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THE EXISTENCE OF p-HARMONIC MAPS
BETWEEN SPHERES

Masanori ISHIDA

1. Introduction. Let (3,¢) and (¥,h) be compact Riemannian
manifolds. For a smooth map ¢: M — N and p > 2, the p-energy integral
is defined by

In(9)= [ Lo av,

where || is the Hilbert-Schmidt norm and dV, is the canonical measure
associated with the metric g. A map ¢ is said to be p-harmonic if it is a
critical point of J,.

Smith [7] constructs harmonic maps from the join of two harmonic
maps between Euclidean spheres. He reduces the harmonic map equation
to an ordinary differential equation and studies their properties. The nec-
essary and sufficient condition for the existence of solutions of this equation
has been showed by Ding [2]. Pettinati and Ratto [6] obtain similar results
by using completely different methods. Recently, Xu and Yang [10] proved
the existence of p-harmonic maps for the case of p = dim M.

In this paper, we give a sufficient condition for the existence of p-
harmonic maps. We wish to emphasize that our results fulfill the gap of
the range of p in the previous works although the necessary condition has
not been settled vet. '

Let f: S92 — §™ and g: 5" — 5" be harmomic homogeneous polyno-
mial maps of degree k and [, respectively. Here components of f (resp. g)
are eigenfunctions of the Laplacian on 579 (resp. S™) with eigenvalues
Ar = k(k+¢g—1) (resp. Ay =1({+r—1)).

Main Theorem 1.1. Suppose one of the following assumptions (1),
(2) and (3) is satisfied, then there exists a p-harmonic map ¢: S9H7+! —
Smtn+tl

(1) p < max(q,7) + 1, (M)P2K(q—p,7) > (M)P*K(q,7—p) and (r —
p+1)2 < 4),

(2) p < max(q,r)+ 1, (M)P2K(g—p,7) > (AWPPK(q,r—p), (r —p+
12>4N and J(r—=p+ 12 —4M+/(g— 1)+ 44X, < qg+7—p,

(3) p > max(q,7)+ 1,
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- 2.
where K(m,n) := fl;r/ sin™z cos™z dz.

It is worthwhile remarking that the inequality

M) (g - pr) > (WEK (g7 - p)

is not a restriction, since it can be always assumed by interchanging the
roles of f and g whenever necessary.

Smith [7] gets the harmonic representative for all elements in m,(S™)
(1 £ n £ 7) by using his equation. We can generalize this result by his
method as the following.

Corollary 1.2. For all n > 1, the n-th homotopy group mn(S™) is
representable by p-harmonic map provided

p22 (ISTI.SF/), 1.1
{p>n_2m_1>z (n > 8). (1)
The organization of the remainder of this paper is as follows: In sec-
tion 2, we reduce the p-harmonicity equation for ¢ to an ordinary differ-
ential equation and show the existence of a weak solution of this equation.
It is essential for our proof of Main Theorem 1.1 to study the properties
ol above solutions. We first exclude constant solutions of this equation
in section 3. Then we show the monotonicity and some asymptotic prop-
erties in section 4 and regularity in section 5. In final section, we give
a proof of Corollary 1.2. Although almost all arguments are a combina-
tion of Ding [2] and Eells and Ratto 3], we need some extra arguments in
section 4 especially.

2. The p-energy integral of the join map and Euler-Lagrange
equation. We regard the sphere S7*7*! as a subset of R¥*"*? by

T
{(sint-a:,cost-y) rz€eSyeS0<t<L 5}
The induced Riemannian metric on §977+! is given by
qg= sin2t~gq + cos®t-g, + dt?

where g, is the standard metric of §. When two harmonic homogeneous
polynomial maps f: S? — S™ of degree k and ¢: ST — 5™ of degree [
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are given, we define the join ¢ := fxg: §9T7+ — gm+nt+l 55 follows: For
€89 ye ST and t € [0,7/2], set

P(sint-z,cost-y) = (sina(t)-f(z),cosa(t)-g(y))
where a(t) is a smooth map from [0, 7/2] to [0, 7/2] satisfying
T T )
a(0) = 0, 0(5) =5 (2.1)
a(ty >0 forall te(0,7/2). (2.2)
Then for u = (sint-z,cost-y) € §9t"+1, we have

in%a(t 24(1
|dé|2(u) = &2(t)+/\k51r{nc;(i) cos?a(t)
sin~t

cos?t

and

J(a) = C/T 2{ ) + sm a(t) cos a(T)} )

cos?t
where ¢ is some positive constant and f( ) = sin?¢ cos”t.

