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ON THE ASYMPTOTIC EXPANSION FOR THE
TRACE OF THE HEAT KERNEL ON LOCALLY
SYMMETRIC EINSTEIN SPACES
AND ITS APPLICATION

KaTsvniro YOSHIJI

0. Introduction. Let (M,g) be an n-dimensional closed and con-
nected Riemannian manifold and A be the Laplacian for functions de-
fined by

(0.1) Af = —g"ViV; f.

Let Spec(M,g) = {X;}52, be the spectrum of the Laplacian, that is, the
set of eigenvalues of A counting with multiplicities. It is well-known that
the coefficients a; of Minakshisundaram-Pleijel’s asymptotic expansion

n oo

(0.2) Z et~ (4xt)”2 ¥ aitt, t— 40,

1= 1=

are determined by the spectrum. ag, a; and a, are easily calculated by
Taylor asymptotic expansion of the metric tensor g;;. as was calculated by
Sakai [12] and Gilkey [6]. Similarly we can treat the spectrum Spec!(M, g)
of the Laplacian for 1-forms. In this paper we calculate a4 for a locally
symmetric Einstein space and give some geometric applications. The main
result is the following:

Proposition. For two oriented closed Riemannian manifolds (M, g)
and (M’, g’} assume that one of them is an 8-dimensional locally symmetric
FEinstein space. If (M,g) and (M',¢') have the same spectra for functions
and for 1-forms, respectively, i.e.,

Spec(M,qg) = Spec(M',g') and Spec'(M.g) = Spec' (M’ ¢),

then (1) x(M) = x(M') and (2) |o(M)| = |o(M')| are equivalent, where
x(M), o(M) denote the Euler characteristic and signature of M, respec-
tively.
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220 K. YOSHUII

1. Preliminaries. We assume that (M, g) is an n-dimensional closed
locally symmetric Einstein space. We define the curvature tensor as

(]_1) R,‘jkla( = R(ai, 8j)3ka
(1.2) R(X,Y)Z =VxWZ - W% Z - Vixy)Z.

Then the contracted values of curvature tensors given in the following (1.3)
are constant on (M,g).

n s
T:= ) R;7*: scalar curvature,
15=1
R? = > Rijk[Rijkl :
the square of the norm of the curvature tensor,

(1.3) R3 = > RijklelmanniJ,

R®:= ¥ Ry R*™ "R, 7,

R4 — Z RijklelmannabRab”-,

D4 k1 3 tbg

R*:= Y Ry R’  R™ " RO,
and so on. We take the local expression for tensors in a normal coordinate
at the center. In the following we follow the Einstein’s convension on

summation.
The relations characterizing a locally symmetric Einstein space are

(1.4) ViRjkim = 0,
T
(1.5) pij = —bij,

where p;; is the Ricci curvature tensor. We use notations a; and u; in the
sense of [2],[12];

(1.6) a; = / u; dv,
M

In the following we compute a4 for a locally symmetric Einstein space
(M,g). Since (M,g) is locally symmetric, all we have to do is to com-
pute u4. In computing u4 we shall find what kind of terms appear in ug4.
Taylor asymptotic expansion of g;; tells that (see e.g. [2],[12])

(1) each term consists of a function which is obtained by contracting
four curvature tensors,

(2) the coefficient of each term is independent of the shape of the Rie-
mannian manifold (however depends on the dimension n because of (1.5)).
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We use a notation (abed) for the curvature tensor instead of Rgpeqs
that is, discribe only indices. We try to classify the contraction of four
curvature tensors. We begin with the classification in the case of two
curvature tensors. We obtain

(abed)(abed) = R?,
—R? = (abed)(abde) = (abed)(bacd) = (abed)(dcab)
= (abed)(cdba),
R? = (abcd)(badc) = (abed)(cdab) = (abed)(dcba).

(1.7)

By the Bianchi identity
(1.8) (abed)(abed) = 2(abed)(achd) = —2(abed)(adbce),
we obtain

—%Rz = (abed)(acdb) = (abed)(cabd) = (abed)(bdea)
= (abed)(dbac) = (abed)(dach) = (abed)(bead)
= (abed)(cbda),

%RZ = (abed)(cadb) = (abed)(bdac) = (abed)(dbca)
= (abed)(dabe) = (abed)(aded) = (abed)(beda)
= (abed)(cbad).

(1.9)

So in this case the independent factor is only R2. As for the case containing
T, we obtain

2
(1.10) (abea)(dbed) = % (abba)(deed) = 2.

