ON THE KO-THEORY OF LIE GROUPS AND SYMMETRIC SPACES

TAKASHI WATANABE

0. Introduction. Let G be a compact, 1-connected simple Lie group of rank 2. Then G is one of the following: SU(3), Sp(2) and G_2 . In this note we shall describe explicitly the KO-theory of G, together with the action of the Adams operations ψ^k on it, and also describe the KO-theory of symmetric spaces SU(2n+1)/SO(2n+1) and SU(2n)/Sp(n) for $n \geq 1$. In particular, for the first topic, the following fact should be noted. For a compact, connected, semisimple and simply-connected Lie group G, Seymour [16, Theorem 5.6] described theoretically the (Z/(8)-graded) ring $KO^*(G)$; its additive structure was determined completely and its multiplicative structure was almost done. However, it seems that papers containing an explicit description of $KO^*(G)$ are [13], [14] and [15].

This paper is arranged as follows. In section 1 we compute the Adams operations in $K^*(G)$. Section 2 consists of preparations for subsequent sections and involves a review of Seymour's work. The (Z-graded) ring $KO^*(G)$ will be described in section 3, and the rings $KO^*(SU(2n+1)/SO(2n+1))$ and $KO^*(SU(2n)/Sp(n))$ in section 4.

We shall deal with the Z-graded objects, simultaneously with the associated Z/(2)- or Z/(8)-objects.

1. The Adams operations in $K^*(G)$. Since the Chern character of G was described explicitly in [17], the Adams operations in $K^*(G)$ should be computed. This is what we put into practice in this section.

We begin by recalling some facts on complex K-theory needed in the sequel. For details, see [2], [3] and [9]. We will use the following notation: R is the field of real numbers; C is the field of complex numbers; H is the algebra of quaternions; K is the algebra of Cayley numbers. Let X be a space with nondegenerate base point. The Adams operations $\psi^k \colon K(X) \to K(X), k \in \mathbb{Z}$, are homomorphisms of rings. They are closely related with the Chern character $ch \colon K(X) \to H^*(X; \mathbb{Q})$. That is, if

$$ch(x) = \sum_{q>0} ch_q(x), \quad ch_q(x) \in H^{2q}(X; \mathbf{Q}),$$

for $x \in K(X)$, then

$$(1.1) ch(\psi^k(x)) = \sum_{q>0} k^q ch_q(x).$$

This ch extends to a multiplicative natural transformation of $\mathbb{Z}/(2)$ -graded cohomology theories ch: $K^*(\) \to H^{**}(\ ; \mathbb{Q})$. The coefficient ring of reduced \mathbb{Z} -graded K-theory is

$$\widetilde{K}^*(S^0) = Z[g, g^{-1}]/(gg^{-1} - 1),$$

where $g \in \widetilde{K}^{-2}(S^0)$ is the Bott generator. The action of ψ^k on $\widetilde{K}^*(S^0)$ is given by

(1.2)
$$\psi^k(g) = kg$$
, in particular $\psi^{-1}(g) = -g$.

The K-ring K(X) and the complex representation ring R(G) are λ -rings (see [9, 12(1.1)]); roughly speaking, they possess the exterior power operations λ^k for $k \geq 0$. Let β : $R(G) \to \widetilde{K}^{-1}(G)$ be the homomorphism of abelian groups, introduced in [8], called the beta-construction. Notice that β does not commute with λ^k .

We now consider the case G = SU(3). The space C^3 becomes a SU(3)-C-module in the usual way. We write λ_1 for the class of C^3 in R(SU(3)), and put $\lambda_k = \lambda^k(\lambda_1) \in R(SU(3))$. Then R(SU(3)) equals the polynomial algebra $Z[\lambda_1, \lambda_2]$ (see [1, Theorem 7.4] or [9, 13(3.1)]). Therefore, by the theorem of Hodgkin [8, Theorem A], $K^*(SU(3))$ equals the exterior algebra $\Lambda_Z(\beta(\lambda_1), \beta(\lambda_2))$ as a Z/(2)-graded Hopf algebra over Z. On the other hand, $H^*(SU(3); Z) = \Lambda_Z(x_3, x_5)$, where $x_i \in H^i(SU(3); Z)$. With this notation, we may set

(1.3)
$$ch(\beta(\lambda_1)) = ax_3 + bx_5, \\ ch(\beta(\lambda_2)) = cx_3 + dx_5$$

for some $a,b,c,d\in Q$ (as seen below, these numbers are known). Using the relations $x_3^2=0,\,x_5x_3=-x_3x_5$ and $x_5^2=0$, we have

