KO-GROUP OF $PSp(2^{4n})$

Dedicated to Professor Teiichi Kobayashi on his 60th birthday

HARUO MINAMI

Let Sp(n) be the symplectic group of degree n and PSp(n) be the projective group associated with Sp(n), that is, PSp(n) = Sp(n)/C where C denotes the center of Sp(n) which is generated by the scalar matrix with all diagonal entries -1.

Our purpose here is to compute the real K-group $KO^*(PSp(2^{4n}))$. As for the complex K-group, $K^*(PSp(\ell))$ has been determined in [7,9] for any $\ell \geq 1$. But we begin with the calculation of $K^*(PSp(2^{4n}))$ by our method for convenience of calculation. The way getting these groups is quite parallel to that of [12]. As it turns out that there is a $\mathbb{Z}/2$ -map from S^{8n+3} to $Sp(2^{4n})$ where the generator of $\mathbb{Z}/2$ acts on S^{8n+3} as antipodal involution and on $Sp(2^{4n})$ as the generator of C respectively, the multiplicative structures of the K-groups of $PSp(2^{4n})$ can be reduced to those of the K-groups of P^{8n+3} and $Sp(2^{4n})$ just as in the case of $SO(8\ell)$ [12] by making use of this $\mathbb{Z}/2$ -map and applying a device to the equivariant K-theories associated with $\mathbb{Z}/2$.

This paper is arranged as follows. Section 1 consists of preparations for the subsequent sections. Sections 2 and 3 deal with the computation of $K^*(PSp(2^{4n}))$ and $KO^*(PSp(2^{4n}))$ respectively.

1. Let Γ denote the multiplicative group generated by -1 and H denote the canonical non-trivial 1-dimensional real representation of Γ .

We write nH for the direct sum of n copies of H. And by $B(pH \oplus \mathbf{R}^q)$ and $S(pH \oplus \mathbf{R}^q)$ we denote the unit ball and the unit sphere in $pH \oplus \mathbf{R}^q$ centered at the origin o, and let $\Sigma^{p,q} = B(pH \oplus \mathbf{R}^q)/S(pH \oplus \mathbf{R}^q)$ with the collapsed $S(pH \oplus \mathbf{R}^q)$ as base point. Here \mathbf{R} denotes the field of real numbers. Also, for later use we fix the notations \mathbf{C} and \mathbf{H} for the fields of complex numbers and quaternions as usual.

Let Δ^+ : $Spin(8n+4) \to U(2^{4n+1})$ be one of the half-spin representations of Spin(8n+4). It is known [10], §13 that Δ^+ is the restriction of a quaternionic representation of Spin(8n+4), denoted by

$$\overline{\Delta}^+: Spin(8n+4) \longrightarrow Sp(2^{4n})$$

178 H. MINAMI

below. Assume that the generator of Γ acts on Spin(8n+4) and $Sp(2^{4n})$ as the elements -1 and -I of these groups respectively where I is the unit matrix, and thus consider these two groups as Γ -spaces. Then $\overline{\Delta}^+$ becomes a Γ -map obviously. Moreover we know [6] that Spin(8n+4) contains $S^{8n+4,0}$ as an invariant subspace. This follows from the fact that Spin(8n+4) is a subgroup of the Clifford algebra C_{8n+3} multiplicatively generated by the elements of the unit sphere S^{8n+3} ([10], §11). Therefore we have the following result similar to [6],(1.14).

(1.1) There exists a Γ -map $\iota: S^{8n+4,0} \to Sp(2^{4n})$, so that we have a homeomorphism

$$(S^{8n+4,0} \times Sp(2^{4n}))/\Gamma \approx P^{8n+3} \times Sp(2^{4n}).$$

In fact, this homeomorphism is induced by the assignment $(x,g) \mapsto (\pi(x), \iota(x)^{-1}g)$ for $x \in S^{8n+4,0}$ and $g \in Sp(2^{4n})$, where $P^{8n+3} = S^{8n+4,0}/\Gamma$, the real projective space of dimension 8n+3, and π is the canonical projection from $S^{8n+4,0}$ to P^{8n+3} .