In the case of three curvature tensors, we obtain the following relations
by the Bianchi identity,
R3 = (abed)(cde f)(e fab) = 2(abed)(cde f)(eafb)
(1.11) = 4{abed)(cedf )(ea fb),
R3 = (acbd)(cedf )(eafb) = (adbc)(cedf )(ea fb) + iRB.
By the Ricci identity we obtain

(1.12) 0= %vuRu.abc - vauRuabc
= RuvluRlabc + RufuIaRulbc + Ruvleualc + RuulcRuabla
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and by multiplying R, to the both side of (1.12) and contracting, we
obtain

(1.13) RP=_--—p?_-

In the case of four curvature tensors, we classify them into three types
except the cases containing 7 and R2. In each type we neglect the difference
of the arrangement of the indices in R,j.4. They are

(1.14) 3-type: (uabc)(udef)(vabe)(vdef),
(L15) (2,2)-type:  (abed)(cdef)(efgh)(ghab),
(1.16) (1,1,2)-type: (abed)(abkl)(uvek)(uvdl).

Remark. The cases containing 7 and R? are

(1.17) *, r?R%, 7R® and RR%

2. The classification in the case of four curvature tensors. In
the following we obtain the relations among the changes of the arrangement
of indices.

Step 1: The relations obtained by using the Bianchi identity. As for
3-type:

(2.1) (uabc)(udef )(vabe)(vdef) = 2(uabe)(uedf )(vabe)(vdef)
= 4(ubac)(uedf )(vabc)(vdef)
= 4(ubac)(udef)(vabe)(vedf).

As for (2,2)-type: We denote
(2.2) R* = (abed)(cdef)(efgh)(ghab), R* = (acbd)(cedf)(egfh)(gahb),

and get

(2.3) R = 2(abed)(cdef)(efgh)(gahd) = 4(abed)(cdef)(egf h)(gahb)
= 4(abed)(ced f)(ef gh)(gahb) = 8(abed)(ced f)(egf h)(gahd),
(2.4) R* = (adbe)(cf de)(egfh)(gahb) = (adbe)(cedf)(ehfg)(gahb)
= (adbc)(ced f)(egfh)(gahb) + %R“.
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As for (1,1,2)-type:

(2.5) (abed)(abkl)(uvck)(urvdl)
= 2(abcd)(abkl)(uvek)(udvl) = 4(acbd)(abkl)(ucvk)(uvdl)
= 4(abed)(akbl)(ucvk)(uvdl),
(2.6) (acbd)(akbl)(uvck)(uvdl)
= %(abcd)(abkl)(uvck)(uvdl) + (adbe)(akbl)(uvek)(uvdl),
(2.7) (acbd)(akbl)(ucvk)(uvdl
= (acbd)(akbdl)(uvck)(uvdl) + (acbd)(akbl)(ukve)(uvdl)
= —(acbd)(akbl)(ukve)(uvdl),
2(acbd)(akbl)(ucvk)(uvdl)
= (acbd)(akbl)(uvck)(uvdl),
(2.8) (adbc)(akbl)(ucvk)(uvdl)

= —%(abcd)(abkl)(uvck)(uvdl) + %(acbd)(akbl)(u:vck)(-u«vdl),

(2.9) (ecbd)(akbl)(ucvk)(udvl)
1

= i(acbd)(akbl)(uvck)(uvdl) + (acbd)(akbl)(ucvk)(ulvd),
(adbe)(akbl)(ukve)(udvl)
= (acbd)(akbdl)(ucvk)(udvl) — (acbd)(akbl)(uveck)(uvdl)
+ %(abcd)(abkl)(uvck)(u-vdl),
(acbd)(akbl)(ucvk)(ulvd)
= (acbd)(albk)(ukvc)(ulvd),
(acbd)(akbl)(ucvk)(udvl)
= (acbd)(akbl)(ukve)(ulvd) = (adbc)(albk)(ukve)(udel).
Then we may choose independent factors in each type, and use the follow-
ing notations:

3-type (t) := (uabec)(udef )(vabe)(vdef),
(2,2)-type R* := (abed)(cdef)(ef gh)(ghab),
R* := (acbd)(cedf)(eg fR)(gahd),
(1,1,2)-type (@) := (abed)(abkl)(uvck)(uvdl),
(b) := (acbd)(akbdbl)(uvck)(uvdl),
(¢) := (acbd)(akbdl)(ucvk)(udvl).
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Step 2: The relations obtained by using the Ricei identity.