A simple computation leads to the following Euler-Lagrange equation
for the functional Jy(a):

Al Ak ) sin a(t) cos a(t)

cos?t  sin®t

- Qd(t)%{log(dz(t) FEWLIG O Alcosz“(t))} —0. (23)

sin?t cos?t

i(t) + (gcott — rtant)a(t) + (

Therefore the equation of p-harmonic maps is equivalent to (2.1), (2.2)
and (2.3). We study this equation in the following. We first introduce a
function space

T/
X = {a € LY([0,x/2],R) : ||a|lP = /u 2(|d|1’ + |alP) f(t) dt < oo}

Here we allow J, to assume the value oc. If J,(a) < o0, J, is smooth
at a. It is obvious that Jy(a) > 0 for all « € X. We note that J, is weak
lower semicontinuous on X, namely, for any sequence {z, } in X such that
r, — = weakly, we have J,(z) < liminf Jy(2,)

In order to investigate the critical points of J, subject to the condi-
tions (2.1) and (2.2), it is convenient to introduce the closed convex subset

X := {a eX:0<a(l) <L % for all t € (0,7r/'2)}.
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If we restrict J, to Xg, then J, satisfies the following inequality:
x/2
Jp(a) > / |@|? sin9t cos™¢ dt
0

/2 n/2
= / (|a|” + |a|P)sin? cos"t dt —/ |a|P sin?t cos”t dt
0 0

™ wf2
> ||al|P - (—‘)pv/ sin?t cos"t dt.
0

namely,

Jp(a) > ||a||’ — constant. (2.4)

So we have

Lemma 2.1. J, satisfies coercive condition on Xy.

It follows from the coercive condition that there exists an ag € Xp
such that Jy(ag) = ¢o := inf{J,(a): a € Xo}.

Lemma 2.2. There ezists an ag € Xo such that ay satisfies (2.3)

weakly.
Proof. Tor any a € X, define a* € X¢ by

g— if a(t) > g,

a(1):= Ya(t) i 0<a(t) <7,
0 if a(t) < 0.

Set F(t,a) := Agsin®a(t)/sin®t + X\; cos®a(t)/cos?*t, and let ': Rx R — R
be given by

( )‘k i T
—_— if a(t) > —,
sin’t (®) 2
; sinZa(t) cos?a(t) T
U t,a):=<,\8m a( : if 0<a(t)< =<
(te, it Teosrt VS a(t) < 2’
Al
if a(t 0.
\ cos?t if a(t) <

We define a functional on X by

T/2
Jy(a) = /O {a* + U(t,a)}g sin?t cos"t dt.
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We have the identities
F(t,a*(t)) = U(t,a(t)) = U(t,a™(t)) for all a € X and t € (0,7/2).
It follows that
Jp(a®) = J;(a") < Jy(a) forall ac€ X,

which implies inf{J;(a): a € X'} = cop.

Let {a;} be a minimizing sequence in X for J>. By passing to {a}} if
necessary, we may assume a; € Xg. Since J;,“(a,-) —¢g and 0 < ¢; < /2,
the inequality (2.4) shows that {a;} is bounded in X. By noting that
X is a reflexive Banach space, we may choose some subsequence of {a;}
which converges weakly to some ap € Xy in X. The semicontinuity of J;
yields J;{av) = co. The equation satisfied by ag is exactly (2.3), because
ao € Xo, J; and Jp coincide on Xg.

3. Exclusion of constant solutions. In order to exclude constant
solutions @ = 0 and a = 7/2 , we show that ¢q < min{J,(0), J,(7/2)}.
By the mean value theorem, we get for some ty,t; € (0,7/2),

2 ‘.T/z . Y4 . 7F/2
Jp(0) = ()\,)2/ sinft cos” Pt dt > (N))2 smth/ cos" Pt di,
0 ¢

0
2

w/ t
Jp(m/2) = ()\k)g/ sin? Pt cos"t dt > (,\k)g cosTtI/ ]sinq_pt dt.
0 0

If p > max(g,r) + 1, then J,(0) = J,(7/2) = oo and so constant
solutions are excluded. The other cases we have to compare J,(0) with
Jo(7/2). However, if we change the roles of f and g in the definition of
the join, we may always assume that J,(0) < J,(7/2).

