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STRATIFIED POISSON SPACES AND REDUCTION
SEIKI YAMANISHI

1. Introduction. In this paper we show a generalized local reduc-
tion theorem for a Poisson manifold on which a Lie group G acts with
moment map, following Sjamaar and Lerman’s work in the symplectic
context. )

Marsden and Weinstein showed the following reduction theorem. Let
G be a Lie group acting symplectically on a symplectic manifold (M,w).
We denote by g* the dual space of the Lie algebra g of G.

Theorem (Marsden-Weinstein [9]). Let J: M — g~ be an Ad*-
equivariant moment map for the G-action. Let p € g* be a regular
value of J. Suppose that the isotropy group G, of p acts freely and
properly on J~1(u). Then there is the unique symplectic structure w,
on M, := J™Y(u)/G, such that {;w=mw,, where 4,: J™ (u) — M is the
inclusion and m,: J~'(u) — M, is the projection.

Furthermore Marsden-Weinstein showed the following “shifting trick”
for the reduction of the action via G. If i is a regular value of J different
from zero, consider the symplectic manifold M x O_,, where O_, is the
co-adjoint orbit through —u. The diagonal action of G on M X O_, is
Hamiltonian with a moment map J, sending (m, f) € M xO_, to J(m)+f.
Then zero is a regular value of J,, and the Marsden-Weinstein reduced
space M, at p can be identified with J;1(0)/G. So we can reduce the
discussion about reduction to the 0-value.

Recently Sjamaar and Lerman showed a generalized reduction theorem
in the symplectic context where the regularity assumptions are dropped.

Theorem (Sjamaar-Lerman [10]). Let (M,w) be a Hamiltonian G-
space with a moment map J: M — g*. The intersection of the stra-
tum Mg of orbit type (H) with the zero level set Z of the moment map
is a manifold, and the orbit space

(J’VIO)(H) = (ﬂ/f(H) nz)Gg

has a natural symplectic structure (wo)zy whose pullback to Zyy =
Mgy N Z coincides with the restriction to Zy) of the symplectic form
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on M. Consequently the stratification of M by orbit types induces a decom-
position of the reduced space My = Z[G into a disjoint union of symplectic
manifolds

ﬂ’]() = U (;Mo)(H).
H<G

Sjamaar and Lerman proved the above theorem modeling a neighbor-
hood of the orbit through zero by a symplectic vector bundle, using the
local normal form for the moment map. (The local normal form for the
moment map is discovered independently by Marle [7] and Guillemin and
Sternberg [5]).

The purpose of this paper is to show a generalized reduction theorem in
the Poisson context in the case where the transversal Poisson structure {, }
can be approximated by the Lie-Poisson structure.

Recall that a Poisson structure on a differentiable manifold P is defined
as a Lie algebra structure on C*°(P) satisfying the Libnitz identity on
the derivation. The bracket operation { . } is a derivation and for each
H € C*(P) there is a vector field £y such that £-F = {H,F} for all F €
C®(P). £g is called the Hamiltonian vector field generated by H. There
is a bundle map B: T*P — TP such that £y = BodH for all H € C>(P).
One of the basic properties of Poisson manifolds is the following,.

Splitting theorem (Weinstein [14]). Let p be any point of a Poisson
manifold P. Then there is a neighborhood U of p in P and a Poisson
isomorphism ¢ = ¢s X ¢y from U onto the product § x N such that S is
symplectic and the rank of Poisson structure of N at ¢n(p) is zero. The
factors S and N are unique up to local isomorphisms.

In the Poisson context Marsden and Ratiu proved the following reduc-
tion theorem that is similar to a symplectic one:

Theorem (Marsden-Ratiu [8]). Let G be a compact Lie group acting
as a Poisson automorphism on the Poisson manifold (P,{}). Let J: P —
g* is an Ad*-equivariant moment map for the G-action. Let u € g~ is
a regular value of J. Suppose that the isotropy group G, of p acts freely
and properly on J~'(u). Then there is a unique Poisson structure on
B, := J7Y(u)/Gy such that {, }poi = {, }pom, where i: F, — P is the

inclusion and w: P — B, is the projection.

