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ON THE KO-THEORY OF LIE GROUPS
AND SYMMETRIC SPACES

TakasHl WATANABE

0. Introduction. Let G be a compact, 1-connected simple Lie group
of rank 2. Then G is one of the following: SU(3), Sp(2) and G3. In
this note we shall describe explicitly the KO-theory of G, together with
the action of the Adams operations %* on it, and also describe the KO-
theory of symmetric spaces SU(2n + 1)/SO(2n + 1) and SU(2n)/Sp(n)
for n > 1. In particular, for the first topic, the following fact should be
noted. For a compact, connected, semisimple and simply-connected Lie
group G, Seymour [16, Theorem 5.6] described theoretically the (Z/(8)-
graded) ring KO*(G); its additive structure was determined completely
and its multiplicative structure was almost done. However, it seems that
papers containing an explicit description of KO*(G) are [13], [14] and [15].

This paper is arranged as follows. In section 1 we compute the
Adams operations in K*(G). Section 2 consists of preparations for
subsequent sections and involves a review of Seymour’s work. The
(Z-graded) ring KO*(G) will be described in section 3, and the rings
KO*(SU(2n 4+ 1)/S0(2n + 1)) and KO*(SU(2n)/Sp(n)) in section 4.

We shall deal with the Z-graded objects, simultaneously with the as-
sociated Z/(2)- or Z/(8)-objects.

1. The Adams operations in K" (G). Since the Chern character
of G was described explicitly in {17], the Adams operations in K*(G)
should be computed. This is what we put into practice in this section.

We begin by recalling some facts on complex K -theory needed in the
sequel. For details, see [2], [3] and [9]. We will use the following notation:
R is the field of real numbers; C is the field of complex numbers; H
is the algebra of quaternions; K is the algebra of Cayley numbers. Let
X be a space with nondegenerate base point. The Adams operations
v : K(X) — K(X), k € Z, are homomorphisms of rings. They are closely
related with the Chern character ch: K(X) — H*(X;Q). That is, if

ch(z) = 3 chy(z), che(z) € H¥(X:Q),
920
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for z € K(X), then

(1.1) ch(¥*(z)) = Z;Dchhq(m).

This ch extends to a multiplicative natural transformation of Z/(2)-graded
cohomology theories ch: K*( ) — H™*( ;Q). The coeflicient ring of re-
duced Z-graded K -theory is

E*(5%) = Z[g.97")/(gg™" - 1),

where g € K~2(59) is the Bott generator. The action of ¥* on K*(S°) is
given by

(1.2) ?.")k(g) = kg, in particular ¥~ '(g) = —g.

The K-ring K(X) and the complex representation ring R(G) are A-rings
(see [9, 12(1.1)]); roughly speaking, they possess the exterior power oper-
ations A* for k > 0. Let 8: R(G) — K~'(G) be the homomorphism of
abelian groups, introduced in [8], called the beta-construction. Notice that
B does not commute with A*,

We now consider the case G = SU(3). The space C> becomes a SU(3)-
C-module in the usual way. We write ), for the class of C? in R(SU(3)),
and put Ax = A¥()\;) € R(SU(3)). Then R(SU(3)) equals the polynomial
algebra Z[Aq, A7] (see [1, Theorem 7.4] or [9, 13(3.1)]). Therefore, by the
theorem of Hodgkin [8, Theorem A], K*(SU(3)) equals the exterior algebra
Az(B(A1),8()2)) as a Z/(2)-graded Hopf algebra over Z. On the other
hand, H*(SU(3); Z) = Ag(z3,zs), where z; € H(SU(3); Z). With this

notation, we may set

ch(B(M)) = az3z + bzxs,

(1.3)
ch(B(A2)) = cz3 + dzs

for some a,b,c,d € Q (as seen below, these numbers are known). Using
the relations 22 = 0, zsz3 = —z3z5 and z% = 0, we have

(14) Ch(ﬂ(/\])ﬁ(/\2)) = le(l?;_’,.'rs + bCCL‘s"Eg
= (ad — be)zazs

in the Z/(2)-graded ring H**(SU(3);Q). Since {8(A1), B(A2)} is a basis
for K=1(SU(3)) = K(¥SU(3)) ™ Z @& Z, we may set

¥*(B(A1)) = eB(M) + fB(A2)
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for some €,f € Z. Let s: H*G;Q) — _IE*H(":G;Q) denote the sus-
pension isomorphism. Then, by (1.3), ch: K(XSU(3)) — H*(XYSU(3); Q)

satisfies

ch(B(A1)) = as(z3) + bs(zs),
ch(B(Xz2)) = es(za) + ds(zs).

It follows from this and (1.1) that

ch(¥¥(B(M))) = ak?s(z3) + bk®s(zs),

while
ch(¢F(B(M))) = ch(eB(M) + FB(X2))
= (ae + cf)s(z3) + (be + df )s(zs).

Since @ = —1, b = 1/2, ¢ = —1 and d = —1/2 by [17, Theorem 2|, we
obtain —e — f = —k? and e — f = k3. These reduce to e = k%(k+1)/2 and
f = —k%*(k —1)/2. We call the reader’s attention to the fact that these
numbers belong to Z (see also part (i) of Theorems 1 to 3).