Proposition 1. We obtain the following relations:

(2.10) (a) +2(b) = (1),
(2.11) TR 4 SRV = —20b),
n 2
o 172, 17 g =, 3 1

Proof. By the Ricci identity and V;Rgp.¢ = 0, we obtain
(2.13) (urval)(lbed)(kbed)(uvka) + (uvbl)(aled)(kbed)(uvka)
+ (uvel)(abld)(kbed)(uvka) + (vvdl)(abel)(kbed)(uvka) = 0,
(uvul)({bcd)(cdgh)(ghvd) + (uvbl)(uled)(cdgh)(ghvb)
+ (wvel)(ubld)(cdgh)(ghvb) + (vvdl)(ubel)(edgh)(ghvb) = 0,
(uvul)(lbed)(vgeh)(gbhd) + (uvbl)(uled)(vgeh)(gbhd)
+ (nvel)(ubld)(vgch)(gbhd) + (vvdl)(ubel)(vgeh)(gbhd) = 0.
Then we apply (2.1), ..., (2.9) to the above.
Therefore we can choose the following sets of independent factors to
discribe the terms of u4 as
(2.14a) (a), (b), (¢), or (2.14b) (¢), R4, (¢),
and can set w4 as

215 - 2,83ty % o 7\, 2p2

(215) wa= (e + 24 4 )4 (e + =4 D) 7R
(4 -~

+ (Cs + ZQ)TR3 + cR’R? + e11(a) + c12(b) + crs(e),

where ¢;,¢3,...,c13 are constants.

3. The calculation of us. We use the following data;
(1) Sphere 57(1) of radius 1:

r=n(n-1), R? = 2n(n - 1),
R?® = —dn(n - 1), R* = 8n(n — 1),
(31)  R¥*=—n(n—-1)(n—2), R*=n(n—1)n%-3n+4),
(a) = 4n(n — 1), (0) =2n(n - 1)(n — 2),

(¢)=n(n—1)(3n->5), (t)=4n(n-1)3,
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(2) Complex projective space CP*(4) (m = 2n) of constant holomor-
phic sectional curvature 4:

T =m(m+ 2), R? = 8m(m + 2),
R} =-8m(m+2)(m+6), R*=16m(m+ 2)(m?+ 6m + 16),
(3.2) R¥=-2m(m+2)(m—2), R*=2m(m+2)(m?+ 6m + 48),
(a) = 16m(m + 2)(3m 4+ 10), (b) = 8m(m + 2)(m — 2),

(¢) =4m(m +2)(3m + 10), (t) = 64m(m + 2)%.

Computation of u4 is divided into the following steps.
Step 1: We express u4 for 5*(1) as a polynomial of n.
Step 2: We express u4 for S™(1)xS™(1), S?(1)x S™(1)x.5™(1) and % S™(1).
Step 3: We express the curvature data as polynomials of n.
Step 4: We make up the system of equations for ¢y,¢,,...,c13.
Step 5: We carry out the same procedure for 5%(1) x §%(1/5), etc.
Step 6: We carry out the same procedure for CP*(4), etc.

Step 1: Take a normal coordinate system and r denotes the distance
to the center y of the normal coordinate neighbourhood. Then on S™(1)
or CP"(4)

1
(3.3) v(r) = (det(g:(¥))) "4,
depends only on r. In fact, on §™(1) we obtain v(r) = (sinr/r)(1=")/2
and on CP™(4) we have v(r) = (cosr)~/?(sinr/r){1=21)/2 By Taylor
asymptotic expansion of v(r) (see e.g. [1]), on S™(1) we obtain

uozl,

Uy = En(n - 1),

(3.4) uy = Ln(n — 1)(50% — Tn + 6),

360
1
3 = (n — 1)(35n" — 112n° + 187n% — 110n + 96),
u3 45360n(n )(35n n° + 187n% — 110n + 96),
1 -
W= s n(n — 1)(1752° — 945n° + 2389n*

— 311173 + 3304n% — 5167 + 2160).
Step 2: We use the following formula (see [2])

w(MxNYy= 3 .ui](ﬂ/l)uiz(N).

i1412=1
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Then on S™(1) x S™(1), QS”(I) and X S™(1), we obtain the following,

respectively;
(3.5) uy = 320900 n(n — 1)(175n° — 7350° + 1516n* — 1638n°
. + 124302 — 399n + 270),
Uy = eesn(n - 1)(1575n° — 59§5n5 + 1028971,4
) — 103597° + 6368n2 — 19567 + 720),
Uy = s n(n — 1)(700n° — 2502n° + 4141n? — 36302>

+ 1924n% — 534n 4 135).