The action of a Poisson automorphism is called canonical when the
action preserves Poisson/symplectic structure with an equivariant moment
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map. The shifting trick holds also in the Poisson context. Now the main

result of this paper is the following local reduction theorem for Poisson G-
manifolds:

Theorem. Suppose that a compact Lie group G acts canonically on a
Poisson manifold P with an Ad™-equivariant moment map J: P — g*. Let
p € J~Y(0). Then for the G-orbit G-p there ezists a G-invariant neighbor-
hood U of G-p in P and a Poisson isomorphism ¢ = ¢s X pn: U — § x N
stated in Proposition 2.1 where the rank of N at ¢n(p) is zero. Now as-
sume that N is linearlizable near ¢x(p). Then, the intersection of the
stratum Uy of orbit type (H) with the zero level set of the moment map
is a manifold, and the orbit space

(Vo)) = (U N J~H0))/G

has a natural Poisson structure whose pull back to Uy N J~1(0) coincides
with the restriction of the Poisson structure on P to Uiy N J~Y(0). Con-
sequently the stratification of U by orbit types induces a decomposition of
the reduced space Uy = (U N J71(0))/G into a disjoint union of Poisson
manifolds

Uo=(UNnJ™H0)/G= N (Vo))
H<G

We will apply the method due to Sjamaar and Lerman to prove the
above result.

2. A decomposition of phase space in the Poisson context.

Proposition 2.1. Suppose that a compact Lie Group G acts canon-
ically on a Poisson manifold P. Namely, g € G acts as an automorphism
of the Poisson manifold P. Let G-p be a G-orbit through p € P. Then
there exist a neighborhood U of G-p in P and an isomorphism ¢ = ¢s X
én from U onto the product S x N, where S is a symplectic manifold and
the rank of N at every point of ¢n(G-p) is zero. The factors § and N are
unique up lo local isomorphisms.

Proof. Because of the assumption, G-p is on a symplectic leaf 5’
of P containing p. From Weinstein’s splitting theorem [14] there exist a
neighborhood Uj, of p in P and an isomorphism ¢, = ¢,s X ¢p, from U, to
Sp x Np. Since G-p is compact, there exist finite points ¢1p,...,g,p in G-p
such that G-p C U g;l,. Put U = g;U;, and U = U;. (Ui may be written
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as §; x N;). We will construct an isomorphism ¢: U — 5 x N. Since the
above splittings are unique up to isomorphisms, we can identify all ;.
We denote this Poisson factor by N. We may assume that U; N U;41 # 0
by changing indices if necessary. Uniqueness of the above splitting implies
that ¢ (Uy N U3) and ¢2(U; N Usy) are isomorphic. We define a map

h: U ul, — (51 X _N) U (52 X IV) = (S] U Sg) x N
by ¥1(u;) = ¢i(ui), ws € Uiy i = 1,2,

Since ¢1(U; N Uy) and ¢o(U; N Us) are isomorphic, we can identify ¢(u)
and ¢o(u) for any u € Uy N Usz. So % is an isomorphism from U; U U to
(51U S2) x N. Repeating the above procedure we obtain an isomorphism

’(L;’n_li U]UUQU"‘UUn —*(51U52U"'SR)XA’T.

Thus we have a desired isomorphism ¢ = ¥,_1, and symplectic factor
S: S] USzU"'USn.

Remark 2.2, For § x N constructed in the above proposition, there
exists a symplectic structure w on § which is induced from the Poisson
structure on P. Suppose that for a submanifold Y C S there exists another
symplectic structure wo on § such that wjy = wgy. Then there exist a
neighborhood U of Y in § and a diffeomorphism f: U x N — § x N
such that

(i) fly) =y, Vyev,

(i) frwo = w.

In fact this is Darboux-Weinstein’s theorem [12] when we restrict above
claim to 5. We can see that f may be got by integrating Hamiltonian
vector field on § because Hamiltonian vector fields preserve the Poisson
structure. This gives another proof of the theorem above.