Similarly, if we set

PH(B(A2)) = eB(M1) + fB(N2)

for some e, f € Z, we obtain —e — f = —~k? and e — f = —k®, which reduce
toe=—k%(k—1)/2 and f = k?(k+ 1)/2.

Using these results and the relations 3(A\)? = 0, 3(X2)8(\) =
—B(M)B(A2) and 3(A2)? = 0, we have

$F(B(M)B(A2)) = ¢F(B(M))¥*(B(A2))

4 2
= '@‘B(Al )B(A2) +

= k°B(A1)B(A2).

KAk - 1)2

T B0)B(N)

Theorem 1. The action of ¢k on :fx':*(SU(3)) is given by:
(i) ([18, (2.5)]) In K~1(SU(3)) = Z{B(M),B8(M)},

kQ(kr—l-l) k2(k - 1)
2

wF(B(A1)) = B(A2),

B(M) -
k2 (k + 1)

’*2(’“ EE= D00+ “EED s,

H(B(N2)) =
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(ii) In K= (SU(3)) = Z{B(A1)B(A2)},
PF(B(M)B(M2)) = K B(A)B(Ne).

We move on to consider the case G = Sp(2). Since the space H? is a
left Sp(2)- H-module, its complex restriction (H?)¢c becomes a Sp(2)-C-
module. We write pjy = [(H?)c] € R(Sp(2)), and put g} = A*(14). Then
R(5p(2)) equals the polynomial algebra Z[u},u] (see [1, Theorem 7.6]
or [9, 13(6.1)]). Therefore, by the theorem of Hodgkin [8], K*(Sp(2)) =
Az(B(u1), 8(p3)). On the other hand, H*(Sp(2); Z) = Az(z3,z7), where
z; € H'(Sp(2); Z). With this notation, [17, Theorem 3] tells us that

1
Ch(ﬁ(#’l)) =3 — 6337,

2
ch(B(uh)) = 2z3 + 327
By a calculation similar to the case of SU(3) we have

Theorem 2. The action of ¥ on K*(Sp(2)) is given by:
(i) In K=1(Sp(2)) = Z{B(k1), Bu3)},

271.2
w30 = SEF Dy  HE D g,
’2 ’ 2 2
v (B = - EE Dy o ECE T D g,

(it) In K=%(Sp(2)) = Z{B(1))B(ky)},
l[’k(ﬁ Nl #2)) keﬁ(#’l)ﬁ(#;)-

Finally we consider the case G = (G3. The automorphism group
of K is Gy. As seen in [19, Appendix A] or [20, p.217], the sub-
space K consisting of pure imaginary elements in K forms a Go-R-
module of dimension 7. Hence its complexification K§ becomes a G-
C-module. We write p; = [K§] € R(G3), and put p; = A¥(p;). Then
R(G7) equals the polynomial algebra Z[p1,p2]. Therefore, by the the-
orem of Hodgkin [8], K*(G2) = Az(5(p1),5(p2)). On the other hand,
H*(Gy; Z)/Tor. = Ag(xs,z11), where z; € fli(Gg;Z). With this nota-
tion, [17, Theorem 7] tells us that

eh(B(p1)) = 28+ o,

5
ch(B(p2)) = 1023 — EI“
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By a calculation similar to the case of SU(3) we have

Theorem 3. The action of W% on K*(G,) is given by:
(i) In K=Y(G2) = Z{B(p1),B(p2)}

k2 k4 L2( 4
(B = g - EE U g,
.2( 1.4 _ .2 (e 1.4
WH(B(pr)) = - B2 = gy 4 BOE U gy,

(ii) In K=%(G2) = Z{8(p)B(p2)},

¥*(8(p1)B(p2)) = k*B(p1)3(p2)-

2. The Bott’s exact sequence. We will use the quaternionic repre-
sentation ring functor RSp( ) and quaternionic K-theory KSp*( ) as well
as the real representation ring functor RO( ) and real K-theory KO™( ).
To do this we fix some notation. For details, see [1], [2], [4] and [9].

Let ¢: RO(G) — R(G) and ¢: KO(X) — K(X) be the complexifica-
tions; they preserve the A-ring structures. Let r: R(G) — RO(G) and
r: K(X) — KO(X) be the real restrictions; they preserve the additions
only. Let t: R(G) — R(G) and t: K(X) — K(X) be the complex conjuga-
tions; they preserve the A-ring structures. Finally, let ¢: RSp(G) — R(G)
and ¢: KSp(X) — K(X) be the complex restrictions; they preserve the
additions only. Then, among them, the following formulas hold:

(2.1a) re=2, er=1+t, tc=c, tc'=c" and t? =1,
(2.1b) r(z-¢(z)) =r(z)z forall z € K(X) and z € KO(X).

The coefficient ring of reduced Z-graded K O-theory is
R:_O*(SO) = Z[n’u’a’a—l]/(2n’ 773'.77’/9 V2 - 407 00—1 - 1)7
where n € KO '(5°), » € KO (8°) and o € KO (5%). When K*(X)

has been determined (our case is this), a basic tool for computing KO (X)
is the Bott’s exact sequence

o — KO (X)) L KO '(x) S Foux) &
FOU(X) — .-,
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where 7 denotes multiplication by » and the map 6 is defined by
(2.2) 6(z) =r(g7'z) for ze K9(X).