Step 3 and 4: By putting (3.1) into (2.15), we obtain the following

formulas for u4 on 5™(1), $7(1)x 5™(1), R S™(1) and % S™(1), respectively;

(3.6) ug = n(n—1){e1n®+(ca—3c1)n3+(3¢c1 —3¢c2 + e3+2¢5)n*

We

—(e1—3ca+3c3—cq+4es—2ce+cs)n
—(e2—3e3+3cq—2c5+4ce—2c7 —3eg+cg—4deyo)n?
—(e3—3cqa —2cg+4c7+2c5—3cg+4c10—2¢12—3¢13)n
—c4+2¢7—2co+4c11 —4e12—5eal,

ug = n(n—1){16¢1n®+(8cy—48¢1 )n®+(48¢; — 24co +4cz+ 16¢5)nt
—(16¢; —24¢3+12¢3—2¢4+32¢5—8cg + 4cg)n®
—(8cy—12¢c3+6cy—16¢5+16cg—4c7—12¢5+2¢9 — lﬁclo)n.2
—(4e3—6¢4 —8co+8c7+8cg—b6eg+16¢10—4c12—Beq3)n

+ (lower order terms)},

ug = n(n—1){(higher ordre terms)
—(27ea—2Tc3+9cqa—5des+36c—6c7—2Tcg +3cg — 36c10)n2
- (963 —9¢4—18¢5+12¢c7+18¢g—9¢cq+36¢190—6¢12 — 9613)11

+ (lower order terms)},

uq= n(n—1){(higher order terms)
—(64cy —48e3+12¢4 — 128¢5+64c6 — 8c7 — 48cg +4cg — 64c1p)n?
—-(1663-—'12C4—3265+1667+32C3—1269+64610—8612—126‘13)71

+(lower order terms)}.

can compare the coeflicients of the polynomials of n for u4 in (3.4),
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(3.5) and (3.6), then we obtain

. 1 c 1 59
= — = —— 3= —"——,
YT 31104 27~ 712960 3~ 71360800
= = cs = = = ( t
+ = T113400° 5~ 12060 ¢s = (parameter),
41
(3.7) ¢7 = (parameter), c¢g= 320200 +2¢g, €9= 561—70 + 2¢7,
c10 = L& c11 = (parameter), c¢12 = 2¢7 + 6¢ 4
10 = 13608 2 11 = (para ’ 12 = 467 11 1725’
1
c13= —2¢7 —4denn + ——

1890°

where cg, c7 and c1; are undetermined. So we express them as parameters.
Step 5: We have to treat the product of spheres of distinct dimensions.
Proposition 2.  S*(vk — 1)x §/(V/T = 1) is a locally symmetric Ein-
stein space, where S™(r) denotes the sphere of radius r.

We obtain the following table.

Table 1
5%(1)xS(V3) | S3(V2)xS5(2) | X5%(VZ)xS%(1) | 5%(1)xS*(V3)

rt 4096 4096 4096 4096

: 2
r2R? 2048 352 640 2048
5 3
~ 192 27 64
3 _ 1Y =t —13 bt
R 25 2 2 9
1024 121 1024
2R? —_— —_— 100 —_—

RR 25 4 9
1024 29 448
— = 11 —
() 125 16 27
48 39 3 16
®) 25 2 2 7
328 73 136
—_— — 5 —_—
() 125 32 27
u 74243 15 41 19541
N 590625 128 280 127575

Now we restrict the dimension to n = 8. Then we obtain

(3.8) ug = di7* + do7?R? + da7R® + d4 R?R? + ds(a) + dg(b) + d7(c),



228 K. YOSHIII

where
d1=61+%+;—z+5%-=%,
d2”5+%ﬁ+§—1=121m+%+§—;’
do=cst g = 683200 +2ot 7,
d4:c10:131T08_%6’ ds = c11,
dg = c12 = 2¢7 + 6cy1 — 5
d7 = c13 = —2¢7 —4denn + 181m
By putting the data in Table 1 into (3.8), we obtain
d; = %, d; = (parameter),
T4: 1
(3.9) ds = 16d; 68{[)430()’ 4 = G1800" on
ds = (parameter), dg = 128dy + 6ds — 3505
149
dr = ~128d; — dd5 + o=,

where d; and d5 are undetermined. So we express them as parameters.