A Real (Γ -)vector bundle is a complex (Γ -)vector bundle together with a conjugate (equivariant) involutive automorphism and a quaternionic (Γ -)vector bundle is a complex (Γ -)vector bundle together with a conjugate (equivariant) anti-involutive automorphism. It is clear by definition that the external tensor product $E \otimes_C F$ of two quaternionic (Γ -)vector bundles E and F admits an obvious Real structure.

Let KR and KSp denote the Real and quaternionic K-theories and let KR_{Γ} and KSp_{Γ} denote the equivariant ones associated with Γ . But $KR(X) \cong KO(X)$ and $KR_{\Gamma}(X) \cong KO_{\Gamma}(X)$ canonically if X has a trivial Real structure. Since all spaces of this note are such ones, we identify these isomorphisms throughout this paper. Then the above external tensor product $x \otimes_{\mathbb{C}} y$ defines uniquely an element $x \wedge_{\mathbb{C}} y$ of either $KO(X \wedge Y)$ or $KO_{\Gamma}(X \wedge Y)$ according as $x \in KSp(X)$, $y \in KSp(Y)$ or $x \in KSp_{\Gamma}(X)$, $y \in KSp_{\Gamma}(Y)$.

Considering $S^{0,3}$ to be the unit quaternions Sp(1) yields a generator of $\widetilde{KSp}(\Sigma^{0,4})$ in a canonical way. We write α for this element. Then

$$\widetilde{\mathit{KSp}}(\Sigma^{0,4}) = \boldsymbol{Z} \cdot \boldsymbol{\alpha}$$

and also α satisfies

(1.2)
$$\alpha \otimes_{\mathbf{C}} \mathbf{H} = \eta_4, \ \alpha \wedge_{\mathbf{C}} \alpha = \eta_8 \text{ and } s(\alpha) = \mu^2$$

where η_4 , η_8 and μ denote the canonical generators of $\widetilde{KO}(\Sigma^{0,4})$, $\widetilde{KO}(\Sigma^{0,8})$ and $\widetilde{K}(\Sigma^{0,2})$, (the last two generators are called the Bott class), and s denotes the natural complexification $KSp \to K$.

From [3,11,14] we now recall the equivariant Thom isomorphism theorems. Consider the isomorphism $S^{8n+4,0} \times H^{2^{4n}} \cong S^{8n+4,0} \times H^{2^{4n}} \otimes_R H$ of Γ -quaternionic vector bundles over $S^{8n+4,0}$ given by the assignment $(x,v) \mapsto (x,\iota(x)v)$ for $x \in S^{8n+4,0}$, $v \in H^{2^{4n}}$ where ι is as in (1.1). Then, in a canonical manner, this isomorphism yields a generator τ_H of $\widetilde{KSp}_{\Gamma}(\Sigma^{8n+4,0})$ such that its restriction to $o \in B((8n+4)H)$ is $2^{4n}(H-H\otimes_R H) \in KSp_{\Gamma}(o)$ (= $RSp(\Gamma)$), the quaternionic representation ring of Γ).

Set

(1.3)
$$\tau = s(\tau_{H}) \in \widetilde{K}_{\Gamma}(\Sigma^{8n+4,0}) \quad \text{and} \quad \omega = \tau_{H} \wedge_{C} \alpha \in \widetilde{KO}_{\Gamma}(\Sigma^{8n+4,4}).$$