(1.4)
$$ch(\beta(\lambda_1)\beta(\lambda_2)) = adx_3x_5 + bcx_5x_3$$
$$= (ad - bc)x_3x_5$$

in the Z/(2)-graded ring $H^{**}(SU(3); \mathbf{Q})$. Since $\{\beta(\lambda_1), \beta(\lambda_2)\}$ is a basis for $\widetilde{K}^{-1}(SU(3)) = \widetilde{K}(\Sigma SU(3)) \cong \mathbf{Z} \oplus \mathbf{Z}$, we may set

$$\psi^k(\beta(\lambda_1)) = e\beta(\lambda_1) + f\beta(\lambda_2)$$

for some $\epsilon, f \in \mathbf{Z}$. Let $s : \widetilde{H}^*(G; \mathbf{Q}) \to \widetilde{H}^{*+1}(\Sigma G; \mathbf{Q})$ denote the suspension isomorphism. Then, by (1.3), $ch : \widetilde{K}(\Sigma SU(3)) \to \widetilde{H}^*(\Sigma SU(3); \mathbf{Q})$ satisfies

$$ch(\beta(\lambda_1)) = as(x_3) + bs(x_5),$$

$$ch(\beta(\lambda_2)) = cs(x_3) + ds(x_5).$$

It follows from this and (1.1) that

$$ch(\psi^k(\beta(\lambda_1))) = ak^2s(x_3) + bk^3s(x_5),$$

while

$$ch(\psi^k(\beta(\lambda_1))) = ch(e\beta(\lambda_1) + f\beta(\lambda_2))$$

= $(ae + cf)s(x_3) + (be + df)s(x_5).$

Since a = -1, b = 1/2, c = -1 and d = -1/2 by [17, Theorem 2], we obtain $-e - f = -k^2$ and $e - f = k^3$. These reduce to $e = k^2(k+1)/2$ and $f = -k^2(k-1)/2$. We call the reader's attention to the fact that these numbers belong to Z (see also part (i) of Theorems 1 to 3).

Similarly, if we set

$$\psi^k(\beta(\lambda_2)) = e\beta(\lambda_1) + f\beta(\lambda_2)$$

for some $e, f \in \mathbb{Z}$, we obtain $-e - f = -k^2$ and $e - f = -k^3$, which reduce to $e = -k^2(k-1)/2$ and $f = k^2(k+1)/2$.

Using these results and the relations $\beta(\lambda_1)^2 = 0$, $\beta(\lambda_2)\beta(\lambda_1) = -\beta(\lambda_1)\beta(\lambda_2)$ and $\beta(\lambda_2)^2 = 0$, we have

$$\psi^{k}(\beta(\lambda_{1})\beta(\lambda_{2})) = \psi^{k}(\beta(\lambda_{1}))\psi^{k}(\beta(\lambda_{2}))$$

$$= \frac{k^{4}(k+1)^{2}}{4}\beta(\lambda_{1})\beta(\lambda_{2}) + \frac{k^{4}(k-1)^{2}}{4}\beta(\lambda_{2})\beta(\lambda_{1})$$

$$= k^{5}\beta(\lambda_{1})\beta(\lambda_{2}).$$

Theorem 1. The action of ψ^k on $\widetilde{K}^*(SU(3))$ is given by: (i) ([18, (2.5)]) In $\widetilde{K}^{-1}(SU(3)) = \mathbb{Z}\{\beta(\lambda_1), \beta(\lambda_2)\},$

$$\psi^{k}(\beta(\lambda_{1})) = \frac{k^{2}(k+1)}{2}\beta(\lambda_{1}) - \frac{k^{2}(k-1)}{2}\beta(\lambda_{2}),$$

$$\psi^{k}(\beta(\lambda_{2})) = -\frac{k^{2}(k-1)}{2}\beta(\lambda_{1}) + \frac{k^{2}(k+1)}{2}\beta(\lambda_{2}).$$

(ii) In
$$\widetilde{K}^{-2}(SU(3)) = \mathbb{Z}\{\beta(\lambda_1)\beta(\lambda_2)\},$$

$$\psi^k(\beta(\lambda_1)\beta(\lambda_2)) = k^5\beta(\lambda_1)\beta(\lambda_2).$$

