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KO-GROUP OF PSp(2%")

Dedicated to Professor Teiichi Kobayashi on his 60th birthday

Harvo MINAMI

Let Sp(n) be the symplectic group of degree n and PSp(n) be the
projective group associated with Sp(n), that is, PSp(n) = Sp(n)/C where
C denotes the center of Sp(n) which is generated by the scalar matrix with
all diagonal entries —1.

Our purpose here is to compute the real K-group KO*(PSp(2%")).
As for the complex K-group, K*(PSp({)) has been determined in [7,9]
for any £ > 1. But we begin with the calculation of K*(PSp(2*")) by
our method for convenience of calculation. The way getting these groups
is quite parallel to that of [12]. As it turns out that there is a Z/2-
map from §3"+3 to Sp(2") where the generator of Z/2 acts on S5"+3 as
antipodal involution and on Sp(2'") as the generator of C respectively,
the multiplicative structures of the K-groups of PSp(2%") can be reduced
to those of the K-groups of P3*3 and S5p(2*") just as in the case of
S0(8¢) [12] by making use of this Z/2-map and applying a device to the
equivariant A’-theories associated with Z/2.

This paper is arranged as follows. Section 1 consists of preparations
for the subsequent sections. Sections 2 and 3 deal with the computation
of K*(PSp(2*™)) and KO™(PSp(2%")) respectively.

1. Let I' denote the multiplicative group generated by —1 and H
denote the canonical non-trivial 1-dimensional real representation of I'.

We write nH for the direct sum of n copies of H. And by B(pH& R?)
and S(pH ® R?) we denote the unit ball and the unit sphere in pH @& R?
centered at the origin o, and let ¥»9 = B(pH & R?)/S(pH & R?) with
the collapsed S(pH @ R?) as base point. Here R denotes the field of real
numbers. Also, for later use we fix the notations C and H for the fields
of complex numbers and quaternions as usual.

Let At: Spin(8n + 4) — U(2%"+1) be one of the half-spin representa-
tions of Spin(8n + 4). It is known [10], §13 that At is the restriction of a
quaternionic representation of Spin(8n + 4), denoted by

At : Spin(8n+4) — Sp(2*")
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below. Assume that the generator of I" acts on Spin(8n + 4) and Sp(24*)
as the elements —1 and —7 of these groups respectively where I is the
unit matrix, and thus consider these two groups as I'-spaces. Then AT
becomes a I'-map obviously. Moreover we know [6] that Spin(8n 4+ 4)
contains $8"+40 as an invariant subspace. This follows from the fact that
Spin(8n + 4) is a subgroup of the Clifford algebra Cg,43 multiplicatively
generated by the elements of the unit sphere $8"+3 ([10], §11). Therefore
we have the following result similar to [6],(1.14).

(1.1) There exists a I'-map u: §87+40 — G§p(2%"), so that we have a
homeomorphism

(83740 x Sp(2™))/T = P¥+3 x Sp(2'™).

In fact, this homeomorphism is induced by the assignment (z,g) —
(r(z),(z)"lg) for z € S§8+40 and g € Sp(2'"), where P&+3 =
§8n+40 /T the real projective space of dimension 8n + 3, and 7 is the
canonical projection from §87+40 to p8n+3,

A Real (I'-)vector bundle is a complex (I'-)vector bundle together
with a conjugate (equivariant) involutive automorphism and a quaternionic
(I'-)vector bundle is a complex (I'-)}vector bundle together with a conju-
gate (equivariant) anti-involutive automorphism. It is clear by definition
that the external tensor product E ®¢ F of two quaternionic (I'-)vector
bundles F and F admits an obvious Real structure.

Let KR and KSp denote the Real and quaternionic K -theories and
let KRr and KSpr denote the equivariant ones associated with I'. But
KR(X) = KO(X) and KRr(X) = KOr(X) canonically if X has a trivial
Real structure. Since all spaces of this note are such ones, we identify
these isomorphlsms throughout this paper. Then the above external tensor
product z ®cy defines uniquely an element z Ac cy of either kO(X AY)
or ROp(X AY) according as z € KSp(X), y € KSp(Y) or = € KSpp(X),
y € KSpp(Y).