Then their restrictions to o and $\Sigma^{0,4}$ are $2^{4n+1}(1-L) \in K_{\Gamma}(o) = R(\Gamma)$ and $2^{4n}(1-H)\eta_4 \in \widetilde{KO}_{\Gamma}(\Sigma^{0,4}) = RO(\Gamma)\cdot\eta_4$ respectively where $L = C \otimes_R H$, and multiplications by τ and ω give isomorphisms $\widetilde{K}_{\Gamma}^*(X) \cong \widetilde{K}_{\Gamma}^*(\Sigma^{8n+4,0} \wedge X)$ and $\widetilde{KO}_{\Gamma}^*(X) \cong \widetilde{KO}_{\Gamma}^*(\Sigma^{8n+4,4} \wedge X)$ for any Γ -space X with base-point respectively. Here $R(\Gamma)$ and $RO(\Gamma)$ are the complex and real representation rings of Γ and $R \cdot g$ denotes an R-module generated by a single element g for a ring R.

By h we denote the K- or KO-functor. For X=+ (a point), $Sp(2^{4n})$ we consider the exact sequence of the pair $(B((8n+4)H)\times X, S((8n+4)H)\times X)$ in h_{Γ} -theory. In general if Γ acts on X freely then there is a natural isomorphism $h_{\Gamma}^*(X)\cong h^*(X/\Gamma)$. Combining this with (1.1) and (1.3) gives rise to the following exact sequences.

(1.4a)
$$\cdots \xrightarrow{\delta} h_{\Gamma}^{*}(+) \xrightarrow{J} h_{\Gamma}^{*}(+) \xrightarrow{I} h^{*}(P^{8n+3}) \xrightarrow{\delta} \cdots,$$

(1.4b) $\cdots \xrightarrow{\delta} h^{*}(PG) \xrightarrow{J} h^{*}(PG) \xrightarrow{I} h^{*}(P^{8n+3} \times G) \xrightarrow{\delta} \cdots$

where $G = Sp(2^{4n})$ and there holds the equality $\delta(xI(y)) = \delta(x)y$ in either case.

We write G for $Sp(2^{4n})$ for simplicity in the subsequent sections.

2. By the same symbol $\bar{\sigma}$ we denote the reduced bundles of the canonical line bundles $(S^{8n+4,0} \times H)/\Gamma \to P^{8n+3}$ and $(G \times H)/\Gamma \to PG$. And we write $\sigma = c(\bar{\sigma})$ where c denotes the complexification $KO \to K$. Since

180 H. MINAMI

 $H^2 = 1$ in $RO(\Gamma)$ there hold obviously

$$\bar{\sigma}^2 + 2\bar{\sigma} = 0$$
 and $\sigma^2 + 2\sigma = 0$.

Let $\bar{\nu}=p^*(\eta_8^{n+1})\in \widetilde{KO}^{-5}(P^{8n+3})$ and $\nu=p^*(\mu^{4n+2})\in \widetilde{K}^{-1}(S^{8n+3})$ where p is the map $P^{8n+3}\to S^{8n+3}$ obtained by collapsing the outside of a top dimensional cell in P^{8n+3} to a point. Then the equalities

$$c(\bar{\nu}) = \mu^2 \nu$$
 and $r(\nu) = \eta_4 \bar{\nu}$

follow from the relations $c(\eta_4) = 2\mu^2$ and $\eta_4^2 = 4$.

We consider the complex and real K-theories the $\mathbb{Z}/2$ -and $\mathbb{Z}/8$ -graded cohomology theories with the coefficient rings $K^*(+) = \mathbb{Z}[\mu]/(\mu^2 - 1)$ and $KO^*(+) = \mathbb{Z}[\eta_1, \eta_4, \eta_8]/(2\eta_1, \eta_1^3, \eta_1 \eta_4, \eta_4^2 - 4, \eta_8 - 1)$ respectively where $\eta_1 \in KO^{-1}(+)$ and the others are as in Section 1. But the complex K-theory is viewed as $\mathbb{Z}/8$ -graded, so that $K^*(+) = \mathbb{Z}[\mu]/(\mu^4 - 1)$, when we discuss the relation between these two kinds of K-theories.