We have
(2.32) (1) =1, e(m) =0, (") =0, ¢(v)=2¢% and (o) =g".
(2.35) r(1)=2, r(g) = 1%, r(g) = v, r(¢}) =0 and r(g*) = 20.

Fronl this a,nd (2.1b), one can calculate 7(g') for all i € Z. The action
of ¥* on KO (S°) is given by

(2.4) ¥H(n) = kn, ¥*(v) =k and ¢*(0) =

The following two lemmas can be proved by using the Bott’s exact
sequence and are included in [16, Theorem 4.2]. So we omit the details
of their proofs. By K*(§%{z,---} we denote the free fi:*(SO)—module
generated by elements z,- -

Lemma 4. Suppose that, as a Z-graded module with t-action,
K*(X) has a direct summand d T(z) which is a free K *(59)-module gener-
ated by two elements z,z’' € Ix“(X) such that t(z) = ¢’ (and so t(z') = z),
where o' # +z. Then KO (X) contains the image r(K*(S°)z}) of
K *(SO){x} under r as a direct summand. It is described by:

KO"(X) > Z{r(z)}, KO" '(x) >0,
KO"'(X)> Z{r(gx)}, KO (X)>0,
KO (X) > Z{r(g?z)}, KO (X)>o,
KO °(X) > Z{r(¢*x)}, KO" (X)>0

where r(g'z’) = (=1)'r(g'z) for i € Z.
Proof. We prove the last relation only.
0 = de(r(g'z)) by exactness of Bott’s exact sequence
= 6((1 +t)(g'z)) since er = 141 by (2.1a)

=§(gtlz + (—1)i+lgi+l:r') since t(g) = —g by (1.2)
=7(g'z) + (1) 'r(g'z’) by (2.2).
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Lemma 5. Suppose that, as a Z-graded module with t-action,
};;*(X) has a direct summand N (y) which is a free K*(5°)-module le gener-
ated by an element y € K™(X) such that y = ¢(z) for some z € KO (X).
Then KO (X) contains the free KO*(5°)-module KO (S°){z} generated
by z as a direct summand. It is described by:

KO (X) > z{z}, KO"(X) > 2/(2){nz},
KO X(X) > Z/(2) {22}, KO© B(X) >0,
KO (X) > z{vz}, KO"~ (X) S0,
KO"°(x) >0, KO (X) > o.

Instead of Lemma 5, we show the following which we will often use.

Lemma 6. Suppose that ff*(X) ts the free ’I;:*(SO) module generated
by m elements by,ba,...,by, b; € I’"’(X) satisfying t(b ) = b;. Suppose
further that there exist elements ay.,as,. 2m, @i € KO" (X) satisfy-
ing c(a;) = b;. Then fa!(X) is the free I\O (5°)-module generated by

Q1,024 Qp.
Proof. (Note that, since tc = ¢ by (2.1a), c(a;) = b; implies t(b;) =

b;.) We use the machinery of exact couples (see [10]). An exact couple is
an exact triangle of graded abelian groups.

D——D

ANINVE
E

Then d = jk: E — E satisfies d®> = 0, and there is another exaxt couple
(the derived couple)

D —" 4 p

OIS
E

where D’ = i(D), £’ = Kerd/Imd, ¢ is induced by i, £’ is induced by k,
and j'(i(a)) = [j(a)] for a € D.

The Bott’s exact sequence vields an exact couple by setting D =
KO (X), E = K*(X), i = 7: KO (X) = KO (X), j = ¢: KO(X) —
K*(X), and k = 6: K~(X) — I?—C’)*-H(X). (With this notation, since
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7 = 0, it follows that D = 0 and E" = 0.) For any b € K*(X)

d(b) = cé(b) by the definition of d
= cr(g™1h) by (2.2)
=(14+t)(g7') sincecr=1+1.

By the first hypothesis,
(2.5) E=Z{g*;|i=1,2,....,m;k € Z}.
We have

d(g*b:) = ¢" b + (= 1)* T g* M e(by)
since t(g) = —¢g and ¢ is a ring homomorphism
= (14 (=1 "1)g*1b; since t(b;) = b;.

Therefore

Kerd = Z{g%*b;| i =1,2,...,m;k e Z}
and

Imd = Z{29%%b;| i = 1,2,...,m;k € Z}
Hence
(2.6) E' = Z/(2){[g*b]l i = 1,2,...,m;k € Z}.

Using the second hypothesis, we prove that the multiples of a; by 7, 12,
v and o are not zero. First of all, oa; # 0, since o: KT)*(X) — 1?6*—8(X)
is an isomorphism. Let us verify that va; # 0. We have

c(va;) = c¢(v)e(a;) since c is a ring homomorphism
= 2g°b; since ¢(v) = 2¢% by (2.3a) and c(a;) = b;.