Considering S°3 to be the unit quaternions Sp(1) yields a generator
of [?57(20’4) in a canonical way. We write « for this element. Then

KSp(£°Y=Z-a
and also o satisfies

(1.2) a® H =1m, ahca=1ng and s(a)=p’
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where 74, 73 and p denote the canonical generators of KO(E%4), KO(X8)
and K(£92), (the last two generators are called the Bott class), and s
denotes the natural complexification KSp — K.

From [3,11,14] we now recall the equivariant Thom isomorphism the-
orems. Consider the isomorphism §87+40 x HY" ~ g8nt40 y g2 @p |
of I'-quaternionic vector bundles over §8"t%0 given by the assignment
(z,v) — (z,o(z)) for z € S0 4 ¢ H?" where ¢ is as in (1.1).
Then, in a canonical manner, this isomorphism yields a generator Tg
of KSpr(E®+49) such that its restriction to o € B((8n + 4)H) is
2"(H — H ®p H) € KSpr(o) (= RSp(I'), the quaternionic representa-
tion ring of I').

Set
T =s(tH) € EF(ZS“H’O) and
(1.3)
w=TgAcaé€ KOF(VS’H'“)
Then their restrictions to o and X% are 24"*1(1 - L) € Kp(0) = R(I") and

24%(1 — H)ny € KOr(E°%) = RO(T')-n4 respectively where L = C Qg H,
and multlpllcatlons by 7 and w give isomorphisms K F(X )= K* F(B8nt 0/\
X) and IxOp( ) KO, (X844 A X)) for any I'-space X with base-point
respectively. Here R(I') and RO(I') are the complex and real represen-
tation rings of I' and R-g denotes an R-module generated by a single
element g for a ring R.

By h we denote the K- or KO-functor. For X = + (a point), Sp(2%*)
we consider the exact sequence of the pair (B((8n + 4)H) x X,5((8n +
4)H) x X) in hpr-theory. In general if I" acts on X freely then there is
a natural isomorphism h}(X) = h*(X/I'). Combining this with (1.1)
and (1.3) gives rise to the following exact sequences.

(1.42) -~-i»h;<+) i»h;(+) —’+h*(P8n+3)
(14b) - 5w (PG) L e (PG) L R (P x G)

where G = Sp(2'") and there holds the equality é(zI(y)) = é(z)y in
either case.
We write G for Sp(2%") for simplicity in the subsequent sections.

2. By the same symbol & we denote the reduced bundles of the canon-
ical line bundles (§8"+4% x H)/I' — P®*3 and (G x H)/I' — PG. And
we write 0 = ¢(&) where ¢ denotes the complexification KO — K. Since
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H? = 1in RO(I') there hold obviously
32+25=0 and o%+20=0.

Let 7 = p*(n2*1) € KO (P®*3) and v = p*(u*"*?) € K -1(580+3)
where p is the map P8"1+3 — §87+3 ghtained by collapsing the outside of
a top dimensional cell in P®"+3 to a point. Then the equalities

e(P)=p*v and r(v) =m0

follow from the relations ¢(ny) = 2u2 and 72 = 4.

We consider the complex and real K-theories the Z/2-and Z/8-graded
cohomology theories with the coefficient rings K*(+) = Z[u]/(u* - 1) and
KO*(+) = Z[m,na,n8)/(2n1, 73, mna,n3 — 4,m8 — 1) respectively where
m € KO‘I(+) and the others are as in Section 1. But the complex K-
theory is viewed as Z/8-graded, so that K*(+) = Z[u]/(u? — 1), when we
discuss the relation between these two kinds of K -theories.

Here we calculate K*(P8+3) and KO*(P®*3) whose additive struc-
tures are given in [2,5]. Consider the exact sequence of (1.4a). First note
that AT(+) = h™(+)[t]/(t* — 1) because of I' & Z/2 where t = L or H
according as h = K or KO. From inspecting the definitions of the maps
it follows that

1 6w)y=1+L, JQ)=2"*(1-L) and I(L) =c +1for h = K,
6(F) =14 H,J(1)=2"n(1 - H)and I(H) =7+ 1 for h = KO.

Moreover we have a unique element ¢ of KO~8( P8"+3) satisfying 6(¢) = n.
Using this and the equality é(zI(y)) = é(z)y we obtain by the exact-
ness of (1.4a) the following.