Here we calculate $K^*(P^{8n+3})$ and $KO^*(P^{8n+3})$ whose additive structures are given in [2,5]. Consider the exact sequence of (1.4a). First note that $h_{\Gamma}^*(+) \cong h^*(+)[t]/(t^2-1)$ because of $\Gamma \cong \mathbb{Z}/2$ where t=L or H according as h=K or KO. From inspecting the definitions of the maps it follows that

(2.1)
$$\delta(\nu) = 1 + L$$
, $J(1) = 2^{4n+1}(1-L)$ and $I(L) = \sigma + 1$ for $h = K$, $\delta(\bar{\nu}) = 1 + H$, $J(1) = 2^{4n}\eta_4(1-H)$ and $I(H) = \bar{\sigma} + 1$ for $h = KO$.

Moreover we have a unique element ζ of $KO^{-6}(P^{8n+3})$ satisfying $\delta(\zeta) = \eta_1$. Using this and the equality $\delta(xI(y)) = \delta(x)y$ we obtain by the exactness of (1.4a) the following.

With the notation as above

(2.2a)
$$\widetilde{K}(P^{8n+3}) = \mathbb{Z}/2^{4n+1} \cdot \sigma, \quad \widetilde{K}^{-1}(P^{8n+3}) = \mathbb{Z} \cdot \nu$$

where the ring structure is given by

$$\sigma^2 + 2\sigma = 0$$
, $\nu^2 = 0$,

$$\widetilde{KO}(P^{8n+3}) = Z/2^{4n+2} \cdot \bar{\sigma},$$

$$\widetilde{KO}^{-1}(P^{8n+3}) = Z/2 \cdot \eta_1 \bar{\sigma} \oplus Z \cdot \eta_4 \bar{\nu},$$

$$\widetilde{KO}^{-2}(P^{8n+3}) = Z/2 \cdot \eta_1^2 \bar{\sigma},$$

$$\widetilde{KO}^{-3}(P^{8n+3}) = 0,$$

$$\widetilde{KO}^{-4}(P^{8n+3}) = Z/2^{4n} \cdot \eta_4 \bar{\sigma},$$

$$\widetilde{KO}^{-5}(P^{8n+3}) = Z \cdot \bar{\nu},$$

$$\widetilde{KO}^{-6}(P^{8n+3}) = Z/2 \cdot \eta_1 \bar{\nu} \oplus Z/2 \cdot \zeta,$$

$$\widetilde{KO}^{-7}(P^{8n+3}) = Z/2 \cdot \eta_1^2 \bar{\nu} \oplus Z/2 \cdot \eta_1 \zeta$$

where the ring structure is given by

$$\begin{split} &\bar{\sigma}^2+2\bar{\sigma}=0, \qquad \bar{\nu}^2=0, \qquad \zeta^2=0, \qquad \eta_4\zeta=0, \\ &\bar{\sigma}\zeta=\eta_1\bar{\nu}, \qquad \quad \eta_1^2\zeta=2^{4n+1}\bar{\sigma}. \end{split}$$

Now we are ready for computing the K-groups of PG.

Let ρ be the canonical, non-trivial, 2^{4n} -dimensional complex representation of G and $\lambda^i \rho$ be the i-th exterior power of ρ . Since the restriction of $\lambda^{2i} \rho$ to the center of G is trivial clearly, it factors through the canonical projection $\pi \colon \to PG$. So we view $\lambda^{2i} \rho$ also as a representation of PG below. Moreover, as is well known, an element of $\widetilde{K}^{-1}(PG)$ is represented as the homotopy class of a map from PG to the infinite dimensional unitary group U. Hence we see that $\lambda^{2i} \rho$ yields naturally an element $\beta(\lambda^{2i} \rho)$ of $K^{-1}(PG)$, which is called the β -construction of $\lambda^{2i} \rho$ [8]. Because $\dim_C \lambda^{2i+1} \rho = \binom{2^{4n+1}}{2i+1}$ and $2^{4n+1} \| \binom{2^{4n+1}}{2i+1} \rangle$, $d_{2i+1} = \binom{2^{4n+1}}{2i+1} / 2^{4n+1}$ is odd. Let $\ell \rho$ denote the direct sum of ℓ copies of ρ . The map $PG \to U\left(\binom{2^{4n+1}}{2i+1}\right)$ given by the assignment $\pi(g) \mapsto (d_{2i+1}\rho)(g)\lambda^{2i+1}\rho(g)$ defines a similar element $\beta(d_{2i+1}\rho + \lambda^{2i+1}\rho)$ of $K^{-1}(PG)$.