Assume that va; = 0. Then 2¢%b; = 0. This contradicts (2.5), and proves
the assertion. Let us next verify that na; # 0. Consider the homomorphism
0: E — D, where E is as in (2.53). For  =1,2,3,4 and for k € Z, we
have
5(g4k+jbi) — T(g4k+j_1b,-)
= 7(g" e(c*a;)) since ¢(a) = g* by (2.3a)

= (g’ 1ok, by (2.1b).
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By this and (2.3b), we find that the elements which may belong to Imé are
20*a;, n?c*a; (this may be zero at this point of time) and vo*a;. Assume .
that na; = 0. Then a; € Kern = Imé§. This contradicts the above obser-
vation, and proves the assertion. Hence no*a; becomes a nonzero element
of D’. Let us finally verify that n%a; # 0. Consider the homomorphism
6’ E' — D', where E’ is as in (2.6). For k € Z we have

&'([g**b:]) = 6(g**b;) = r(¢3)o*a; =0 and

2.7
27) 6'([g**+2b;]) = 6(g***%b;) = r(g)o*a; = n*c*a;.

Assume that n%a; = 0. Then, on the one hand, na; € Ker = Imé’ and
on the other hand. the above calculation implies that Imé’ = 0. Thisis a
contradiction, and proves the assertion. Hence n?0*a; becomes a nonzero
element of D'.

Since Im¢’ = Keré’, we have an exact sequence

0 — D'/Ker¢ = E' =5 Imé’' — 0.
Since Kerc¢’ = Imn’ and Imé’ = Ker#/, it can be rewritten in the form
0 — Cokerpy’ — E' — Kerp' — 0,
where E’ is as in (2.6),
¢ (0% a;) = [e(0*ai)] = [e(0)¥e(as)) = [g"b]
and (2.7) holds. So we conclude that
Cokery = Z/(2){no*a;|i=1,2,....,m;k € Z}

and
Kery = Z/(2){n*c*a;|i = 1.2,...,m;k € Z}.

Consider the exact sequence
0 — Kerpy’ — D’ — D’ —s Cokern’ — 0.
Then, since 27 = 0 and 7% = 0, it follows that

(2.8) D' = Z/(2){no*a;, n*c*as|i = 1,2,...,m;k € Z}.
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There is a short exact sequence
0 — Kerc — D - Ime — 0.

Since Kerc = Imn = D’ and Imc = Kerd, it can be rewritten in the form
0— D' — D -5 Keréd — 0.

From a description of the behavior of § given in the preceding paragraph,
we see that

Kers = Z{g**b;,2¢***?b;]i = 1,2,...,m;k € Z}.

Therefore D = D'@Ker$, and since ¢(c*a;) = g**b; and ¢(va*a;) = 2¢*%b;,
it follows from (2.8) that

D = Z)(2){no*a;, nPo*a;i = 1,2,...,mik € Z}
@ Z{akai,vokaiﬁ =12,...,m;k € Z}.

Thus the proof is completed.

Let G be a compact connected Lie group. Recall from [1, Proposi-
tion 3.27] that ¢: RO(G) — R(G) and ¢’: RSp(G) — R(G) are injective.
A representation p of G is said to be self-conjugate if t(p) = p. Similarly,
u is said to be real if it lies in the image of ¢: RO(G) — R(G), and p
is said to be quaternionic if it lies in the image of ¢': RSp(G) — R(G).
According to [1, Proposition 3.56], if u is irreducible and self-conjugate, it
is either real or quaternionic, but not both. The following is a collection
of results from [1, Chapter 7] and [20, Chapter 5]:

Proposition 7. For G = SU(3), Sp(2) and G,, the action of t
on R(G) is given by:
(1) In R(S(j(3)) = Z[/\],)\Q],
t(/\l) = )&2 and t(/\2) = )\1.
(2) In R(Sp(2)) = Z[u1, 3],
Hul) = pf for i=1,2

where p} is quaternionic and Y is real.
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(3) In R(G2) = Z[p1,p2],
t(p:)=pi for i=1,2

where both py and p, are real.

Since 3 commutes with t, from Proposition 7 we know the action of ¢
on K*(G), which can be deduced from Theorems 1 to 3 by taking k = —1,
since t = 1)~! (see [2]). These are essential data for computing KO*(G).

There is a folkloric result which tells us how to represent the com-
plexification map ¢: I?a*(X) — E"(X) as a (weak) map of f2-spectra
c={c;i€ Z}: KO — K and can be read off from [5] or [7]. To state it,
we need some notation. A monomorphism ip: H — G of (not necessarily
compact) Lie groups induces the following maps

G ™% G/H 5 BH £5 BG.

We denote by ic the natural inclusions SO(n) — SU(n), O(n) — U(n)
and their stable versions, by iy the natural inclusions SU(n) — Sp(n),
U(n) — Sp(n), etc., by ip the standard monomorphism U(n) — O(2n)
etc., and by i the standard monomorphisms Sp(n) — SU(2n), Sp(n) —
U(2n), etc., which arise from the correspondence
H>a+38 — (‘," "?) € M(2,C)
8 a
where a, € C and @ is the complex conjugate of « (see [11]).

Proposition 8. For eachi € Z, c; is given as follows.
(1) Ifi=0(mod8), ¢; =pc: BOXx Z — BUX Z.
(ii) Ifi =1 (mod8), then ¢;: U/O — U is defined by

(2.9) ci(zH) = za(z)™* for zH € G/H

where (G,H) = (U,0) and 0 = 05:U — U is the limit of maps
on: U(n) — U(n) defined by

(2.10) an(A) = A

where A is the complex conjugate of A.
(iii) Ifi =2 (mod8), ¢; = ju: Sp/U - BUX Z.
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(iv) Ifi=3(mod8), ¢; =ic: Sp—U.