We move on to consider the case G = Sp(2). Since the space H^2 is a left Sp(2)-H-module, its complex restriction $(H^2)_C$ becomes a Sp(2)-C-module. We write $\mu'_1 = [(H^2)_C] \in R(Sp(2))$, and put $\mu'_k = \lambda^k(\mu'_1)$. Then R(Sp(2)) equals the polynomial algebra $Z[\mu'_1, \mu'_2]$ (see [1, Theorem 7.6] or [9, 13(6.1)]). Therefore, by the theorem of Hodgkin [8], $K^*(Sp(2)) = \Lambda_Z(\beta(\mu'_1), \beta(\mu'_2))$. On the other hand, $H^*(Sp(2); Z) = \Lambda_Z(x_3, x_7)$, where $x_i \in H^i(Sp(2); Z)$. With this notation, [17, Theorem 3] tells us that

$$ch(\beta(\mu'_1)) = x_3 - \frac{1}{6}x_7,$$

 $ch(\beta(\mu'_2)) = 2x_3 + \frac{2}{3}x_7.$

By a calculation similar to the case of SU(3) we have

Theorem 2. The action of
$$\psi^k$$
 on $\widetilde{K}^*(Sp(2))$ is given by:
(i) In $\widetilde{K}^{-1}(Sp(2)) = \mathbb{Z}\{\beta(\mu'_1), \beta(\mu'_2)\},$

$$\psi^k(\beta(\mu'_1)) = \frac{k^2(k^2+2)}{3}\beta(\mu'_1) - \frac{k^2(k^2-1)}{6}\beta(\mu'_2),$$

$$\psi^k(\beta(\mu'_2)) = -\frac{4k^2(k^2-1)}{3}\beta(\mu'_1) + \frac{k^2(2k^2+1)}{3}\beta(\mu'_2).$$
(ii) In $\widetilde{K}^{-2}(Sp(2)) = \mathbb{Z}\{\beta(\mu'_1)\beta(\mu'_2)\},$

$$\psi^k(\beta(\mu'_1)\beta(\mu'_2)) = k^6\beta(\mu'_1)\beta(\mu'_2).$$

Finally we consider the case $G=G_2$. The automorphism group of K is G_2 . As seen in [19, Appendix A] or [20, p.217], the subspace K_0 consisting of pure imaginary elements in K forms a G_2 -R-module of dimension 7. Hence its complexification K_0^C becomes a G_2 -C-module. We write $\rho_1=[K_0^C]\in R(G_2)$, and put $\rho_k=\lambda^k(\rho_1)$. Then $R(G_2)$ equals the polynomial algebra $Z[\rho_1,\rho_2]$. Therefore, by the theorem of Hodgkin [8], $K^*(G_2)=\Lambda_Z(\beta(\rho_1),\beta(\rho_2))$. On the other hand, $H^*(G_2;Z)/\text{Tor.}=\Lambda_Z(x_3,x_{11})$, where $x_i\in H^i(G_2;Z)$. With this notation, [17, Theorem 7] tells us that

$$ch(\beta(\rho_1)) = 2x_3 + \frac{1}{60}x_{11},$$

 $ch(\beta(\rho_2)) = 10x_3 - \frac{5}{12}x_{11}.$

By a calculation similar to the case of SU(3) we have

Theorem 3. The action of ψ^k on $\widetilde{K}^*(G_2)$ is given by: (i) In $\widetilde{K}^{-1}(G_2) = \mathbb{Z}\{\beta(\rho_1), \beta(\rho_2)\},$

$$\psi^{k}(\beta(\rho_{1})) = \frac{k^{2}(k^{4}+5)}{6}\beta(\rho_{1}) - \frac{k^{2}(k^{4}-1)}{30}\beta(\rho_{2}),$$

$$\psi^{k}(\beta(\rho_{2})) = -\frac{25k^{2}(k^{4}-1)}{6}\beta(\rho_{1}) + \frac{k^{2}(5k^{4}+1)}{6}\beta(\rho_{2}).$$

(ii) In
$$\widetilde{K}^{-2}(G_2)=Z\{\beta(\rho_1)\beta(\rho_2)\},$$

$$\psi^k(\beta(\rho_1)\beta(\rho_2))=k^8\beta(\rho_1)\beta(\rho_2).$$

2. The Bott's exact sequence. We will use the quaternionic representation ring functor $RSp(\)$ and quaternionic K-theory $KSp^*(\)$ as well as the real representation ring functor $RO(\)$ and real K-theory $KO^*(\)$. To do this we fix some notation. For details, see [1], [2], [4] and [9].