We describe explicitly the image of $\beta(\rho) \in K^{-1}(G)$ by the transfer map π_* : $K^{-1}(G) \to K_{\Gamma}^{-1}(G) = K^{-1}(PG)$. Let us view $E = G \times (C^{2^{4n+1}} \oplus C^{2^{4n+1}})$ as a product Γ -vector bundle over G provided with the Γ -action given by $(g, u, v) \mapsto (-g, v, u)$ for $g \in G$, $u, v \in C^{2^{4n+1}}$. Then the assignment $(g, u, v) \mapsto (g, \rho(g)u, -\rho(g)v)$ gives an equivariant bundle automorphism of E. In a canonical way this gives rise to an element of $K_{\Gamma}^{-1}(G)$ which is just $\pi_*(\beta(\rho))$ and is written $\beta(\rho, \Gamma)$ below.

Then we have

Theorem 2.3 ([7,9]). With the notation as above

182 H. MINAMI

$$K^{*}(PSp(2^{4n})) = \mathbf{Z}[\sigma]/(2^{4n+1}\sigma, \sigma^{2} + 2\sigma)$$

$$\otimes \Lambda(\beta(d_{2i-1}\rho + \lambda^{2i-1}\rho), \beta(\lambda^{2j}\rho), \beta(\rho, \Gamma)$$

$$(2 \le i \le 2^{4n-1}, 1 \le j \le 2^{4n-1}))/I$$

as a ring where I is the ideal generated by

$$\sigma\beta(\rho,\Gamma)$$
.

Proof. We observe the exact sequence of (1.4b). According to [8]

$$K^*(G) = \Lambda(\beta(\rho), \beta(\lambda^2 \rho), \cdots, \beta(\lambda^{2^{4n}} \rho)).$$

Since $K^*(G)$ is torsion-free we have the Künneth isomorphism

$$K^*(P^{8n+3} \times G) \cong K^*(P^{8n+3}) \otimes K^*(G).$$

Then we get similarly to (2.1) the following.

(2.4)
$$\delta(\nu \times 1) = \sigma + 2$$
, $J(1) = -2^{4n+1}\sigma$ and $I(\sigma) = \sigma + 1$.

Now $2^{4n+1}\sigma = 0$ follows because of $\rho(-1) = -I$. Hence (1.4b) becomes a short exact sequence

$$0 \longrightarrow K^*(PG) \stackrel{I}{\longrightarrow} K^*(P^{8n+3} \times G) \longrightarrow \delta K^*(PG) \longrightarrow 0$$

provided with $\delta(xI(y)) = \delta(x)y$. Further by inspecting definition we have

$$I(\beta(\lambda^{2i}\rho)) = 1 \times \beta(\lambda^{2i}\rho),$$

$$I(\beta(d_{2i-1}\rho + \lambda^{2i-1}\rho))$$

$$= (\sigma+1) \times d_{2i-1}\beta(\rho) + 1 \times \beta(\lambda^{2i-1}\rho) + d_{2i-1}\nu \times 1,$$

$$I(\beta(\rho,\Gamma)) = (\sigma+2) \times \beta(\rho) + \nu \times 1,$$

$$\delta(1 \times \beta(\rho)) = -1.$$

Let R denote the ring on the right-hand side of the equality of the theorem. Using the last formula of (2.4) and the first three formulas of (2.5), the injectivity of I shows that R is a subring of $K^*(PG)$.