(v) Ifi=4(mod8B), ¢; = pc: BSpx Z - BUX Z.

(vi) Ifi = 5 (mmod 8), then ¢;: U/Sp — U is defined as in (2.9), where
(G,H) =(U,Sp) and 0 = o _: U — U is the limil of maps o;: U(2n) —
U(2n) defined by '

(2.11) ol (A) = J, AT, !

where if I, denotes the unit matriz of degree n,

0O -1,
n=(7 "¢):
(vii) If i = 6 (modB), ¢; = jp: O/U — BUX Z.
(viii) If i=T7(mod8), ¢; =ic: O = U.

In the notation of Lemmas 4 and 3, Seymour [16, Theorem 5.6] showed
that K*(G) is a direct sum of T{(z)’s and N(y)’s, and then KO (G) is a
direct sum of r(K*($%){z})’s and KO (5°){z}’s correspondingly.

Furthermore, we recall Seymour’s comment [16, Lemma 5.3] on the
summand N(y). Let G be a compact, 1-connected Lie group. Suppose
that an irreducible, self-conjugate representation u of G is given. Then,
by the theorem of Hodgkin [8], K *(G) has a summand K*(S°){8(x)} with
t(B(n)) = B(n). Here, two cases can occur. The first case is that p is real
and the second is that u is quaternionic, as mentioned earlier. The beta-
construction has the real and quaternionic analogues

Ar: RO(G) — KO '(G),
Bu: RSp(G) — KSp ' (G)

which satisfy ¢Sp = fc and /By = B¢, respectively. In the first case,
there exists a unique element i € RO(G) such that ¢(2) = p. Then
Br(2) € KO ' (G) and c(Br(R)) = A(p). Thus KO (G) has a summand
KO'(8°){Br(f)} corresponding to the summand N{(8(u)) in K*(G). In
the second case, there exists a unique element g € RSp(G) such that
¢() = p. Then B(@) € KSp~'(G) and ¢/(Ba()) = B(). By Proposi-
tion 8(iv), since Egp_l(X') = [X, Sp] (where [ , ] denotes the set of homo-
topy classes of maps preserving base points) is identified with T(Z)_S(X), it
is restated as ¢(8g(f1)) = g%8(u), where we regard 3g(ji) as an element of
fO_S(G). Thus R_O*(G) has a summand ﬁ*(SU){ﬁH(ﬁ)} corresponding
to the summand N (g28(u)) in K*(G).
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After all, Seymour determined the ring structure of ﬁ)*(G) except
the following point (see [16, Appendix]): what are the squares 8g(j1)? and
Bu(f)? in the above situation? The Bott’s exact sequence tells us only
that they are in the image of 7. M. Crabb [6, p.67] and H. Minami [14,
Proposition 2.2] answered these questions. They showed that

(212)  Br(A) =n- N(BR(R) and Ba(R) = no-Br(N (k)
where in the first relation, p € R(G) is real, and in the second relation, y €

R(G) is quaternionic and A%(u) € R(G) is real (see [1, Remark 3.63]). So
the problems reduce to determine A%(3g(%)) and Br(A2(y)) in I?Z)_l(G).

3. The rings KO*(SU(3)), KO*(Sp(2)) and KO*(G;). Us
ing the notation of the previous section, we describe the KO*(pt)-algebra
structure of KO*(G), together with the action of ¥* on it.

G = SU(3)

Asseen in [16, Theorem 5.6], there exists an element (; ; € H)O(SU(JS))
such that ¢((12) = ¢7'3(M)B(A2). It follows from this and Proposi-
tion 7(1) that

(3.1) K*(SU(3)) = T(8(M)) B N (g7 8(M)B(\2))

Theorem 9. As a Z-graded module,
KO™(SUB3)) = r(K*(S*){B()}) & KO (5){G12)-
More precisely,

KO'(SUB3)) = Z{C.2},

KO (SU(3)) = Z/(2){né12} & Z{r(BO))},
KO '(SU(3)) = Z/(2){G1.2),

KO °(SU(3)) = Z{r(gB(M))},

KO '(SU(3)) = Z{v(12),

KO °(SU(3)) = Z{r(¢*B(M))}

KO (SU(3)) = 0,

KO~ (SU(3)) = Z{r(g*8(\))}-
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Its Fa*(so)-module structure is given by

n-1(g'B(M)) =0, v-r(g'B(M)) = 2r(¢"*28(M1)) and
o+ r(g'B(M)) = r(g"FB(M))

Its multiplicative structure is given by

r(g'B(M)) - (¢ B(M)) = (1) r(g"H )¢ 2,
r(¢'B(M))-C2a=0 and (3, =0.

The action of ¥* on K’a*(SU(3)) is given by

k(g _ [K*r(g'B(M)) i i =0 (mod?2)
vrlg" b)) = {ki+3r(gi/3()\1)) if i =1 (mod?2)

and  P*((12) = kG .