Let $c: RO(G) \to R(G)$ and $c: KO(X) \to K(X)$ be the complexifications; they preserve the λ -ring structures. Let $r: R(G) \to RO(G)$ and $r: K(X) \to KO(X)$ be the real restrictions; they preserve the additions only. Let $t: R(G) \to R(G)$ and $t: K(X) \to K(X)$ be the complex conjugations; they preserve the λ -ring structures. Finally, let $c': RSp(G) \to R(G)$ and $c': KSp(X) \to K(X)$ be the complex restrictions; they preserve the additions only. Then, among them, the following formulas hold:

(2.1a)
$$rc = 2$$
, $cr = 1 + t$, $tc = c$, $tc' = c'$ and $t^2 = 1$.

$$(2.1b) r(x \cdot c(z)) = r(x)z \text{for all} x \in K(X) \text{and} z \in KO(X).$$

The coefficient ring of reduced Z-graded KO-theory is

$$\widetilde{KO}^*(S^0) = \mathbf{Z}[\eta, \nu, \sigma, \sigma^{-1}]/(2\eta, \eta^3, \eta\nu, \nu^2 - 4\sigma, \sigma\sigma^{-1} - 1),$$

where $\eta \in \widetilde{KO}^{-1}(S^0)$, $\nu \in \widetilde{KO}^{-4}(S^0)$ and $\sigma \in \widetilde{KO}^{-8}(S^0)$. When $\widetilde{K}^*(X)$ has been determined (our case is this), a basic tool for computing $\widetilde{KO}^*(X)$ is the Bott's exact sequence

$$\cdots \longrightarrow \widetilde{KO}^{1-q}(X) \xrightarrow{\eta} \widetilde{KO}^{-q}(X) \xrightarrow{c} \widetilde{K}^{-q}(X) \xrightarrow{\delta} \widetilde{KO}^{2-q}(X) \xrightarrow{\sigma} \cdots,$$

where η denotes multiplication by η and the map δ is defined by

(2.2)
$$\delta(x) = r(g^{-1}x) \text{ for } x \in \widetilde{K}^{-q}(X).$$

We have

(2.3a)
$$c(1) = 1$$
, $c(\eta) = 0$, $c(\eta^2) = 0$, $c(\nu) = 2g^2$ and $c(\sigma) = g^4$.

(2.3b)
$$r(1) = 2$$
, $r(g) = \eta^2$, $r(g^2) = \nu$, $r(g^3) = 0$ and $r(g^4) = 2\sigma$.

From this and (2.1b), one can calculate $r(g^i)$ for all $i \in \mathbb{Z}$. The action of ψ^k on $\widetilde{KO}^*(S^0)$ is given by

(2.4)
$$\psi^k(\eta) = k\eta, \ \psi^k(\nu) = k^2\nu \quad \text{and} \quad \psi^k(\sigma) = k^4\sigma.$$

The following two lemmas can be proved by using the Bott's exact sequence and are included in [16, Theorem 4.2]. So we omit the details of their proofs. By $\widetilde{K}^*(S^0)\{x,\cdots\}$ we denote the free $\widetilde{K}^*(S^0)$ -module generated by elements x,\cdots .

Lemma 4. Suppose that, as a Z-graded module with t-action, $\widetilde{K}^*(X)$ has a direct summand $T\langle x \rangle$ which is a free $\widetilde{K}^*(S^0)$ -module generated by two elements $x, x' \in \widetilde{K}^n(X)$ such that t(x) = x' (and so t(x') = x), where $x' \neq \pm x$. Then $\widetilde{KO}^*(X)$ contains the image $r(\widetilde{K}^*(S^0)\{x\})$ of $\widetilde{K}^*(S^0)\{x\}$ under r as a direct summand. It is described by:

$$\begin{split} \widetilde{KO}^n(X) &\supset \mathbf{Z}\{r(x)\}, & \widetilde{KO}^{n-1}(X) \supset 0, \\ \widetilde{KO}^{n-2}(X) \supset \mathbf{Z}\{r(gx)\}, & \widetilde{KO}^{n-3}(X) \supset 0, \\ \widetilde{KO}^{n-4}(X) \supset \mathbf{Z}\{r(g^2x)\}, & \widetilde{KO}^{n-5}(X) \supset 0, \\ \widetilde{KO}^{n-6}(X) \supset \mathbf{Z}\{r(g^3x)\}, & \widetilde{KO}^{n-7}(X) \supset 0 \end{split}$$

where $r(g^ix') = (-1)^i r(g^ix)$ for $i \in \mathbb{Z}$.