Step 6: We carry out the following calculation. On CP"(4) we obtain
o(r) = (cosr) 1/2(sinr/r)(}=27)/2_ By Taylor asymptotic expansion we
obtain on CP%(4) and CP*(4), respectively;

124 3856 5008

'U()Il, ul=47 Uz = — U3 = —/—, U4 = —7—>
. a0 1184368
o — 1y 1= 3 ) 2 — ) 3 — 5 L4 — 945 .

Then we obtain us = 103984/525 on CP%(4) x CP%(4). By putting (3.10)
and (3.2) into (3.9), we obtain (as for the curvature data refer to Table 2
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below)
101 11
3.11 dy= ——, dg=—,
(3.11) 2~ 1088640° 5~ 113400
Cg = —-79 T = —1— cg = -—1— Cg = —1
6= 6804007 7 14175° * T 2835° P 7T 3150
Clg = 1 c1] = 11 C19 = L c13=0
107 648000 M T 1134007 ' T 81007 T
By the Ricci identity (1.13), (2.10) and (2.11), we have
~ 172 1
3_ -0 p2_ = 3
TR = o R 4TR ,
; T .3, 1.4
(3.12) (a) = () + ~R®+ 3R,
1 17
b — 4 _ - p3
( ) 4R 2 n,R
Then we obtain
1 1 1 50 1 1 1y,
(3.13)  ua= (31104 T 12960 1360800 n2 113400 ﬁ)r
o 1 a1 1 1 i)# )
12960 680400 7 11340 n2

1 1 1y 5. 1 .,
— 4= —_R’R
+( 11340 T 12600n>TR + 5800 ©

1 1,
+ 33000+ Toe00 & T 0©):

for an n-dimensional locally symmetric Einstein space. Especially in the
case of n = 8, we obtain

8799 4, T3 app Tl a1 o
3. = B R
(3-14) w4 = 7igoa00" T 10886400 ©© ~ 507200 " T 64800
11 I o4
+ 133000 + eoe & T 0C¢)-

Remark. Avramidi [1] also gave the explicit expression of u4. But
it is too complicated to apply for geometry.

Remark. For an n-dimensionl locally symmetric Einstein space

1 11 1 14,
(3.15) us = (1296 T 1080n 2835 ﬁ)T
1 11y ., 1 .
+ (1080 5670 n)TR 1800 °
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was given by Sakai [12].

4. The calculation of x(M). We calculate the Euler characteristic
X(M) of an 8-dimensional locally symmetric Einstein space. We know that
x(M8) is given by the following

1
(4.1) X(M?) = Foagl /Mfil...isé‘j]...stilizjljz oo Rizigjngs dv
1 ~
= 7r_4 (61T4+€2T2R2+63TR3+84R2R2
M

+ 65((1) + 66(b) + 67(6)) dv,

where ey,...,e7 are constants. We take the following models

(1) s8(1), (2) SU1)x841),  (3) xS2(1),
(4) S1)xSVB),  (5) S3(VD)xS3(2), (6) XS3(V2)xS*(1),
(7) £5%(1)xS*(V/3), (8) CPY(4), (9) CP%(4)xCP?(4).

By (3.1) and (3.2) we obtain the following table.

Table 2
(1) (2) B) | @ [ G| 6| () (8) (9)
rt 9834496 | 331776 | 4096 | 4096 | 4096 | 4096 | 4096 | 40960000 | 5308416
2048 048
r2R? || 351232 276481 1024 | 352 640 ZT 4096000 | 884736
~, ) 192 27| . 64 .
—18816 | ~1 0 ——=—| === —12| =22| —76800] —9216
™ 152 2% 2 9 6
0 b 1024
R?R? 12544 | 2304| 256 1234 14& 100 [ —=| 409600 | 147456
b )
1024 29 448
, 96] 32| —| Z| n| = 43520 | 16896
(a) 224 2| 1| | 7 8
48 | 39 3| 16
72 g | = 20 = 0 7
(b) 6 96 o | 3 AR 384 768
328 73 136
0 —_ —_ — 1880 4224
(¢) 1064 168 8| Il m 5| 5 1088
x(M) 105 9 1 3 0 ol 2 120 36
Vol 1674 1674 | 1674 | 4007 4874 Tt ot

We put the data in Table 2 into (4.1). For the spherical data of (1),
..., (7) we have
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23
e = 98301 (parameter) e3 = 16eq — 3072
1 e 1 3 23
42) eq = ——., €5 =-32— T es= —62, — Ser_ 2
(4.2) ea= o, e ©27 4 " 1536 ¢ €27 57 T 38y

e7 = (parameter),

where e; and e7 are undetermined. So we express them as parameters. By
adding (8) and (9) we obtain

