n(x^{**}R) \lesssim xR,$$

which contradicts the directly finiteness of xR. Thus we see that $xR = x^*R \oplus x^{**}R \lesssim x^*R \oplus s(x_iR) \lesssim y^*R \oplus y^{**}R = yR$ as desired.

Combining Theorems 1.5 and 1.10, we have the following.

Corollary 1.11. Let R be a unit-regular ring satisfying s-comparability. Then R/I has the property special (DF) for all two-sided ideals I of R.

§2. The criterion of the property special (DF).

In this section, we shall give the criterion of the property special (DF) for a unit-regular ring.

Let R be a regular ring. For a nonzero finitely generated projective R-module P, we consider the following condition:

(**) For each nonzero finitely generated submodule X of P, and each decompositions

$$X = A_1 \oplus B_1$$

$$A_i = A_{2i} \oplus B_{2i}$$
 and $B_i = A_{2i+1} \oplus B_{2i+1}$

with

$$A_i \gtrsim B_i$$
 for each $i = 1, 2, \ldots$

there exists a nonzero finitely generated submodule Y of P such that $Y \lesssim \bigoplus_{i=n}^{\infty} A_i$ for all positive integers n.

- Note 1. We can take above Y as a nonzero right ideal of R.
- Note 2. Let P be a nonzero finitely generated projective R-module over a regular ring R satisfying the condition (**), and let Q be a nonzero direct summand of P. Then Q satisfies the condition (**).

Notation. Let P be a finitely generated projective R-module over a regular ring R. We put L(P) to denote the lattice of all finitely generated submodules of P, partially ordered by inclusion.

Lemma 2.1([3, Proposition 2.4] and [4, Lemma 5]). Let P be a finitely generated projective R-module over a regular ring R, and set $T = End_R(P)$. Then

- (a) There exists a lattice isomorphism $F: L(T_T) \to L(P)$, given by the rule F(J) = JP. For $A \in L(P)$, we have $F^{-1}(A) = \{f \in T \mid fP \leq A\}$.
 - (b) For $J, K \in L(T_T)$, we have $J \cong K$ if and only if $F(J) \cong F(K)$.
 - (c) For $J, K \in L(T_T)$, we have $J \lesssim K$ if and only if $F(J) \lesssim F(K)$.
- (d) For $J, K \in L(T_T)$ such that $J \oplus K \in L(T_T)$, we have that $F(J \oplus K) = F(J) \oplus F(K)$. For $A, B \in L(P)$ such that $A \oplus B \in L(P)$, we have $F^{-1}(A \oplus B) = F^{-1}(A) \oplus F^{-1}(B)$.

Theorem 2.2. Let P be a finitely generated projective R-module over a unit-regular ring R, and set $T = End_R(P)$. Then the following conditions $(a) \sim (c)$ are equivalent:

- (a) T has the property special (DF).
- (b) T_T satisfies the condition (**).
- (c) P satisfies the condition (**).

Proof. (b) \Leftrightarrow (c) follows from Lemma 2.1. (a) \Rightarrow (b). We assume that

10 M. KUTAMI

(a) holds and T_T does not satisfy the condition (**). Then there exist a nonzero principal right ideal X of T and decompositions

$$X = A_1 \oplus B_1,$$

 $A_i = A_{2i} \oplus B_{2i}$ and
 $B_i = A_{2i+1} \oplus B_{2i+1}$

with

$$A_i \gtrsim B_i$$
 for $i = 1, 2, \dots$

such that there exists a positive integer n with $Y \not\lesssim \bigoplus_{i=n}^{\infty} A_i$ for each nonzero right ideal Y of T. Hence we have that $2(\bigoplus_{i=1}^{\infty} A_i) \not \in \mathbb{R} \otimes \mathbb{R}$

$$\bigoplus_{i=n(1)+1}^{n(2)} Q_i \gtrsim A_2 \gtrsim B_2$$
 and $\bigoplus_{i=n(2)+1}^{n(3)} Q_i \gtrsim A_3 \gtrsim B_3$.

Continuing this procedure, we have that $\bigoplus_{i=1}^{\infty} A_i \lesssim_{\bigoplus} Q$. From the directly finiteness of Q, we see that $\bigoplus_{i=1}^{\infty} A_i$ is directly finite, and so there exists a positive integer m such that $Y \not\lesssim \bigoplus_{i=m}^{\infty} A_i$ for each nonzero principal right ideal Y of T by Lemma 1.2, which contradicts the condition (**). Thus this theorem is complete.

REFERENCES

[1] P. ARA and K.R. GOODEARL: The almost isomorphism relation for simple regular

- rings, Publ. Math. 36(1992), 369-388.
- [2] P. ARA, K.R. GOODEARL, E. PARDO and D.V. TYUKAVKIN: K-theoritically simple von Neumann regular rings, J. Algebra 174(1995), 659-677.
- [3] K.R. GOODEARL: Von Neumann Regular Rings, London 1979 Pitman; Second Ed: Merbourne, FL 1991 Krieger.
- [4] M. Kutami: Projective modules over regular rings of bounded index, Math. J. Okayama Univ. 30(1988), 53-62.
- [5] M. KUTAMI: On unit-regular rings satisfying s-comparability, Osaka J. Math. 33(1996), 983-995.
- [6] K.C. O'MEARA: Simple regular rings satisfying weak comparability, J. Algebra 141(1991), 162-186.

M. KUTAMI
DEPARTMENT OF MATHEMATICS
YAMAGUCHI UNIVERSITY,
YOSHIDA, YAMAGUCHI 753-8512, JAPAN

(Received December 4, 1995)