Proof. We prove the last relation only.

$$\begin{array}{ll} 0 = \delta c(r(g^{i+1}x)) & \text{by exactness of Bott's exact sequence} \\ = \delta((1+t)(g^ix)) & \text{since } cr = 1+t \text{ by } (2.1a) \\ = \delta(g^{i+1}x + (-1)^{i+1}g^{i+1}x') & \text{since } t(g) = -g \text{ by } (1.2) \\ = r(g^ix) + (-1)^{i+1}r(g^ix') & \text{by } (2.2). \end{array}$$

Lemma 5. Suppose that, as a Z-graded module with t-action, $\widetilde{K}^*(X)$ has a direct summand $N\langle y \rangle$ which is a free $\widetilde{K}^*(S^0)$ -module generated by an element $y \in \widetilde{K}^n(X)$ such that y = c(z) for some $z \in \widetilde{KO}^n(X)$. Then $\widetilde{KO}^*(X)$ contains the free $KO^*(S^0)$ -module $\widetilde{KO}^*(S^0)\{z\}$ generated by z as a direct summand. It is described by:

$$\begin{split} \widetilde{KO}^n(X) &\supset Z\{z\}, & \widetilde{KO}^{n-1}(X) \supset Z/(2)\{\eta z\}, \\ \widetilde{KO}^{n-2}(X) \supset Z/(2)\{\eta^2 z\}, & \widetilde{KO}^{n-3}(X) \supset 0, \\ \widetilde{KO}^{n-4}(X) \supset Z\{\nu z\}, & \widetilde{KO}^{n-5}(X) \supset 0, \\ \widetilde{KO}^{n-6}(X) \supset 0, & \widetilde{KO}^{n-7}(X) \supset 0. \end{split}$$

Instead of Lemma 5, we show the following which we will often use.

Lemma 6. Suppose that $\widetilde{K}^*(X)$ is the free $\widetilde{K}^*(S^0)$ -module generated by m elements b_1, b_2, \ldots, b_m , $b_i \in \widetilde{K}^{n_i}(X)$, satisfying $t(b_i) = b_i$. Suppose further that there exist elements a_1, a_2, \ldots, a_m , $a_i \in \widetilde{KO}^{n_i}(X)$, satisfying $c(a_i) = b_i$. Then $\widetilde{KO}^*(X)$ is the free $\widetilde{KO}^*(S^0)$ -module generated by a_1, a_2, \ldots, a_m .

Proof. (Note that, since tc = c by (2.1a), $c(a_i) = b_i$ implies $t(b_i) = b_i$.) We use the machinery of exact couples (see [10]). An exact couple is an exact triangle of graded abelian groups.

$$D \xrightarrow{i} D$$

$$k \swarrow_{j}$$

Then d = jk: $E \to E$ satisfies $d^2 = 0$, and there is another exact couple (the derived couple)

$$D' \xrightarrow{i'} D$$

$$k' \swarrow_{j'} D$$

where D' = i(D), $E' = \operatorname{Ker} d/\operatorname{Im} d$, i' is induced by i, k' is induced by k, and j'(i(a)) = [j(a)] for $a \in D$.

The Bott's exact sequence yields an exact couple by setting $D = \widetilde{KO}^*(X)$, $E = \widetilde{K}^*(X)$, $i = \eta$: $\widetilde{KO}^*(X) \to \widetilde{KO}^{*-1}(X)$, j = c: $\widetilde{KO}^*(X) \to \widetilde{K}^*(X)$, and $k = \delta$: $\widetilde{K}^*(X) \to \widetilde{KO}^{*+2}(X)$. (With this notation, since

 $\eta^3=0$, it follows that D'''=0 and E'''=0.) For any $b\in \widetilde{K}^*(X)$

$$d(b) = c\delta(b)$$
 by the definition of d
= $cr(g^{-1}b)$ by (2.2)
= $(1+t)(g^{-1}b)$ since $cr = 1+t$.

By the first hypothesis,

(2.5)
$$E = \mathbf{Z}\{g^k b_i | i = 1, 2, \dots, m; k \in \mathbf{Z}\}.$$

We have

$$d(g^k b_i) = g^{k-1} b_i + (-1)^{k-1} g^{k-1} t(b_i)$$

since $t(g) = -g$ and t is a ring homomorphism
= $(1 + (-1)^{k-1}) g^{k-1} b_i$ since $t(b_i) = b_i$.