Proof. The additive structure follows from (3.1) and Lemmas 4, 5.
For the KO (5°)-module structure, we have

1-7(g'B(M)) = r(g'B(M))n
= r(g'8(M)-¢(n)) by (2.1b)
=0 since ¢(n) = 0 by (2.3a)

and the other equalities are obtained similarly.
For the multiplicative structure, we have

r(g'8(M)) - r(g?B(M))
= r(g'B(M1) - er(g'B(M1)) by (2.1b)
=r(g'8(A1) - (1 + t)(¢B(A1))) by (2.1a)
=r(g'8(M) - (¢7B(M) + (1Y ¢ B(X2))) since t(B(M)) = B(A2)
= 7(g"H B(M)?) + (= 1) (g™ B(M)B(N2))
= (=1)r(g" g B(A1)B(A2)) since B()1)? = 0
= (=1)"r(¢"¥"*1)¢12 by (2.1b) and the definition of (; 2

and the other equalities are obtained similarly.
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For the action of ¥*, we have

o(#*r)(gB(M)))
= pHer(g'B(M))
= YH(g'B(M) + (~1)'g"8(Aa)

.2
_ 1(1; (L;-l)d(/\) k‘(k-l-l)ﬁ()‘ ))
k2(k - 1)

. . - 2
+(-0bigi (-0 + LD
by (1.2) and Theorem 1(i_)

_ kz+2(k +1-(-1)k+ (—1)1)(955()\1) + (—l)igiﬂ()\'z))

2
42 I A1V 1

B(A2))

By examining the behavior of c: ?&T)—l_m(SU@)) — K~'"%(SU(3)), we
see that this gives the first equality. The second equality follows similarly,
and the proof is completed.

G = 5p(2)
It follows from Proposition 7(2) that

(3.2) K (Sp(2)) = N(g*B(u})) & N (B(u3)) & N(g”B(p1)8(k3))-

Theorem 10. As a KO*(pt)-module (but not as a ring),

KO*(5p(2)) = KO(pt) ® Az(3u(}): Br(115))-

Its multiplicative structure is given by
Br(p))? =no - Br(uy) and Br(uy)® =0.

The action of ¥* on KO (Sp(2)) is given by

—~ kY(kP42) 5 k(R =
oroay) = S D gy - LE DG,

-~ 2k2(k% — 1 ., KR+,
oH(an() = -2 Doy + S E D G,

W (Bu()BR(E)) = K 3m(h)Pn(idy).
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Proof. 1t follows from (3.2) and Lemma 5 that, as a m*(SO)-nmdule,

(33) KO'(Sp(2) = KO'(8°){3n(i)} & KO'("){6r(13))
& KO'(S){Bu(n))Br(1})}-

So the first statement follows.

For the multiplicative structure, the first equality is a consequence of
the second relation of (2.12). It remains to prove the second equality. In
view of the first relation of (2.12), we have to determine /\2(,61;,(;7;)). For
this purpose, since c: R:a_l(Sp('Z)) - F‘I(Sp(‘z)) is a monomorphism of
A-rings (compare (3.3) with (3.2)), it suffices to compute A\2(8(u})). We
quote from Theorem 2(i) with k = 2 that

$A(B(uy)) = ~168(13) + 128(u).

Using the formula ¢?(z) — 22 + 2)%(2) = 0 for 2 € K(X) (see [2]) and the
relation 3(p5)? = 0, we have

A(B(up)) = 88(u1) — 68(u).

By (2.12), since 27 = 0, this gives the second equality.
For the action of ¥*, we have

cv*(Ba()
= pre(Bu(K]))
= 9*(g*8(11))
= ¢*(9) " (B(1}))
= (kg (B 2D - )
by (1.2) and Theorem 2(i)

kY k2 +2) . kA(k2 - 1) .
= D ) - =D g

2 +2), —~. kk2-1) _ —
:c( ( 3 )51‘1(”’1)—%%1{(”’2)) by (2.3a).

Since ¢: E—S(Sp('Z)) — K=5(5p(2)) is injective (compare (3.3) with
(3.2)), this gives the first equality. The other equalities are obtained simi-
larly, and the proof is completed.
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G =Gy
It follows from Proposition 7(3) that

(3.4) K™*(G2) = N(8(p1)) & N(B(p2)) ® N(B(p1)B(p2))-

Theorem 11. As a KO*(pt)-module (but not as a ring),
KO(G2) = KO*(pt) ® Az(Br(p1). Br(P2))-
Its multiplicative structure is given by
Br(pr)* = n- Br(P1) + 1 Br(P2) = Br(72)".
The action of ¥* on %*(Gg) is given by

k*(k* +5) KXkt —1)

$H(BR(F1)) = ——5—Br(P1) - ——5—B8r(7),
, . 25k (k 1), KK+
v (Ba(n) = ~ 2D gnn) ¢ S D g,

¥ (BR(P1)BR(P2)) = k°Br(P1)BR(P2)-
Proof. 1t follows from (3.4) and Lemma 5 that, as a f()*(SO)-modllle,

(35) KO (G2) = KO'(5°){8R(7)} & KO (5°){8r(72))
& KO (5°){Br(p1)8r(p2)}-

So the first statement follows.