With the notation as above

(222)  E(P®¥3)=z/2"+' .5, E-Y(P*)=2Z.v

where the ring structure is given by

6 +20=0, V2=0,
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I';'a(PSn+3) — Z/-24n+2 .G,

KO ' (P5™+3) = 2/2. 15 & Z - np,
KO (P5+3) = 2/2 - 15,
}T@“?’(PSnH) =0,

I’;,-O'—4(P8n+3) = Z/2' . 5,

KO °(P&n+3) = 7 .,

KO P33y = /2. & 2/2 - C,
KO™'(Po+3) = 2/2- 25 & 2/2 - m(

(2.2b)

where the ring structure is given by

g2+25=0, »*=0, 2 =0, ns( =0,
6(27]117, 771 =

Now we are ready for computing the K-groups of PG.

Let p be the canonical, non-trivial, 24*-dimensional complex represen-
tation of G and Aip be the i-th exterior power of p. Since the restriction
of A%p to the center of G is trivial clearly, it factors through the canonical
projection m: — PG. So we view A\%p also as a representation of PG be-
low. Moreover, as is well known, an element of K:‘l(PG) is represented as
the homotopy class of a map from PG to the infinite dimensional unitary
group U. Hence we see that A%p yields naturally an element 3(A\%p)
of K~!(PG), which is called the 3-construction of A%p [8]. Because
fine ity — (50) ma 2B gy = (3
is odd. Let fp denote the direct sum of ¢ copies of p. The map
PG-U ((%:n_: 1)) given by the assignment 7(g) — (dair10)(9)A%*1p(g)
defines a similar element 3(da;1p + A%*+1p) of K~1(PG).

We describe explicitly the image of 3(p) € K~!(G) by the transfer
map 7.: K~1(G) — K7'(G) = K~Y(PG). Let us view E = G x (C?""' @
024"“) as a product I'-vector bundle over G provided with the I'-action
given by (g,u,v) — (—g,v,u) for g € G, u,v € C?"*". Then the assign-
ment (g,u,v) — (g,p(g)u,—p(g)v) gives an equivariant bundle automor-
phism of E. In a canonical way this gives rise to an element of ]\"fl( 7)
which is just m.(8(p)) and is written 3(p, I') below.

Then we have

Theorem 2.3 ([7,9]). With the notation as above
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K*(PSp(2'™)) = Z[o]/(2""*1 0,07 + 20)
®A(B(dai-1p + A7 p), B(\p), B(p, T)
@<i<oahigi<a /I

as a ring where I is the ideal generated by

oB(p.T).

Proof. We observe the exact sequence of (1.4b). According to [8]

p))-

Since K™(G) is torsion-free we have the Kiinneth isomorphism

2411

E™(G) = A(B(p). B(A\?p). -+, B(A

E*(P*F x G) = K*(P*+?) @ K*(G).
Then we get similarly to (2.1) the following.
(24) $(vxl)=0+2, J(1)= 2" and I(o)=0c+1.

Now 247+l = ) follows because of p(—1) = —I. Hence (1.4b) becomes a
short exact sequence

0 — K*(PG) -5 K~(P®"*3x G) — 6§ K*(PG) — 0
provided with é(z/(y)) = 6(x)y. Further by inspecting definition we have

1(8(X¥p)) = 1 x B(A\¥p),
I(8(dzi1p + X' p))
(2.5) =(04+1)x di_18(p) + 1 x BN "1p) + dyiyv X 1,
I(B(p, 1)) = (e +2) x B(p) +v x 1,
6(1 x B(p)) = —1.

Let R denote the ring on the right-hand side of the equality of the the-
orem. Using the last formula of (2.4) and the first three formulas of (2.5),
the injectivity of I shows that R is a subring of 1™*(PG).

To prove the theorem it therefore suffices to verify that Imé = R
since § is surjective. The images of generators of K*(P%*3 x G) as a
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module by é can be calculated by using (2.5) together with the equality
6(z1(y)) = 6(2)y. For example, we have

(1 x B(A*"1p)) = —dpi—1(o + 1),

S x 1) = —(0 +2),

é(v x 8(p)) = B(p. T,

8(1 x B(p)B(A*71p)) = —B(dai1p + ¥ p) — dai—1B8(p, ).