Thus, it suffices to show that ¢y < J,(0). We assume r+1 > p because
J»(0) < oo. Following an argument of Ding [2], we verify this condition
by considering the second variation d?(.J,)o of J, at the constant critical
point 0, which is given by

7/:
P(ola.a) = p0E [ 4 4 Wity g(t) dt,

where a € X, W(t) = Ay/sint — )}/ cos?t and g(t) = sin?t cos™P+21,
Set

~ mf2
X = {ae L3([0,7/2.,R): [laf® = /0 (a® + ) f(1) dt < o0}
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Lemma 3.1. If there exists a € X satisfying a > 0 and

T/2
I(a) = A (62 + W()a?}g(t) dt < 0,

then co < Jp(0).
Proof. For any a € X , define a™ by
M) = {a(t) if a(t) < M,

M ifat)> M,
where M is positive constant. Then I(a™) — I(a) as M — oc. It follows
that I(a™) < 0 for sufficiently large M. Furthermore, approximating aM
by smooth function aas, we can take aps € X and I(aps) < 0. Fixing such
a large M, we have

d
aJp(saM)L:D =0

and
2

0 B_
gar (s L, = pAE I(an) <0

Therefore, Jp(sarr) < Jp(0) holds for small s > 0. But aps is non-
negative and bounded, so sap; € Xp for small s > 0. It follows that
o < JP(O)

In order to find a function satisfying the assumption of Lemma 3.1,
we put a(t) := sin“tcos™7t with 0 < ¢ and 0 < 7 < (r — p+ 1)/2. Then
a € X and a > 0.

Lemma 3.2.

E{(r*+p* - 2pr — 47 +4r —dp— 4\ + 3)0 + &o + %3}

I(a(t)) =

1 ’
(2—{- qT)(—27'+r—p—|— 1)
where K = K(20 4+ q,—27 + r — p+ 2) in Main Theorem 1.1, ¢; and c3
are constants which do not depend on o.
Proof. By substitution, we have
w/2
I(a) = / (0% sin?7 1972 cos 27T P
0

+ 207 sin?? 9t cog™2THTPTy

+ 725in20t 9t 2 o 2T Py

+ Apsin?9 1972 cos— 27T P2

— N sin?? Tt cos™2THTPE) dt.
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Put ¢ :=20+q, 7" := =21+ r—-p+2. By noting ¢ > 1and ' > 1,
integration by parts leads to

! I

K¢ = Lol k(g - 2,0) =

-1
I\"(q' -2, +2)

q+
e g p 2 —2) = 7o K(g,r - 2)
=T q = +r,xq,r— .
Then we have
27+ 1 2‘1+

g+ Q'+r').

+20‘T+T p — M

I{a)= K (a + Ak

Theorem 3.3. If the condition (1) or (2) of Main Theorem .1 is
satisfied, then we have cg < J,(0).

Proof. Casel. (r—p+ 1)? <4);

Set H :=(r—p+1)2 — 4.
Then we have

P24 p?—Opr — AT £ Ar—dp— AN +3 = H—4(r—l2+1).
So if we take o sufficiently large and 7 as follows:
H r-p+ r—p+1
max(O _+T) <7< —

then I(a) < 0 because of
K
qg—1
=) (—2r+r-p+1
2+ =) (2 +r-p+1)

> 0.

Case 2. (r—p+ 1)2 > 4);
We put ap(t) := sintcos™"t, where

—(g—=1)+(g—- 1)+ 4\
5 .

_(r—p+ )=V —pF D -4\
. .

Then ag is a solution of the following equation:

_% (g(t)d) + aW(t)g(t) = pag(t), (3.1)
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where p=(r—0) - (r - o)(r+qg—p+2).
Take a = gp in (3.1), multiply the both sides of (3.1) by ap, and integrate
over [0, 7/2], we have

T2 . . Tf2 ) w/2 5
—/ {d—(g(t)ao)}ag dt+/ W (t)g(1) dt = u/ ag(t)dt.
0 t 0 0
By applying the integral by parts to the first term, we obtain
wf2 5
Hao) = u [ ado(t)dt

Thus, I(ap) < 0 if and only if 4 < 0. But an easy computation leads to
that ¢ < 0 if and only if

Jo—p 12—+ (a- 12+ 4 <q+7r-p.

4. Monotonicity and asymptotic properties of solutions. By
changing variables, t = arctan e®, we rewrite the equation (2.3) as follows:

A"(s) + {(q —1)e™* —(r = 1)’ LB 2(k'(8) + tanh S) }A,(s)

pranper 2 Vk(s)
A — Ae?
= M i As) con Als), .

where A(s) = a(arctan e®) and k(s) = A%(s)(e® + e7%) + A\re~*sin?A(s) +
Are® cos? A(s).

We note that if a € X then 0 < A < 7/2 on R. We analyse properties
of this equation’s solutions by following an argument of Eells and Ratto [3].