To prove the theorem it therefore suffices to verify that $\operatorname{Im} \delta = R$ since δ is surjective. The images of generators of $K^*(P^{8n+3} \times G)$ as a

module by δ can be calculated by using (2.5) together with the equality $\delta(xI(y)) = \delta(x)y$. For example, we have

$$\delta(1 \times \beta(\lambda^{2i-1}\rho)) = -d_{2i-1}(\sigma+1),$$

$$\delta(\nu \times 1) = -(\sigma+2),$$

$$\delta(\nu \times \beta(\rho)) = \beta(\rho, \Gamma),$$

$$\delta(1 \times \beta(\rho)\beta(\lambda^{2i-1}\rho)) = -\beta(d_{2i-1}\rho + \lambda^{2i-1}\rho) - d_{2i-1}\beta(\rho, \Gamma).$$

Thus by repeating such a computation inductively we get $\operatorname{Im} \delta = R$, which completes our proof.

3. In this section we compute $KO^*(PG)$. First we consider the exact sequence (1.4b) for KO-theory. The complex representation ρ of G is, of course, the complexification of the 2^{4n} -dimensional quaternionic representation, for which we write $\bar{\rho}$. Clearly $\bar{\rho}$ yields an isomorphism $G \times H^{2^{4n}} \otimes_R H \cong G \times H^{2^{4n}}$ of Γ -quaternionic vector bundles over G. Now we have $J(1) = 2^{4n} \eta_4 \bar{\sigma}$ similarly to the 2nd formula of (2.1) and also $\alpha \otimes_C H = \eta_4$ by (1.2). Hence we see that J(1) = 0, so that (1.4b) becomes a short exact sequence

(3.1)
$$0 \longrightarrow KO^*(PG) \stackrel{I}{\longrightarrow} KO^*(P^{8n+3} \times G) \stackrel{\delta}{\longrightarrow} KO^*(PG) \longrightarrow 0$$
 provided with $\delta(xI(y)) = \delta(x)y$.

Using this exact sequence we proceed as the same way as for $K^*(PG)$. Let $\lambda_{C}^{k}\bar{\rho}$ be the exterior power $\bar{\rho} \wedge_{C} \cdots \wedge_{C} \bar{\rho}$ of $\bar{\rho}$ over C. Then in general $\lambda_{C}^{k}\bar{\rho}$ is quaternionic. But if k is even then it has a natural Real structure. So we consider $\lambda_{C}^{2i}\bar{\rho}$ to be real. By the β -construction we have

$$\beta(\lambda_C^{2i-1}\bar{\rho}) \in \widetilde{KSp}^{-1}(G)$$
 and $\beta(\lambda_C^{2i}\bar{\rho}) \in \widetilde{KO}^{-1}(G)$

and we set

$$\bar{\beta}(\lambda_C^{2i-1}\bar{\rho}) = \alpha \wedge_C \beta(\lambda_C^{2i-1}\bar{\rho}) \in \widetilde{KO}^{-1}(\Sigma^{0,4} \wedge G) = \widetilde{KO}^{-5}(G).$$

Then, according to [15], Theorem 5.6,

$$(3.2) KO^*(G) = \Lambda_{KO^*(+)}(\bar{\beta}(\lambda_C^{2i-1}\bar{\rho}), \beta(\lambda_C^{2i}\bar{\rho}) (1 \le i \le 2^{4n-1}))$$

as a $KO^*(+)$ -module. Further by [4], §6 and [13], Corollary 2.3 we see that its generators satisfy the relations

$$(3.3) \qquad \bar{\beta}(\lambda_C^{2i-1}\bar{\rho})^2 = \eta_1 \beta(\lambda_C^{4i-2}\bar{\rho}), \quad \beta(\lambda_C^{2i}\bar{\rho})^2 = \eta_1 \beta(\lambda_C^{4i}\bar{\rho}).$$

Here we note that $\lambda_C^k \bar{\rho} = \lambda_C^{2^{4n+1}-k} \bar{\rho}$ for $1 \leq k \leq 2^{4n}$. Of course this equality holds for $\lambda_C^{2k} \bar{\rho}$ viewed as a representation of PG.