(4.3) e2 = 1 e—Le—l __3 L
T Te1527 BT TR TRy 8T T T T

By (3.12) we express x(M) in another form
21

1 1 23

4.4 MB:—/— ~4 R* + —rR?

(4.4) x(M7) = 3 M( 98304 +49152TR + 2006
+ —R’R*+ (t)+

1 13
2048 512

4
1024 128 ))
Remark. For a 6-dimensional locally smmetric Einstein space
Sakai [12] obtained

1 1 5 1
4.! M8 = _/ — 3 _ = _rR? 3) dw.
(4.5) X(M7) w3 M(3456 1152 64R )db

Similarly we can calculate the signature o( M8). By the following fact
(4.6)  a(§*)=0, o(CP™)=1, o(M x N)=o(M)as(N),

we obtain for the signature

17 7
8 . - 3_ 4
(4.7) oM7) = — W( 92160 ~ 530" Tt 280

5(8) — 5a5(e))

up to sign for an oriented 8-dimensional locally symmetric Einstein space.

Remark. For a 4-dimenional Kéhler Einstein space we had better
refer to Donnelly’s paper [4].

1
(4.8) (M%) = 3%2/\432 dv, o(M*Y) = [ (7%~ 2B%) .

9672

Remark. Lovelock [9] also gave the explicit expression of x( M%) by
direct tensor calculation.
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5. a4 for 1-form. We consider the spectrum of the Laplacian for
1-forms. Similarly we can treat the asymptotic expansion for the trace
of the heat kernel [5]. The coefficients a;! contain geometric informations
and are spectral invariants. a,' was calculated by Patodi [11]. a3! was
calculated by Ii [7] (for an Einstein space). Their approach is different from
each other. The one is a combinatorial method and the other is a method
using Taylor asymptotic expansion. In this section we calculate a4! on an

n-dimensionl locally symmetric Einstein space by a combinatorial method.

Step 1: We can set

(5.1) ugt = e1(n)7* + ()7 R? + c3(n)TR® + c4(n)R?R?
+es(n)(t) + es(n)R* + er(n)(c).

If we express u4! as a polynomial of the independent contracted values of

the product of for curvature tensors in a locally symmetric space, then
its coeflicients are polynomials of degree 1. However, in our Einstein
case, by (1.5) the coefficients ¢;(n) corresponding to the term containing
7 in (5.1) are polynomials containing powers of the factor 1/n (see [7]).

Step 2: On the product space M x M, we have ([11])
(52) wl(MxM)=2 ¥ w(M)u2(M)
i4j=4
= 2(uq up + uz'ur + uztug + uytus + up' ua).

In the above we denote u;? = u;?(M) for the sake of simplicity.

r(MxM) = 2r(M), R¥ (M x M) = 2R*(M),
(5.3) R¥(Mx M) = 2R3(M), RY(Mx M) = 2RY (M),
(O(MxM)=2(1)(M), ()M x M) =2(c)(M).

In the following we denote simply 7 = 7(M), R? = R?*(M), etc.
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Step 3: On the space M™, u; and u;' take the following forms;

1
o = 1, 1wy gr,
1 11y, 1 .,
vz = (72_180n)T TR
1 11 1 1 i 11
5.4 = — — — — )3 - 2
(5-4) ug (1296 1080 n 2835n2)T (1080 567[)71)T
1 3
_1890R
. _( N S S L_;L)T«a
47 \31104 12960n 1360800 n2 113400 n3
] 41 1 11y 4,
+ (12960 680400 n 11340 n.2)T R

1 1 1 1
—_— 4= VR34 — _R2p?
+ ( 11340 + 12600 n) + 64300
11 1

4
+ 13300 )t 26007
up! = n, ullz(%—l)‘r,
(3L 1y, o 1y
2 ‘(72 180+:2n) 180 12)R
p_(_n 2 211 11y,
(5.5) ug _(1296 135 T 28357 6-n.2)T

89 71 1
+ (1(;:30 T 1536 T %0 n)TR2 t ( 1890 120)R3

(us! was obtained by Ii [7]).
Then we put (5.3), ..., (5.5) into (5.2) and obtain the following