Theorem 4.1. Let A be a solution of (4.1). Suppose one of the
following assumptions is satisfied:

(1) p<max(q,7)+ 1 and A is non-constant,

(2) p > max(g,r) + 1,
then A’ > 0 on R.

Lemma 4.2. If A is a non-constant solution of (4.1), then 0 < A <
/2 on R.

Proof. If A(s) = 0 for some s € R, then A'(s) # 0; for otherwise
A =0by (4.1). Thus A assumes negative values, and consequently a ¢ Xo.
Similarly, A does not assume the value /2.
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Next we set
e™s — A€’

A
Gls):= kes +e?

and let & be the unique solution of G(s) = 0.

Lemma 4.3. The zeros of A’ are isolated.

Proof. If A'(sp) = 0 and sg # §, then (4.1) shows that A”(sp) # 0,
which implies that sq is an isolated zero of A’. If 59 = 5, we have A”(3) = 0.
Then differentiate both sides of (4.1) leads to

Ak + A

me=y _ <
AT(3) = 2(e§—|—e—§)2

sin A(§) cos A(8) < 0,
which implies that sp is again an isolated zero of A’.

Lemma 4.4. Let A be a non-constant solution of (4.1).
(1) Ifp<q+ 1, then A’ > 0 on (—,3].
(2) Ifp<r+1, then A’ >0 on [3,+0o0).

Proof. We only prove (1), since (2) can be proved similarly. First,
we consider the following linear equation on the interval I, where A’ does
not vanish:

y'(s) + Pa(s)y(s) = Qa(s) (4.2)
where
" _ e~ S —(r — e —92 ks
Pa(s) = 2{% + (g l)es T eEs D + 2 3 Z(k((s)) + tanhs)},
Qa(s) = Q%Ii;—;jl—f; sin A cos A.

The solution of (4.2) with y(5) = 1 for § € I can be written as

") = 53 (43)
where s
D(s) = exp(/g Pi(u) du)
and

N(s) = /S:SQA(B)exp(/:PA(,u) dp)dﬂ + 1.
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By direct computation, we have
D(s) = c-A'Z(S)kp—Z(S)e(%—p)s(625 + 1y,

where ¢ is a positive constant. Since k(s) > 0, we have D(s) > 0 and
D(s) = 0if and only if A’(s) = 0.

On the other hand, since A satisfies (4.1), y(s) = 1is a solution of (4.2).
By uniqueness, (4.3) implies

N(s)=D(s) on I. (4.4)
Suppose that A’(sp) = 0 and sg < 5. Put
A= {s € [—o0,s0): A'(s) = 0}.

Here we note that p < ¢ + 1 implies lim;_,_o, D(s) := D(—o00) = 0. Thus
A'(—0)=0,s0 A # 0.
Next let
81 :=sup A. (4.5)

Since s1 < sg by Lemma 4.3, we get N'(8) = 0 for some § € (s1,80) because
N(s1) = N(so) = 0 and N(s) = D(s) > 0 for all s € (s1,5p). By noting
that N’(s) = 0 holds for some s € (s1,80) if and only if A’(s) = 0, we have
A’(3) =0 and § € (s1,50), which contradicts (4.5).
Finally we show that A’ > 0 on (—o0,3|. Suppose A’ < 0 on (—o0, 3],
then
N'(5) = Qa(3)D(5) =0

and

e(24-P)5(25 4 1yp—a-7

N"(3) = —4Ne®kP2(5 S ~
(3) 4\ e (%) e

>0

A'(3) sin A(5) cos A(3)

implies that 3 is a minimal of N. By combining this with ¥(—oc) = 0, we
have N'(s;) = 0 and sy € (—oc, 8], which is a contradiction.

Lemma 4.5. Let A be a non-constant solution of (4.1).
(1) If p>q+ 1, then A" > 0 on (—oc,3).
(2) If p>r+1, then A’ > 0 on (3, +00).
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Proof. We also give a proof of (1) because (2) may be proved in the
same manner. To begin with, we write (4.1) in the form

A" + E(s)A’ = G(s)sin Acos A,

where

B(s) = =D = (r-1)e’  p—2 (k’(S)

prarpe— 5 5(s) + tanh s).

This equation may be also written as

d%{A/ exP(/:E(u)du)} = exp (./;E(u)d#)G(s)sin Acos A (4.6)

for some constant 3.