Let P be a Poisson manifold. Put O = {p € P|rank of Poisson
structure at p is maximal}. O is open and dense in P. Furthermore, O is
a Poisson submanifold of P.

We will show that the same result holds in O as Sjamaar and Lerman’s
theorem [10].

Theorem 2.3. Suppose that a compact Lie group G acts canonically
on a Poisson manifold P with a moment map J: P — g*. Let O be the
subset of P defined above. Then the intersection of the stratum Og) of
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orbit type (H) with the zero level set of the moment map is a manifold,
and the orbit space

(Oo)my = Oy N J~1(0))/G

has a Poisson structure whose pull back to O NJ~1(0) coincides with the
restriction of the Poisson structure on P to Oy N J71(0). Consequently
the stratification of O by orbit type induces a decomposition of the reduced
space Oy = (Oygy N J~1(0))/G into a disjoint union of Poisson manifold

Oo = U(Oo)(sy-

Proof. We restrict the action of G to O. Let ¢ € O. Then from
Proposition 2.1, G-¢ has a neighborhood in O which is isomorphic te S x N.
Since rank of Poisson structure at ¢ is maximal, rank of Poisson structure
on N is identically zero. Let p € O N J~1(0). Then G-p is isotropic in S.
According to the local normal form of moment map and Remark 2.2, a
neighborhood of G-p in S is symplectic isomorphic to the model manifold
Y =Gxp((g/h)*xV), where H is the stabilizer of G at p, V' is symplectic
slice of G-p in S and g (resp. ) is the Lie algebra of G (resp. H). In this
case, H acts trivially on N because rank of the Poisson structure on N is
identically zero. So the model coincides with G x g ((g/h)* x V) x N. G-p
is embedded as a zero section of Y, and the neighborhood of G-p in O is
equivariantly Poisson diffeomorphic to a neighborhood of the zero section
of Y with the G-moment map given by the formula

J([g, 1, 0], n) = Adg (1 + Pu(v))

where &, is a moment map corresponding to the linear symplectic action
of G on the symplectic vector space V (see Remark 2.5). Thus reduction
of this case depends only on symplectic part. Applyving the Sjamaar and
Lerman’s theorem to the symplectic part, assertion of the theorem follows.
Further we have

(Oo)my = (Oy N J~H(0))/G
o~ (S(H) n J_l([)))/G x N
f—t (50)(;;] x N.

Now we consider the case where the Poisson structure on N may be
approximated by the Lie-Poisson structure.  We begin by recalling the
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linear approximation of a Poisson structure near a point of rank zero (for
more details see Weinstein [14]). Let P be a Poisson manifold and z be any
point in P. In general the cotangent space TP can be identified with the
quotient m;/m?, where m¥ is the ideal in C*°(P) generated by functions
which vanish at = together with all derivatives of order up to k — 1. As P
is a Poisson manifold, if the rank is zero at = then m, is a Lie subalgebra
of C*(P). Furthermore, m? is a Lie ideal of m,.

Thus TP = m;/m? has te structure of a Lie algebra. We will denote
this by g, and T, P = g} carries a Lie-Poisson structure. This is called
the linear approximation to the Poisson structure at z. The linearlization
problem raised bv Weinstein asks whether a Poisson structure is locally
isomorphic to the Lie-Poisson structure on the dual of Lie algebra.

Conn ([3],[4]) answered this question. According to his result

(i) If the Poisson structure is analytic, then the answer is ves if its
Lie algebra is semisimple.

(ii) If the Poisson structure is smooth, then the answer is yes if its Lie
algegra is semisimple of compact type.

Let P be a Poisson manifold and G a compact Lie group acting on P
canonically with an Ad*-equivariant moment map J: P — g*. Let p €
J~1(0). Then by Proposition 2.1, for the G-orbit through p there exist a
neighborhood Uin P isomorphic to S x N, where rank of N at ¢ (p) is zero.
In the following discussion we assume that the Poisson structure on ¥ is
linearlizable near the point ¢n(p) in the sense of Conn’s condition (ii),
namely we have Ty ()N = ¢*, where ™ is the dual space of a semisimple
Lie algebra t of compact type, and the Poisson structure on & is isomorphic
to the Lie-Poisson structure of t* near the point ¢n(p).