Because $KO^*(G)$ is torsion-free, there holds the Künneth isomorphism $KO^*(P^{8n+3} \times G) \cong KO^*(P^{8n+3}) \otimes_{KO^*(+)} KO^*(G)$. Therefore by using (2.2b), (3.2) and (3.3), the multiplicative structure of $KO^*(P^{8n+3} \times G)$ centered in the sequence (3.1) can be described explicitly.

In order to state our theorem we provide generators of $KO^*(PG)$. Similarly to the complex case we have

$$\beta(d_{2i-1}\bar{\rho} + \lambda_C^{2i-1}\bar{\rho}), \quad \beta(\bar{\rho}, \Gamma) \in \widetilde{KSp}^{-1}(PG) \quad \text{and} \quad \beta(\lambda_C^{2i}\bar{\rho}) \in \widetilde{KO}^{-1}(PG)$$

and so we set

$$\bar{\beta}(d_{2i-1}\bar{\rho} + \lambda_C^{2i-1}\bar{\rho}) = \alpha \wedge_C \beta(d_{2i-1}\bar{\rho} + \lambda_C^{2i-1}\bar{\rho}),
\bar{\beta}(\bar{\rho}, \Gamma) = \alpha \wedge_C \beta(\bar{\rho}, \Gamma) \in \widetilde{KO}^{-5}(PG).$$

Moreover we see that

(3.4) There exists an element $\bar{\zeta} \in KO^{-6}(PG)$ such that

$$I(\bar{\zeta}) = \eta_1 \times \bar{\beta}(\bar{\rho}) + \zeta \times 1.$$

This is shown below.

Then we obtain the following.

Theorem 3.5. With the notation as above

$$KO^*(PSp(2^{4n})) = Z[\bar{\sigma}]/(\bar{\sigma}^2 + 2\bar{\sigma}) \otimes E \otimes \Lambda_{Z/2}(\bar{\zeta})/I$$

as a ring where E is a $KO^*(+)$ -module

$$\Lambda_{KO^*(+)}(\bar{\beta}(d_{2i-1}\bar{\rho} + \lambda_{C}^{2i-1}), \beta(\lambda_{C}^{2j}\bar{\rho}), \bar{\beta}(\bar{\rho}, \Gamma)$$

$$(2 \le i \le 2^{4n-1}, 1 \le j \le 2^{4n-1}))$$

with the relations

$$\bar{\beta}(d_{2i-1}\bar{\rho} + \lambda_C^{2i-1}\bar{\rho})^2 = \eta_1(\beta(\lambda_C^2\bar{\rho}) + \beta(\lambda_C^{4i-2}\bar{\rho})),
\beta(\lambda_C^{2j}\bar{\rho})^2 = \eta_1\beta(\lambda_C^{4j}\bar{\rho}),
\bar{\beta}(\bar{\rho}, \Gamma)^2 = 0$$

and I is the ideal generated by

$$2^{4n}\bar{\sigma}\eta_4$$
, $\bar{\sigma}\bar{\beta}(\bar{\rho},\Gamma)$, $\eta_4\bar{\zeta}$, $\bar{\sigma}\bar{\zeta}-\eta_1\bar{\beta}(\bar{\rho},\Gamma)$, $\eta_1^2\bar{\zeta}-2^{4n+1}\bar{\sigma}$

(the \otimes 's are omitted).