Suppose A’(sg) < 0 for sp < 3, integrating (4.6) over [sy,So]. Then we
have A’(s1) < 0 for all s; < sp because the right-hand side is positive due
to Lemma 4.2. Thus A’ < 0 on (—o00,s¢), that is, A(s) > A(sg) > 0 for all
s € (—o0,8p). Now a(t) = A(logtant) is a solution of (2.3) and we have
a(t) > a(ty) =: ¢ > 0 for all t € (0,1p). Then we have

2 to
Jp(a) > (Ax)2 sinfe COSTt()/ sin?" Pt dt.
Jo

From the assumption p > ¢ + 1, it follows that J,(a) = oo, which is a
contradiction. Therefore A’ > 0 on (-, 3).

Lemma 4.6. Let A be a non-constant solution of (4.1). If p <
max(q,7)+1, then A’ > 0 on R, which implies the case (1) of Theorem 4.1.

Proof. Lemma 4.4 tells us the case p < min(q,r) 4+ 1. If the case
r+ 1< p< g+ 1 happens, we have to use (1) of Lemma 4.4 and (2) of
Lemma 4.5. Similarly, the case g+ 1 < p < 7+ 1 is in need of (2) of
Lemma 4.4 and (1) of Lemma 4.5.

Lemma 4.7. If p > max(q,7)+ 1, then A’ > 0 on R, which implies
the case (2) of Theorem 4.1.

Proof. Note that the assumption implies A is not constant, because
Jp(0) = J(7/2) = o0. We have 0 < A < 7/2 on R by Lemma 4.2 and
Lemma 4.5 tells us that A’ > 0 on R\{5}. Here, A’(3) = 0 is not possible.
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For otherwise A”(3) = 0 by (4.1) and A’ assumes minimum at 5. However
this contradicts A™(3) < 0.

The proof of Theorem 4.1 is completed and we obtain

Proposition 4.8. Suppose the same assumption as Theorem 4.1. A
solution A of (4.1) has the following properties: 0 < A < ©/2 on R and

lim A(s) =0, lim A(s) =

§——00 s§— 400

CRI

Proof. Suppose lim;— 400 A(s) < 7/2. From the equation (4.1), we
observe that there exist large sp € R such that A”(s) < constant < 0 for
all s > sg, which contradicts A’ > 0 on R. Similarly, lims_,_, A(s) = 0.

5. Regularity of solutions. Let a(t) be a solution of (2.3). For
any tg,t1 € (0,7/2), we have

la(t1) — a(to)l
< [*lacoa

141 1 15 __g T Ll
< (/ |d(i)|p5inqtcosrtdt)p(/ sin P~1tcos P—lz‘.dt) P
to )
o _q o p=1
§||a||(/ sin P~1¢cos P—ltdt) P
t

Q

This shows «(t) is continuous in (0,7/2). Similarly, we observe that a(t)
is continuous in (0,7/2) due to (2.3). Therefore all solutions of (2.3) are
smooth in (0,7/2).

Lemma 5.1. The solution a(t) satisfies a Holder condition att =0
(resp. t = w/2) with exponent q/(p — 1) (resp. v/(p — 1)).

Proof. We consider again A(s) instead of a(t) by change of variables
as before. The equality (4.4) can be rewritten with § =0 as
e(2a-p)0( 20 | 1yp—a-T
el + et
A'(8) sin A(8) cos A(6) }df + 1
_ Ak 2(s)elaPIe (e 4 1ppaT
B 20=a=7 A’2(0)kP=2(0)

2/3{(,\ke-9 )
0
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The left-hand side of this equation is a decreasing function of s, hence
remain bounded for large s, we have for large s

A (s)kP~2(s)el297Ps (28 4 1)P-97T < C,

By recalling the definition of k(s), this implies A’(s) < Celr/(pP=1)=1)s,
Namely we get for t close to /2, a/(t) < C(n/2—1)~"/(P=1) Similarly, we
have for ¢ close to 0, a’(t) < Ct=¥/(»=1), Here, C are positive constants.

By using the smoothness of the solution a(t), the map ¢ is Hélder
continuous with the smaller exponent of ¢/(p — 1) and r/(p—1). Thus the
regularity theory of p-harmonic maps (cf. [4]) tells us that ¢ has Hélder
continuous gradient. Eventually, the map ¢ actually satisfies an elliptic
system, so ¢ is a smooth p-harmonic map (cf. [10]).

6. Proof of Corollary 1.2. Let dj: S' — 5! be the complex poly-
nomial z — z¥ of degree |k|, and let id: ST — S” be the identity map.
Then the join map dj xid is r-th suspension of dy. If p satisfies (1.1), then
the assumption (1) or (3) of Main Theorem 1.1 can be fulfilled for all k¥ € Z
withg=1,7= X =n-2and A\ = k%
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