Similar by to the symplectic case, we will construct a model space that
is equivariantly Poisson diffeomorphic to a neighborhood of G-p. First we
will show the following lemma.

Lemma 2.4. Let ¢ be the dual space of a semisimple Lie algebra t
of compact type, We endow t* with the Lie-Poisson structure. Assume
that a compact Lie group H acts on £ as a linear Poisson automorphism
group. Then, the action of H is canonical and the moment map of the
action is given by the dual map of a homomorphism from h to t, where f
is the Lie algebra of H.

Proof. Let K be a compact Lie group with the Lie algebra t. By
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assumption the Killing form B on t is nondegenerate. Then the linear
map from t* to ¢ given by the formula

() =B(n), &net

is nondegenerate. Further we have for a € K
B(Ady-1£,1) = B(§,Adan) = £7(Adan) = (Ad;-1 7).

So we may identify the adjoint action on ¢ with the coadjoint action
on t*. By definition of the Lie-Poisson structure, we may identify a linear
Poisson action of H on ¢ with an automorphism group of t&. Namely we
have a representation of H over . Since t is semisimple, we may identify
the Lie algebra ad(t) with the Lie algebra d(k), where ad(k) denotes the
Lie algebra of the group consisting of all adjoint actions on ¢ and 8(t)
denotes the Lie algebra of the group of automorphisms of ¢. Because ¢ is
semisimple, ad(t) is isomorphic to ¢&. Thus the differential of the action
of H may be expressed by ady) for ¢ € b, where % is a homomorphism
from b to t. Therefore the action of H on £ is canonical and the moment
map is given by the dual map ¥*: ¥ — b* of ¥ where 1 is the above
homomorphism. It is obvious that the moment map is H-equivariant.

Now let w be the symplectic form on 5 induced by the Poisson struc-
ture on P. We denote by V' the symplectic vector space (T ;) (Gp))”/
T44(p)(Gp), which is a fiber of the symplectic normal bundle of the orbit
in §. Let H be the stabilizer of G at p. And by our assumption 7, () ¥
is isomorphic to €*. We will regard V x ¢~ as a Poisson slice of the action.
The Poisson normal bundle of the orbit is given by G x gy (V x t*), which
is a vector bundle associated to the principle fibration

H— G — G- p.

Now in the following we will give a Poisson structure on the total
space Y of the associated bundle G x g ((g/h)* X V' x £*) such that the
embedding G/H — Y defined by the zero section is isotropic in G xpy
({(g/h)*x V) and the corresponding normal bundle is given by G'x i (V xt*).

Assume that g* is splitted in the form g* = m* + h*, m* = (g/h)* by
fixing an Ad(G)-invariant inner product on g.

Now we consider the triple product action of H on TG x V x g*,
where H acts on T*G as a lift of the right multiplication, on V as a linear
symplectic action and on t* as a linear Poisson action, respectively,
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Remark 2.5. The action of the Lie group G on T™G given by
R(a): (g.m) — (9a™',Ad(n), a€G, g€G, n€g”
is Hamiltonian and the corresponding moment map is given by the formula

dr(g,m) = —.

Also the action given by

L*(a): (g,7) — (ag,n)

is Hamiltonian too, and the corresponding moment map is given by the
formula

1(g9.m) = Adyn.

Linear symplectic action of G on the symplectic vector space (V,wy) is
also Hamiltonian. The corresponding moment map @y is given by the
formula

(,8v(2)) = gov(€v,0).

For more details, see for example Sjamaar and Lerman [10], Abraham and
Marsden [1].

Above action of H on T*G X V x t* is canonical, and the corresponding
H-equivariant moment map : G X m* X h* x V x ¢* — h* is given by
Pp + Ov + ¥, i.e. we get

®(g, 1, v,8) = Sv(v) — n+ ¥*(§).