Therefore

$$\operatorname{Ker} d = \mathbf{Z} \{ g^{2k} b_i | i = 1, 2, \dots, m; k \in \mathbf{Z} \}$$

and

$$\operatorname{Im} d = Z\{2g^{2k}b_i | i = 1, 2, \dots, m; k \in Z\}.$$

Hence

(2.6)
$$E' = \mathbb{Z}/(2)\{[g^{2k}b_i]|\ i = 1, 2, \dots, m; k \in \mathbb{Z}\}.$$

Using the second hypothesis, we prove that the multiples of a_i by η , η^2 , ν and σ are not zero. First of all, $\sigma a_i \neq 0$, since $\sigma \colon \widetilde{KO}^*(X) \to \widetilde{KO}^{*-8}(X)$ is an isomorphism. Let us verify that $\nu a_i \neq 0$. We have

$$c(\nu a_i) = c(\nu)c(a_i)$$
 since c is a ring homomorphism
= $2g^2b_i$ since $c(\nu) = 2g^2$ by (2.3a) and $c(a_i) = b_i$.

Assume that $\nu a_i = 0$. Then $2g^2b_i = 0$. This contradicts (2.5), and proves the assertion. Let us next verify that $\eta a_i \neq 0$. Consider the homomorphism $\delta \colon E \to D$, where E is as in (2.5). For j = 1, 2, 3, 4 and for $k \in \mathbb{Z}$, we have

$$\begin{split} \delta(g^{4k+j}b_i) &= r(g^{4k+j-1}b_i) \\ &= r(g^{j-1}c(\sigma^k a_i)) \quad \text{since } c(\sigma) = g^4 \text{ by (2.3a)} \\ &= r(g^{j-1})\sigma^k a_i \qquad \text{by (2.1b)}. \end{split}$$

By this and (2.3b), we find that the elements which may belong to $\operatorname{Im} \delta$ are $2\sigma^k a_i$, $\eta^2 \sigma^k a_i$ (this may be zero at this point of time) and $\nu \sigma^k a_i$. Assume that $\eta a_i = 0$. Then $a_i \in \operatorname{Ker} \eta = \operatorname{Im} \delta$. This contradicts the above observation, and proves the assertion. Hence $\eta \sigma^k a_i$ becomes a nonzero element of D'. Let us finally verify that $\eta^2 a_i \neq 0$. Consider the homomorphism $\delta' \colon E' \to D'$, where E' is as in (2.6). For $k \in \mathbb{Z}$ we have

(2.7)
$$\delta'([g^{4k}b_i]) = \delta(g^{4k}b_i) = r(g^3)\sigma^{k-1}a_i = 0 \text{ and } \\ \delta'([g^{4k+2}b_i]) = \delta(g^{4k+2}b_i) = r(g)\sigma^ka_i = \eta^2\sigma^ka_i.$$

Assume that $\eta^2 a_i = 0$. Then, on the one hand, $\eta a_i \in \operatorname{Ker} \eta' = \operatorname{Im} \delta'$ and on the other hand, the above calculation implies that $\operatorname{Im} \delta' = 0$. This is a contradiction, and proves the assertion. Hence $\eta^2 \sigma^k a_i$ becomes a nonzero element of D'.

Since $\operatorname{Im} c' = \operatorname{Ker} \delta'$, we have an exact sequence

$$0 \longrightarrow D'/\mathrm{Ker}\,c' \xrightarrow{c'} E' \xrightarrow{\delta'} \mathrm{Im}\,\delta' \longrightarrow 0.$$

Since $\operatorname{Ker} c' = \operatorname{Im} \eta'$ and $\operatorname{Im} \delta' = \operatorname{Ker} \eta'$, it can be rewritten in the form

$$0 \longrightarrow \operatorname{Coker} \eta' \stackrel{c'}{\longrightarrow} E' \stackrel{\delta'}{\longrightarrow} \operatorname{Ker} \eta' \longrightarrow 0,$$

where E' is as in (2.6),

$$c'(\eta \sigma^k a_i) = [c(\sigma^k a_i)] = [c(\sigma)^k c(a_i)] = [g^{4k}b_i]$$

and (2.7) holds. So we conclude that

Coker
$$\eta' = Z/(2) \{ \eta \sigma^k a_i | i = 1, 2, ..., m; k \in Z \}$$

and

$$\operatorname{Ker} \eta' = \mathbb{Z}/(2) \{ \eta^2 \sigma^k a_i | i = 1, 2, \dots, m; k \in \mathbb{Z} \}.$$