Proof. Observe (3.1). By looking at the definitions of the maps and elements we have

- (i) $I(\bar{\sigma}) = \bar{\sigma} \times 1$,
- (ii) $I(\beta(\lambda_C^{2i}\bar{\rho})) = 1 \times \beta(\lambda_C^{2i}\bar{\rho}),$

(iii)
$$I(\bar{\beta}(d_{2i-1}\bar{\rho} + \lambda_C^{2i-1}\bar{\rho})) = (\bar{\sigma} + 1) \times d_{2i-1}\bar{\beta}(\bar{\rho}) + 1 \times \bar{\beta}(\lambda_C^{2i-1}\bar{\rho}) + d_{2i-1}\bar{\nu} \times 1,$$

- (iv) $I(\bar{\beta}(\bar{\rho}, \Gamma)) = (\bar{\sigma} + 2) \times \bar{\beta}(\bar{\rho}) + \bar{\nu} \times 1$,
- (v) $I(1 \times \bar{\beta}(\bar{\rho})) = -1$,
- (vi) $\delta(\bar{\nu} \times 1) = (\bar{\sigma} + 2) \times 1$,
- (vii) $\delta(\zeta \times 1) = \eta_1$.

(3.4) is immediate from (v) and (vii). Let \overline{R} denote the ring on the right-hand side of the equality of Theorem 3.5. Then using (i)-(iv) and (3.4) we see that $\overline{R} \subset KO^*(PG)$ because of the injectivity of I, and by using (v)-(vii) and the equality $\delta(xI(y)) = \delta(x)y$ in addition we can verify that \overline{R} fills $KO^*(PG)$ because of the surjectivity of δ . This completes the proof of the theorem.

REFERENCES

- [1] M. F. ATIYAH: K-theory and reality, Quart. J. Math. Oxford (2) 17 (1966), 367-386.
- [2] M. F. ATIYAH: K-Theory, Benjamin Inc. 1967.
- [3] M. F. ATIYAH: Bott periodicity and the index of elliptic operators, Quart. J. Math. Oxford (2) 74 (1968), 113-140.
- [4] M. C. CRABB: Z/2-Homotopy Theory, London Math. Soc. Lecture Note Series 44 (1980).
- [5] M. FUJII: Ko-groups of projective spaces, Osaka J. Math. 4 (1967), 141-149.
- [6] R. P. HELD und U. SUTER: Die Bestimmung der unitären K-Theorie von SO(n) mit Hilfe der Atiyah-Hirzebruch-Spectralreihe, Math. Z. 122 (1971), 33-52.
- [7] R. P. HELD and U. SUTER: On the unitary K-theory of compact Lie groups with finite fundamental group, Quart. J. Math. Oxford (2) 24 (1973), 343-356.
- [8] L. HODGKIN: On the K-theory of Lie groups, Topology 6 (1967), 1-36.
- [9] L. HODGKIN: The equivariant Künneth theorem in K-theory, Lecture Notes in Math. 496 (Springer-Verlag, 1975), 1-101.
- [10] D. HUSEMOLLER: Fibre Bundles, McGraw-Hill Book Co., 1966.

- [11] P. S. LANDWEBER: On equivariant maps between spheres with involutions, Ann. of Math. 89 (1969), 125-137.
- [12] H. MINAMI: On the K-theory of SO(n), Osaka J. Math. 21 (1984), 789-808.
- [13] H. MINAMI: The real K-groups of SO(n) for $n \equiv 3$, 4 and 5 mod 8, Osaka J. Math. 25 (1988), 185-211.
- [14] G. SEGAL: Equivariant K-theory, Publ. Math. I.H.E.S. 34 (1968), 129-151.
- [15] R. M. SEYMOUR: The Real K-theory of Lie groups and homogeneous spaces, Quart. J. Math. Oxford (2) 24 (1973), 7-30.

DEPARTMENT OF MATHEMATICS NARA UNIVERSITY OF EDUCATION TAKABATAKE-CHO, NARA-SHI 630, JAPAN

(Received July 14, 1994)