(5.6) 16¢1(2n)7* + 8c2(2n)72R? + 4¢3(2n)TR> + 4cq(2n)RPR?
+ 2¢5(2n) (t) + 2c6(2n) R + 2¢7(2n)(c)
_(2 (n) + 7T +10651l_ 571 L)"A
B 5184 6480 © 2268007 9450 n?

o Tn 2917 | 739 1N .,
+ (2ea(m) + 6480 226800 ' 22680 71)T
n 151 3 1 2152
2 A
+ (2e5() ~ 755 + 37809) 7+ (2ea () + 55 — om) R

(265(7’1) + 56700>(t) + (2c6(n) + m)]ﬂ‘1 + 2c7(n)(c).
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Step 4: Since the curvature data 74,...,(c) are independent, we can
compare the coefficients. For example

on 77 10651 1 5371 1

. 2n) = 2¢q (1 — — - .
(5.7)  16e1(20) = 2e1(m) + 2727 ~ 5150 ¥ 2268000 ~ 9450 n?

Then we can set ¢;(n) = p1n + p2 + p3/n + ps/n? + ¢1/n, and we obtain
pr = 1/31104, pp = —11/12960, ps = 10651/1360800, ps = —571/18000,
¢1 = (parameter), that is,

(58)  en) = 11 . 10651 1 571 1 cl
’ 31104 12960 ' 1360800 n 18900 n2
Similarly
ex(n) = " _ 2017 N 739 1 e
2™ 712960~ 1360800 ' 45360 7
n 151 c3
5.9 - _ dol e
(5.9) (") = ~11335 T 75600
n 1 Cy4
ca(®) = es00 " 60 T

(since R?R? does not contain 7, the factor of 1/n does not appear,
ie.cq =0.)

11n
113400

cs(n) = + ¢s, +cg, c7(n) =ecr.

es(n) = 1260[]

Step 5: To determine c1,cz,...,c; we need the explicit data of us! for
some model spaces. We calculate u4' for model spaces by the following
formula (5.10)

o (M, .
(5.10)  Zl(1)= Sent o YOUMLG) & iy 4o,
=0 (47rt)2 =0

where A;’s are the eigenvalues counted with multiplicities of the Laplacian
for 1-forms. For the perpose we need the explicit data of the spectrum for
S™(1) and CP"(4) which are determined by ITkeda [8] (see Table 3).

We use the following formulae (see [3],[{10])

00 142 o0
Z (2" + 1)6—(n+§) t ~ l + z pntn7
(5.11) "=° n=0

o

o]
Z .2ne-n2t ~ + Z qntn’ Ze—n 2¢ ~ \/_t 2
n=0

n=0 n=—0o
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Table 3
Eigenvalue Multiplicity Range
(k+1)(n+k-2) (n—g;'tsz;)fgzit;(;l)i—z) k21
cP(0) | a(k+ 1)k ) | MR A0 k>0
sk(k-+n) n(2k+7;;)!£/;-!|;n—l_)!2 k1
Ak(ktn—1) k2(lc(;zl-kn-l-—nl;?l()lc(f-:),;()l!;(—li;-)Zl(;i);)!n! k212
where
_ =0t

Pn B2n+2 (1 ;) Gn = —ﬂ}—bn—}—?-

2t (n+1)!

B; is the Bernolli number, so that B, = 1/6, By = —1/30, Bg = 1/42,
Bg = —1/30, Byp = 5/66. Then we obtain the following table.

C(n+1)

Table 4
uo1 ull Uz ugl u,l
2 8 2
$*(1) 2 _% ﬁ @ 3115
e e 2 A
e e A
e R R
CP?(4) 4 -8 -I= E 31654
CP*(4) 6 0 -32 | -3 5

By putting (3.1), (3.2) and the data in table 4 into (5.8) and (5.9), we
obtain the following system of equations
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4 2

201+4CQ—8L‘3+865+1666+2C7_E:ﬁ7
17 1
4861+4862—4863-|—4805+48€3+24C7—ﬂ:ﬂ-,

2164 116
324c, 42166, do- o=,
324¢1+216¢c5—144c3+144¢5+96¢c5+84¢ 315 315

- 860 35
(5.12) 1280¢, +64002—32UC3+32065+]6066+20067—2—,,:E’
i
10988 22
3750¢14+1500¢2 —600c3+600¢5+240c6+390c7— '—1&—: ?:

15392 4384

5184¢1+6912c2—11520c34-9216¢5+21504¢c6+2112¢c7—

315  315°
4 54
‘24576c1+24576c2—36864c3+24576c5+67584c6+5376c7—%:2—5.
Then we have
¢ = 1 Cy = 107 c3 = 1 cqg =10
(5.13) LY 27 730247 T 1800 YT
: 37 . 1 . 1
Cs = ———— = —— = —
5T 151200 ° T T 20160 7 360°
, n 11 10651 1 571 1 11
5.14) uyl = - . R P
(5-14) uq (31104 12960 T 1360800 n 18900 n2 T 24 'n3)T
n 2917 739 1 107 1y 5.,
- ———— )R
N (12960 1360800 ' 45360 n 3024 n2)T
n 151 11y 4 ( n 1 -
+ ( 11320 T 75600 180n)TR + (64800 2160)RR
l1n 37 n 1 1
t — — — VR*+ —(o).
+(113400 t 15120)( )+ (1260[) '20160) * 360 ¢)
Remark. c¢1,c2,...,c7 are determined except 56(]).

6. Applications. Summing up we obtain the following formulae for
an oriented 8-dimensional locally symmetric Einstein space (M, g);

K 743 . 1
(6.1) @ :/( 3799 4, 2p2 _ 7 B3
M

174182400 10886400 907200
1 11 1
——__RR? 1)+ —— R4+ 0(c) ) dv,
+ 54800 + 113300t 2600 % T (c)) Y5
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60 am[ (o0 e I

T 174182400 43545600 453600
11, 731 59, 1
- 1 S .
32400 * 5268000 T Toos00 T 360(6))dL'
(6.3) x(M®) = 1 (_ L4y 2 opry 2 g
) 2 ,\" 983047 T o152 - T 1096
1 1 13 1
R2R2 — [t 4_ - ).
* 2048 ST ATy 128(“'))‘“'

1 17 7 1 7
6.4) o(M¥ = — [ (——' g3 " _po N —
(6.4) o(M7) = M( 22160 ¢ ~ 1520 T 28m0() 2880(6))(h

Remark. As for the signature the ambiguity of the sign occures by
the orientation of M.

Proposition 3. Let (M,g) and (M’ ¢g') be oriented 8-dimensional
locally symmetric Finstein spaces. Assume that Spec(M,g) = Spec(M',¢)
holds. Then if (1) R* = R™ and (2) (¢) = (c) hold, we have x(M) =
x(M") and |o(M)| = |o(M)|.

Proof. By Spec(M,g) = Spec(M',¢’), a; = a’ hold for each i. From
ap = ay, a1 = @}, az = a4, az = aj and the local symmetricity we have

Vol(M) = Vol(M'), ' =14, =R,

(6'5) A TR3 — TIRIB, R2R2 — R’2R,2,

and they are constant on M, M’. If (1) and (2) hold, by putting (6.5), (1)
and (2) into ag = a} of (6.1) we obtain (¢) = (¢)’. Then we can conclude
x(M) = x(M'") and |o(M)| = |o(M")].

Remark. For 6-dimensional locally symmetric Einstein spaces this
proposition holds without conditions (1) and (2) (see [12]).

Proposition 4 (Patodi [11]). Let (M,g), (M’ ¢’) be closed Rieman-
nian manifolds. Assume that (M, g) is a locally symmetric Einstein space.
If Spec(M,g) = Spec(M’,g") and Spec'(M,g) = Spec!(M’, g') hold, then
the other (M’ g') is also a locally symmetric Einstein space with the same
dimension.

Proposition 5. For two oriented closed Riemannian manifolds
(M,g) and (M',g") assume that one of them is an 8-dimensional lo-
cally symmetric Einstein space. If (M,g) and (M’ g') have the same
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spectra for functions and for 1-forms, respectively, i.e., Spec(M,g) =
Spec(M',g") and Spec'(M,g) = Spec'(M',¢'), then (1) x(M) = x(M")
and (2) |o(M)| = |o(M’)| are equivalent.

Proof. By Proposition 4 M’ is also an 8-dimensional locally symmet-
ric Einstein space. Then we can apply (6.1), ..., (6.4) for M and M’

From the assumptions ag = af), a1 = af, a; = @, a3 = a} and the lo-
cal symmetricity, we obtain (6.5) and they are constant on M, M’. If (1)
(resp. (2)) holds, we obtain a system of equations (6.1), (6.2) and (6.3)
(resp. (6.4)) of (t), R*, and (¢). Then it suffices to solve them.

Acknowledgement. The author wishes to express his hearty
thanks to Professor T. Sakai for his variable suggestions and patient check
of the contents. Especially, he pointed out some defects of this paper on
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