Consider the exact sequence

$$0 \longrightarrow \operatorname{Ker} \eta' \longrightarrow D' \xrightarrow{\eta'} D' \longrightarrow \operatorname{Coker} \eta' \longrightarrow 0.$$

Then, since $2\eta = 0$ and $\eta^3 = 0$, it follows that

(2.8)
$$D' = \mathbf{Z}/(2) \{ \eta \sigma^k a_i, \eta^2 \sigma^k a_i | i = 1, 2, \dots, m; k \in \mathbf{Z} \}.$$

There is a short exact sequence

$$0 \longrightarrow \operatorname{Ker} c \longrightarrow D \stackrel{c}{\longrightarrow} \operatorname{Im} c \longrightarrow 0.$$

Since $\operatorname{Ker} c = \operatorname{Im} \eta = D'$ and $\operatorname{Im} c = \operatorname{Ker} \delta$, it can be rewritten in the form

$$0 \, \longrightarrow \, D' \, \longrightarrow \, D \, \stackrel{c}{\longrightarrow} \, \operatorname{Ker} \delta \, \longrightarrow \, 0.$$

From a description of the behavior of δ given in the preceding paragraph, we see that

$$\operatorname{Ker} \delta = \mathbf{Z} \{ g^{4k} b_i, 2g^{4k+2} b_i | i = 1, 2, \dots, m; k \in \mathbf{Z} \}.$$

Therefore $D \cong D' \oplus \operatorname{Ker} \delta$, and since $c(\sigma^k a_i) = g^{4k} b_i$ and $c(\nu \sigma^k a_i) = 2g^{4k} b_i$, it follows from (2.8) that

$$D = \mathbf{Z}/(2) \{ \eta \sigma^{k} a_{i}, \eta^{2} \sigma^{k} a_{i} | i = 1, 2, \dots, m; k \in \mathbf{Z} \}$$

$$\oplus \mathbf{Z} \{ \sigma^{k} a_{i}, \nu \sigma^{k} a_{i} | i = 1, 2, \dots, m; k \in \mathbf{Z} \}.$$

Thus the proof is completed.

Let G be a compact connected Lie group. Recall from [1, Proposition 3.27] that $c: RO(G) \to R(G)$ and $c': RSp(G) \to R(G)$ are injective. A representation μ of G is said to be self-conjugate if $t(\mu) = \mu$. Similarly, μ is said to be real if it lies in the image of $c: RO(G) \to R(G)$, and μ is said to be quaternionic if it lies in the image of $c': RSp(G) \to R(G)$. According to [1, Proposition 3.56], if μ is irreducible and self-conjugate, it is either real or quaternionic, but not both. The following is a collection of results from [1, Chapter 7] and [20, Chapter 5]:

Proposition 7. For G = SU(3), Sp(2) and G_2 , the action of t on R(G) is given by:

(1) In
$$R(SU(3)) = Z[\lambda_1, \lambda_2]$$
,

$$t(\lambda_1) = \lambda_2$$
 and $t(\lambda_2) = \lambda_1$.

(2) In
$$R(Sp(2)) = \mathbf{Z}[\mu'_1, \mu'_2],$$

$$t(\mu_i') = \mu_i'$$
 for $i = 1, 2$

where μ_1' is quaternionic and μ_2' is real.

(3) In
$$R(G_2) = \mathbb{Z}[\rho_1, \rho_2],$$

$$t(\rho_i) = \rho_i$$
 for $i = 1, 2$

where both ρ_1 and ρ_2 are real.

Since β commutes with t, from Proposition 7 we know the action of t on $\widetilde{K}^*(G)$, which can be deduced from Theorems 1 to 3 by taking k = -1, since $t = \psi^{-1}$ (see [2]). These are essential data for computing $KO^*(G)$.