For the multiplicative structure, in view of the first relation of (2.12),
we have to determine A*(8g(p;)) for ¢ = 1,2. For this purpose, since
c: %-I(Gg) — K~(G;) is a monomorphism of \-rings (compare (3.5)
with (3.4)), it suffices to compute A%(3(p;)) for i = 1,2. We quote from
Theorem 3(i) with & = 2 that

W (B(p1)) = 148(p1) = 28(p2),
B*(B(p2)) = —2508(p1) + 5458(p2).
Using the formula ¥2(z) — 22 4+ 2X%(z) = 0 and the relation 3(p;)? = 0, we
have '
X (B(p1)) = =TB(p1) + B(p2),
X(B(p2)) = 1258(p1) — 278(p2)-
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By (2.12), since 21 = 0, these give the stated equalities.
The equalities describing the action of 1% are obtained in the same
way as in the proof of Theorem 10.

4. The rings KO*(SU(2n+1)/50(2n+1)) and KO*(SU(2n)/
Sp(n)). Lemma 6 together with Proposition 8 can be used to compute
the KO-theory of compact symmetric spaces SU(2n + 1)/S0(2n + 1) and
SU(2n)/Sp(n). To begin with, the following result is in {1, Remark 3.63
and Theorems 7.3, 7.6, 7.7].

Proposition 12. For G = SU(n + 1), SO(2n + 1) and Sp(n), the
action of t on R(G) is given by:
(1) In R(SU(n + 1)) = Z[A,-+, An] (where Ay = [C™F!] and A\ =
A (),
HAk) = Any1—k for k=1,...,n.

(2) In R(SO(2n + 1)) = Z[p1,+++,n] (where py = [(R*™)C] and
Ui = ’\k(,u'l))J
t(pe) =k for k=1,...,n

where yy is real.
(3) In R(Sp(n)) = Z[u}.---,us] (where p} = [(H")c] and pl, =
Mo (1)),
tup) = pg for k=1,...,n

where yy,_, is quaternionic and pl, is real.

The K-rings of SU(2n + 1)/SO(2n + 1) and SU(2n)/Sp(n) were de-
termined by H. Minami [12]. We recall his result. Let G be a compact
1-connected Lie group. Suppose that there is an automorphism o: G — G
such that 02 = 1g. Then the fixed point set G° = {z € G|o(z) = z}
forms a closed connected subgroup of G, and the coset space G/G° be-
comes a compact symmetric space (e.g., see [11, Chapter 3, §6]). Consider
the induced homomorphism ¢*: R(G) — R(G) and let o*(A) = X, where
A is a representation of G. Then dim A = dim A (=n) and A|G° = M| G°.
So we have a map fy: G/G? — U(n) defined by

(A1) fi2G%) = Mz)N(z)! for 2G° € G/GC.

Let ¢ U(n) — U be the canonical injection. Then the composite ¢n fx
gives rise to a homotopy class 8(A — X') in [G/G?,U] = K~Y(G/G").
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Let 0 = ogp41: SU(2n+ 1) — SU(2n+ 1) be the involution defined as
in (2.10). Then, in the notation of Proposition 12,

(4.2) 0" (M) = Aanp1-k  and  ig(Ak) = e = ie(Aent1-k)
for k=1,...,n.

Similarly, let ¢ = ol: SU(2rn) — SU(2n) be the involution defined as
in (2.11). Then

43) 0" (W) =dank and icm (W) = b = iz (Aenci)
for k=1,...,n.

Proposition 13. (1) ([12, Proposition 8.1]) As an algebra over
K*(pt),

K*(SU(2n + 1)/S0(2n + 1))
= X’*(pt) ® Az(8(A — A2n)se -+ 8(An — /\n+1))-

(2) ([12, Proposition 6.1]) As an algebra over K*(pt),

K*(SU(2n)/Sp(n))
= K*(pt) ® Az(B(M — Azn—1),+ -, B(An—1 — Ang1))-

We can now deduce our main result.
Theorem 14. (1) As an algebra over KO™(pt),
KO*(SU(2n + 1)/SO(2n + 1)) = KO™(pt) ® Az(A1 20, Annt1)

where Ak an1-k € ml(SL’(Zn,+ 1)/S0(2n 4+ 1)) is a unique element such
that

c(Ak2nti=k) = 97 B(Ak = Aang1-k)-
(2) As an algebra over KO*(pt),
KO*(SU(2n)/Sp(n)) = KO (pt) ® Az(M 201"+ Ane1,n41)
where Ay 9, 141 € ﬁ_3(5L7(2n)/Sp(71.)) is a unique element such that

e(Ag_12n—21+1) = 98(A21-1 — A2n—2141),
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and Xy 5, _q € I?Z)l(SU(2n)/Sp(n)) is a unique element such that

(A on_a21) = 97 Bt — Agn—m).

Proof. We first show (1). Consider Ax: SU(2n + 1) — (/((an+ 1))
for k = 1,...,n. By (4.2), ig(Ax) = px and by Proposition 12(2), px €
R(SO(2n + 1)) is real, i.e., there is a (unique) iy € RO(SO(2n + 1)) such
that ¢(zx) = pk. Therefore, in the diagram

SO(2n + 1) = SU2n + 1) =S+ SU(2n + 1)/50(2n + 1)

(4.4) J-ﬂzn-g-],kﬁ; ltzn-n,k)\k )‘k,2n+1—kl \5(Ak—>\2n+1—k)
Is) e, U rc, U/o NI 4

(where Koy k: O((2"'Ij_ 1)) — O and tg,414: U((inj' 1)) — U are the
canonical injections), the left square is commutative. So we have a map
Ak2nt1—k: SU(2n+1)/SO(2n+1) — U/O which makes the middle square
commute. Indeed, it is defined by

