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MORSE INDICES OF GENERALIZED
HENNEBERG’S SURFACES

Kaori SEGAWA

Introduction. A minimal surface in R® is called stable if the second
variation of area is nonnegative for every compactly supported variation of
the surface. A beautiful theorem due to do Carmo-Peng [1] and Fischer-
Colbrie-Schoen [4] states that a complete orientable stable minimal surface
must be a plane. Actually, this result continues to hold if the surface is al-
lowed to have finitely many branch points. In the recent past, the stability
of a non-orientable minimal surface has been investigated by several au-
thors. Among others, Ross [9] has proved that any complete nonorientable
minimal surface of finite total curvature cannot be stable. He also discusses
the instability of finitely branched surfaces. It should be mentioned here
that, unlike the orientable case, the above result of Ross does not extend
to finitely branched surfaces. In fact, Henneberg’s surface, which has fi-
nite total curvature —27 and possesses two branch points, is stable as was
observed by Choe [2].

On a related front, Fischer-Colbrie [3] initiated the study of the Morse
index of a minimal surface, which measures how far the surface is from
being stable. Since then, quantitative study of this invariant has been
done by a number of authors.

In this note, we present a series of examples of complete nonorientable
minimal surfaces of finite total curvature, generalizing Henneberg’s surface,
and compute their Morse indices.

1. Preliminaries. Let (M,z) be a nonorientable minimal surface
in R3, that is, z: M — R® is a branched minimal immersion of nonori-
entable two-dimensional manifold 3. Let N be the orientable double
cover of M, and let pr: N — M denote the covering projection. We have
an orientation-reversing involution ¢: N — N without fixed points satis-
fying pr o o = pr. Setting y = = o pr, we obtain an orientable minimal
surface (¥, y), which may be expressed in terms of the Weierstrass repre-
sentation (see [8]):

v = [[(1- i+ ) 2) w0 pe N, 1)
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where ¢ is a meromorphic function and w is a holomorphic one-form on N.
The fact that (XN, y) is a double cover of a nonorientable surface is echoed
in the two equations (see [7])

1
goo=——. (2)

ofw = —

2w, (3)

SS

If M (and hence N) is complete, of finite total curvature and at most
finitely branched, then N is conformally a compact Riemann surface with
finitely many punctures, N = N \ {p1,...,px}, and g and w extend mero-
morphically to N (see [8]).

Let v be a unit normal vector field on N, which then satisfies v o o =
—v. For ¢ € C§°(N), let y; be a compactly supported variation of ¥
whose variation vector field d/dt|;=oy: has normal component ¢». Then
the second variation of area with respect to y; is given by

Q@)= [ (1467 +2K6) da,

where K and dA denote the Gauss curvature and the area element of N
respectively. We note that ¢v projects to a normal vector field on M if
and only if ¢ € C§°(N)_ = {¢ € C°(N)|d oo = —¢}. This motivates
us to define the Morse indez Ind(M,z) of (M,z) as the dimension of a
maximal subspace of C§°(N)- on which the quadratic form @ is negative
definite. Notice that (M,x) is stable if and only if Ind(M,z) = 0. We
also mention that there is an obvious way to define Ind(M,z) by working
extensively on M, and both of the definitions give the same number.

2. Generalized Henneberg’s surfaces. In this section, we present
examples of complete nonorientable minimal surfaces in R?, and compute
their Morse indices.

For each positive integer k, we choose Weierstrass data (g,w) on N =

C\0 as

g(¢) = (%71,
w = f()d¢ = (1 - ¢~*F)dg.

It is easy to verify that the formula (1) then gives a well-defined map
yx: N — R3, producing an orientable minimal surface (N, yx). Let o: N —
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N be the involution defined by o({) = —1/(. Factoring N by o, we
obtain a nonorientable surface M homeomorphic to the once-punctured
real projective plane, or the Mdbius band. Since g and w satisfy the
equations (2) and (3) respectively, yj, induces a map z3: M — R3. Thus
we obtain a nonorientable minimal surface (M,z;). It is easy to verify
that (M, z,) is complete, has total curvature —2m(2k — 1) and possesses
two branch points. Notice that (M, z1) is nothing but Henneberg’s surface
(see [6]).

We now prove
Theorem. For each positive integer k, we have

Ind(M, z;) = 2(k — 1).

Proof. Let v be a unit normal vector field on N, which defines a map
v: N = 82, the so-called Gauss map of N. As is well-known, v and g are
related by ¢ = 7 ov, where 7m: §2 — CU oo is the stereographic projection
from the north pole. In particular, v is holomorphic. Since N has finite
total curvature, v extends to a holomorphic map from N = CU oo, which
we denote by the same symbol.

We now pull back the metric on the unit sphere §% to N by v, and
denote its negative Laplacian by A. Then the Morse index of (M, zy)
coincides with the number of negative eigenvalues of the operator L =
—A — 2 which correspond to eigenfunctions ¢ satisfying

$oo = -4, (4)

where o is extended to N as well [3, Corollary 2, p.131]. We note that this
assertion holds for any complete nonorientable minimal surface with finite
total curvature, and follows by modifying a proof of the corresponding fact
in the orientable case.

For g as above, eigenfunctions as well as eigenvalues of L are explicitly
computed in [5]. Indeed, the eigenvalues of L are exhausted by

A i(i+1), i=0,1,2,...,

T 2n\n

where n = 2k — 1, and the eigenspace of }; is spanned by

{vpo(r)cosqb, vpq(r)singd} . ..
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Here p, g are nonnegative integers, (r,8) are the polar coordinates on C,
and v, 4(r) are functions explicitly representable in terms of the Gauss
hypergeometric function. Notice that, in terms of (r,8), (4) is rewritten
as ¢(1/r,0 + 1) = —&(r,8).

If \; <1, then i < mn—-1 = 2k — 2, and hence p = 0 and ¢ <
2k — 2. Since wo4(r) = r7/(#* + 1)¥/™ up to a constant multiple (see [5])
and so vpq(1/7r) = vo,e(r), the eigenfunctions vg 4(r)cos gf, voq(r)sin gf
satisfy (4) if and only if ¢ is odd. We thus obtain Ind(M,zx) = 2(k — 1)
as desired.

Remark. By the Theorem, (M, zy) is unstable if & > 2. A result of
Ross [9, Corollary 6] also implies this fact.
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