Then zero is a regular value of  and ¢7!(0) consists of all points of the
form (g, i, v (v) + ¥*(€),v,£). The map given by

GXxXm*XVxe — &) CGExm xh* xV xe*
(9:1,0,8) — (9,1, Pv(v) +¥7(£),v,8)

is an H-equivariant diffeomorphism. Since H acts freely on ¢~1(0), from
the reduction theorem of Poisson case the reduced space #7'(0)/H is a
Poisson manifold. We may identify $~1(0)/H with Y = G xg ((8/h)" x
V x ¥*) and a Poisson structure is induced on Y. Note that the symplectic
factor of Y is given by G xg ((g/h)* x V).
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Now ¢7'(0) may be identified with {(g,4,0,0,0) € G X m* X b* x
V x ¥} (C $71(0)). Thus ¢5'(0)/H may be canonically identified with
T*(G-p) = T*(G/H). and under this identification 7*(G"p) is a symplectic
submanifold of the symplectic factor of Y with the symplectic structure
induced by the Poisson structure on Y. G'p is embedded in T=(G-p) as
a zero section. Clearly this embedding is isotropic and its normal bundle
inY is given by G xg (V x ).

Therefore from the equivariant version of isotropic embedding theo-
rem [6], Remark 2.2 and the assumption that NV is linearlizable by #*, there
exist a neighborhood Uy of the zero section of Y, a neighborhood U in P
of the orbit Gp and a G-equivariant Poisson diffeomorphism

v Up — Ul

Next we describe the Hamiltonian action of G on the model space Y.
Actions of L* and B* of G on T*G commute each other. We regard L* as
an action of G on the triple product 7°G X V' x ¥* where G acts trivially
on V and #. Then L* commutes with the product action of H, and the
moment map Jr: G X g* X V X ¥* — g* given by

JL(g,n,v,€) = Adyn

is H-invariant.
Therefore the action L™ of G descends to an action on the H-reduced
space $~1(0)/H, and the corresponding moment map

J: GXxg(m"xV xt) — g°

sends a point [g, 4, v, €] to Adj(pu+Sv(v)+¢~(€)). Here [g, 1, v,£] denotes
the conjugate class of (g, ,v,€) € ¢ X m* X V' X £~ under the H-action.

Thus we get a result analogous to that of the theorem of the local
normal form theorem for the moment map.

Proposition 2.6. Let H be the stabilizer of G at p € J~(0) and
V xt* (8 = Ty, () N) the Poisson slice of the orbit G-p. Suppose that N
is linearlizable on a neighborhood of ¢n(p). Then a neighborhood of the
orbit is equivariantly Poisson diffeomorphic to a neighborhood of the zero
section of Y = G xpy (m* x V x &) with respect to the G-moment map J
given by the formula

J([g?ﬂ?UT g]) = ‘Ad;(/l + Pv(v) + ¥7(£)).
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Now we will show a reduction theorem of Poisson manifold. We begin
with the following lemma.

Lemma 2.7. Under the situation of Lemma: 2.4, let
(¥} (0)7 := {p € ¢~ (0)| h(p) = p for any h € H}

denote the set consisting of H-fized points in the zero level set of the mo-
ment map ¥*. Then (¢v*1(0))! is a Poisson manifold.

Proof. Let K be a compact Lie group with the Lie algebra t. For
p € ¥*71(0), the symplectic leaf in ¢ through p is given by the K-orbit
K -p where the action of K on ¥ is given by the coadjoint action. Since H
acts canonically on ¢*, the action of H leaves invariant symplectic leaves.
Restricting the action of H to K -p, we have a Hamiltonian H-space K -p
with the moment map 'Q‘JI"‘K‘F. Then from the theorem of Sjamaar and
Lerman [10], we have