(4.5) Ak2n1-k(250(2n + 1)) = (t2n41,626)(2)0

for S0(2n + 1) € SU(2n +1)/SO(2n + 1). Since 03, 1(Ak) = Aopy1-k =
t(Ax) by (4.2) and Proposition 12(1), the diagram

SU(2n +1) 25 p((2r 1) <24 v

O2n+41 T2n41,k Gco

SU(2n +1) 2 y((2nF ) =5 v

(where 035,41 & is defined as in (2.10)) is commutative. So the right triangle
in (4.4) is commutative:

(€1 Mk 2n41-£)(SO(2n + 1))
= (t2n+1,6 M )(2)00a((L2n1142%)(2)) ™" by (2.9) and (4.5)
= (tont1.6M)(@)(b2ng1 kMO 2041 ) (2) 7
= tan+1k(M(@)(Ak02n41)(2)71)
= B(Ak — Aznp1-£)(2SO(2n + 1)) by (4.1) and (4.2).

By Proposition 8(ii), this implies that ¢(Ag 2nt1-£) = §718( Ak — Mant1-k)s
where we regard Mg 2,41k as an element of @1(5L7(2n+1)/50(2n+ 1)) =
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[SU(2n+1)/S0(2n+1),U/O]. By this equality and Proposition 13(1), we
can apply Lemma 6 to the case X = SU(2n + 1)/SO(2n + 1) and obtain
the KO*(pt)-module structure of KO*(SU(2n 4+ 1)/SO(2n + 1)). For the
multiplicative structure, as is discussed at the end of section 2, whether
Ak2nt1-k> is zero or not is a remaining question. Fortunately it says in
Crabb [6, Example (6.6)] that Ax 2n41-x% = 0 since Mg 2n41-4 has degree 1
and 1 = —3 (mod 4). Hence (1) follows.

We next show (2). Consider Ax: SU(2n) — U((%?)) for k = 1,...,
n — 1. By (4.3), i%(Ak) = ¢%. From now on, our argument is divided into
two cases.

Suppose that k is odd, i.e., & = 2/ — 1 for some ! > 1. Then, by
Proposition 12(3), p} € R(Sp(n)) is quaternionic, i.e., there is a (unique)
). € RSp(Sp(n)) such that c'(uk) = p},. Therefore, in the diagram

Sp(n) =S SU(2n) =& SU(2n)/Sp(n)

(4.6) €2n,kukl l‘?n,kxk lkz" k \"3(/\': A2n—k)
Sp ¢ v T yisy =50

(where &3, : Sp((%:")ﬂ) — Sp and 19, 1: U((an)) — U are the canon-
ical injections), the left square is commutative. So we have a map

kon-kt SU(2n)/Sp(n) — U/Sp which makes the middle square commute.
Since o."(At) = Aan—k = t(Ax) by (4.3) and Proposition 12(1) and since
jaj~! = @ for @ € C, the diagram

SU(2n) = U((A) =25 U

t l

SU(2n) —* ((an)) el

(where a7 , is defined as in (2.11)) is commutative and so the right tri-
angle in (4.6) is commutative. By Proposition 8(vi), this implies that
e(Nypn_i) = 9B = Aant), where Ny € KO (SU(2n)/Sp(n)) =
[SU(2n)/ Sp(n), U/ Sp]-

Suppose that k is even, i.e., k = 2! for some [ > 1. Then, by Proposi-
tion 12 (3), uj, € R(Sp(n)) is real, i.e., there is a (unique) p}, € RO(Sp(n))
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such that c(;z) = p}. Therefore, in the diagram

Sp(n) —€5 SU(2n) €5 SU(2n)/ Sp(n)

(4.7) 'i2n,kl»:l 1‘2n,k)‘k J’A;:ﬂn—k \ﬁ()‘k—/\?n—k)
o e, [y Z<, v/0 GENY 5

(where Kop it O((Q’:?)) — O is the canonical injection), the left square
is commutative. So we have a map Ay 5, _,: SU(2n)/Sp(n) — U/O which
makes the middle square commute. Since 0, *(At) = Aan—i = t(Ax) by (4.3)
and Proposition 12(1), the diagram

SU(2n) =2 U((?,;l)) LN

a;:J- l°2n,k 1‘700

SU(2n) =5 U((21) 25 U

(where 02, is defined as in (2.10)) is commutative and so the right tri-
angle in (4.7) is commutative. By Proposition 8(ii), this implies that
c(Mian—i) = 97 B(Mk = Agn_i), where Akon—k € .’KTO](SU(Qn)/Sp(n)).

By these equalities and Proposition 13(2), we can apply Lemma 6 to
the case X = SU(2n)/Sp(n). The rest is quite similar to the proof of (1),
and (2) follows.

Remark. We have no good reasons to assert that, for example,

Ak 2n+1-% lies in i’{wO](SU(Qn + 1)/SO(2n + 1)) and does not lie in
ITbsmH(SU(Qn + 1)/50(2n + 1)) for some m # 0. But, since the CW-

complex structure of SU(2n+1)/S0(2n+ 1) is known for small n, one can
compute KO (SU(2n + 1)/50(2n + 1)) by using cofibre sequences. Only
such observation justifies our assertion.
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