Thus by repeating such a computation inductively we get Im é = R, which
completes our proof.

3. In this section we compute KO*( PG). First we consider the ex-
act sequence (1.4b) for KO-theory. The complex representation p of G
is, of course, the complexification of the 2%"-dimensional quaternionic
representation, for which we write p. Clearly p yields an isomorphism
G x H' Qr H = G x H? of I'-quaternionic vector bundles over G.
Now we have J(1) = 2", similarly to the 2nd formula of (2.1) and also
a®c H = 14 by (1.2). Hence we see that J(1) = 0, so that (1.4b) becomes
a short exact sequence

(3.1) 0 — KO*(PG) - KO (P*""3 x G) = KO*(PG) — 0

provided with é6(21(y)) = é(z)y.
Using this exact sequence we proceed as the same way as for K*(PG).
Let ALp be the exterior power pAc --- Ac p of p over C. Then in
general ALp is quaternionic. But if & is even then it has a natural Real
structure. So we consider /\2Ciﬁ to be real. By the f3-construction we have

BOETp) e KSp ' (G) and B(AEp) € KO '(G)
and we set
BOE15) = a Ac BOET'5) € KO (E*4AG) = KO (G).
Then, according to [15], Theorem 5.6,
(32)  KO'(G) = Aggr s, (BOE5),8085) (1< i< 2t

as a KO*(+)-module. Further by [4], §6 and [13], Corollary 2.3 we see that
its generators satisfy the relations

(3:3) BOE'P) = mBAE?p),  BOER) = mB(AER).
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Here we note that /\’éﬁ = )\gnH"kﬁ for 1 < k& < 2%, Of course this
equality holds for Ag“ﬁ viewed as a representation of PG.

Because KO"(G) is torsion-free, there holds the Kiinneth isomorphism
KO*(P*"*3 x G) = KO*(P**%) ®ko+(4+) KO*(G). Therefore by us-
ing (2.2b), (3.2) and (3.3), the multiplicative structure of KO*( P®"*3 x G)
centered in the sequence (3.1) can be described explicitly.

In order to state our theorem we provide generators of KO*(PG).
Similarly to the complex case we have

Bdoioap+ A47'5), 8(p.T) € KSp ' (PG) and
B(XEp) € KO (PC)

and so we set
B(dai_1p + '\252;_1/7) = aAc B(dai—1p + )\QCi_lﬁ),
- ——5
B(p,I)=ancB(p.T) € KO (PG).
Moreover we see that

(3.4) There exists an element { € KO~8(PG) such that

I(C)=m x B(p)+ ¢ x 1.

This is . shown below.
Then we obtain the fo_llowing.

Theorem 3.5. With the notation as above
KO*(PSp(2*™)) = Z[5]/(8° + 26) ® E ® Age(()/1
as a ring where E is a KO*(+)-module
AR (4)Bldaiaap + M), B(0EP). B(5: T)
(2<i<2 1< <2
with the relations

Bldaiap+ N5710)" = m(BOEP) + BOEP)),
BOEP) = mBOED),
B(p, ) =0
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and I is the ideal generated by
24n6-n41 6/3(/7711)* 77463 5-6_ 7715(,671—1)- 7}%(_ '24n+16
(the ® s are omitted).

Proof. Observe (3.1). By looking at the definitions of the maps and
elements we have
(i) I(g) =7 x 1,
(i) T(B(AEP)) = 1 x B(AEP), ,
(iii) 1(B(dzi-17+ NE™'5)) = (7 + 1) x dai-15(p) + 1 x BAE'p)
+ d?i—l’7 X ]-7
() I(B(p, 1)) = (7 +2) x Bp) + 7 x 1,
(v) I(1 x 8(p)) = -1,
(vi) 6(F x1)=(6+2) x 1,
(vii) 6(¢ x 1) =m. _
(3.4) is immediate from (v) and (vii). Let R denote the ring on the right-
hand side of the equality of Theorem 3.5. Then using (i)-(iv) and (3.4)
we see that B C KO*(PG) because of the injectivity of I, and by using
(v)~(vii) and the equality 6(zI(y)) = 6(z)y in addition we can verify that
R fills KO*(PG) because of the surjectivity of é. This completes the proof
of the theorem.
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