@ O0) N (K -p)/H = U (#*70)n (K - p)(L))/H,
L<H

where K-p(L) is a stratum of orbit type (L) and (9=~ (0)(L))/ H is a sym-
plectic submanifold of K -p. Especially all H-fixed points in #*~1(0)N( K -p)
form a symplectic submanifold (¥*~(0) N (K-p(H))/H of K-p. Since
zero is a regular value of ¥*, ¥*~1(0) is a submanifold of ¥ and so is
(¥*~1(0))H. We will show that (3*~1(0))¥ is a Poisson manifold. It is ob-
vious from above discussion that T,(¥*~*(0))¥ + Im B, = T,#* holds for all
z € (¥*1(0))", £ # 0 where B is a bundle map B: TP — TP defined by
&y = BodH for all H € C°(P). Furthermore, the induced symplectic form
on Im B, NT (¥*~1(0))" is nondegenerate because (¥*~1(0)N(K-p(H))/H
is a symplectic submanifold of K:p. Thus from the Weinstein’s result
(Proposition 1.4 in [14]) (¥*~1(0))¥ is a Poisson manifold.

Theorem 2.8. Suppose that a compact Lie group G acts canonically
on a Poisson manifold P with an Ad™-equivariant moment map J: P —
g*. Let p € J7Y0). Then for the G-orbit G-p there exist a G-invariant
neighborhood U of G-p in P and a Poisson isomorphism ¢ = ¢s X dn: U —
S x N stated in Proposition 2.1, Where the rank of N at ¢x(p) is zero.

Now assume that the Poisson structure is smooth, and the cotangent
Lie algebra is semisimple of compact type. Then, the intersection of the
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stratum Uy of orbit type (H) with the zero level set of the moment map
is a mantfold, and the orbit space

(Uo)my = Uy n J~1(0))/G

has a natural Poisson structure whose pull back to Uiy N J~1(0) coincides
with the restriction of the Poisson structure on P to Uiy N J~1(0). Con-
sequently the stratification of U by orbit types induces a decomposition of
the reduced space Uy = (U N J~Y0))/G into a disjoint union of Poisson
manifolds
Uo=(UNJ™H0)/G = N (Vo)
H<G

Proof. The existence of U is proved in Proposition 2.1 and Re-
mark 2.2. From Proposition 2.6 computing in the model space Y we see
that the intersection of the zero level set of J with the fiber of the fiber
bundle m* x V x ¢ — Y — G/H is given by {0} x &,,'(0) x v*~'(0).
On the other hand, the intersection of the stratum Yz of orbit type (H)
with the fiber consists of points in m* X V x £ at which stabilizers of G
are conjugate to H. Therefore we have

(m” x V x €) N J7H0) N Yy = (Va) N5 (0)) x (Emy N7 (0))
= VX ((y 0 771 (0)).

Since (E’(“H) N4*~1(0)) consists of points of ¢* fixed by H and included
in ¥="1(0), we have () N »="10)) = (¥*71(0))7, because v*"1(0) is a
submanifold of ¢*. Since the set J~'(0)NY{y) is G-invariant and the action
of G on G/H is transitive, it follows that

J_l((]) N }’EH) =G-((m*xVxt)n J_I(O) N Y(H))
=G xy (V7 x (9°71(0)7)
~ G/H x VH x (=" (0)F.

Therefore the orbit space (Yz) N J~1(0))/G is the Poisson manifold
VH x (9*71(0))". The first assertion of the theorem follows because the
reduced space (I/ N J~1(0))/G is decomposed into a union of Poisson man-
ifolds (U())(H), H<G.

We will show that the Poisson pieces satisfy the frontier condition,
namely if (Uo)(y) intersects nontrivially the closure of a piece (Up)(z) then
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T

the closure of (Up)(L) contains every connected component of (Uo)(m) that
the closure of (Up)1 intersects nontrivially. For the symplectic part, our
assertion follows by the same discussion as that of Sjamaar and Lerman’s
Theorem 2.1 in [10]. As for the Poisson part ¥*~!(0), for each symplectic
leaf K'-q, where K-q is a coadjoint orbit of A" through ¢ € ¢*, applying
the above Sjamaar and Lerman’s theorem to ¥*~!(0) N K-g the frontier
condition is satisfied for the (K -q)o = (¢¥*~'(0) N K-¢)/G. Thus the fron-
tier condition is satisfied also for Poisson part ¥*~!(0). The proof of the
theorem is complete.
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