There is a folkloric result which tells us how to represent the complexification map $c \colon \widetilde{KO}^*(X) \to \widetilde{K}^*(X)$ as a (weak) map of Ω -spectra $c = \{c_i; i \in Z\} \colon KO \to K$ and can be read off from [5] or [7]. To state it, we need some notation. A monomorphism $i_F \colon H \to G$ of (not necessarily compact) Lie groups induces the following maps

$$G \xrightarrow{\pi_F} G/H \xrightarrow{j_F} BH \xrightarrow{\rho_F} BG.$$

We denote by $i_{\mathbb{C}}$ the natural inclusions $SO(n) \to SU(n)$, $O(n) \to U(n)$ and their stable versions, by $i_{\mathbb{H}}$ the natural inclusions $SU(n) \to Sp(n)$, $U(n) \to Sp(n)$, etc., by $i_{\mathbb{R}}$ the standard monomorphism $U(n) \to O(2n)$ etc., and by $i_{\mathbb{C}'}$ the standard monomorphisms $Sp(n) \to SU(2n)$, $Sp(n) \to U(2n)$, etc., which arise from the correspondence

$$m{H}
i lpha + m{j}m{eta} \longmapsto egin{pmatrix} lpha & -ar{eta} \ m{eta} & ar{m{lpha}} \end{pmatrix} \in M(2,m{C})$$

where $\alpha, \beta \in C$ and $\bar{\alpha}$ is the complex conjugate of α (see [11]).

Proposition 8. For each $i \in \mathbb{Z}$, c_i is given as follows.

- (i) If $i \equiv 0 \pmod{8}$, $c_i = \rho_C$: $BO \times Z \rightarrow BU \times Z$.
- (ii) If $i \equiv 1 \pmod{8}$, then $c_i : U/O \to U$ is defined by

(2.9)
$$c_i(xH) = x\sigma(x)^{-1} \quad \text{for} \quad xH \in G/H$$

where (G, H) = (U, O) and $\sigma = \sigma_{\infty} \colon U \to U$ is the limit of maps $\sigma_n \colon U(n) \to U(n)$ defined by

$$\sigma_n(A) = \overline{A}$$

where \overline{A} is the complex conjugate of A.

(iii) If
$$i \equiv 2 \pmod{8}$$
, $c_i = j_H: Sp/U \rightarrow BU \times Z$.

- (iv) If $i \equiv 3 \pmod{8}$, $c_i = i_{\mathbf{C}'} : Sp \rightarrow U$.
- (v) If $i \equiv 4 \pmod{8}$, $c_i = \rho_{C'}$: $BSp \times Z \rightarrow BU \times Z$.
- (vi) If $i \equiv 5 \pmod{8}$, then $c_i \colon U/Sp \to U$ is defined as in (2.9), where (G, H) = (U, Sp) and $\sigma = \sigma'_{\infty} \colon U \to U$ is the limit of maps $\sigma'_n \colon U(2n) \to U(2n)$ defined by

(2.11)
$$\sigma'_n(A) = J_n \overline{A} J_n^{-1}$$

where if I_n denotes the unit matrix of degree n,

$$J_n = \begin{pmatrix} O & -I_n \\ I_n & O \end{pmatrix}.$$

- (vii) If $i \equiv 6 \pmod{8}$, $c_i = j_R : O/U \rightarrow BU \times Z$.
- (viii) If $i \equiv 7 \pmod{8}$, $c_i = i_{\mathbf{C}}$: $O \rightarrow U$.

In the notation of Lemmas 4 and 5, Seymour [16, Theorem 5.6] showed that $\widetilde{K}^*(G)$ is a direct sum of $T\langle x \rangle$'s and $N\langle y \rangle$'s, and then $\widetilde{KO}^*(G)$ is a direct sum of $T(\widetilde{K}^*(S^0)\{x\})$'s and $T(\widetilde{KO}^*(S^0)\{x\})$'s correspondingly.

Furthermore, we recall Seymour's comment [16, Lemma 5.3] on the summand $N\langle y\rangle$. Let G be a compact, 1-connected Lie group. Suppose that an irreducible, self-conjugate representation μ of G is given. Then, by the theorem of Hodgkin [8], $\widetilde{K}^*(G)$ has a summand $\widetilde{K}^*(S^0)\{\beta(\mu)\}$ with $t(\beta(\mu)) = \beta(\mu)$. Here, two cases can occur. The first case is that μ is real and the second is that μ is quaternionic, as mentioned earlier. The beta-construction has the real and quaternionic analogues

$$\beta_R : RO(G) \longrightarrow \widetilde{KO}^{-1}(G),$$

 $\beta_H : RSp(G) \longrightarrow \widetilde{KSp}^{-1}(G)$

which satisfy $c\beta_{R}=\beta c$ and $c'\beta_{H}=\beta c'$, respectively. In the first case, there exists a unique element $\widehat{\mu}\in RO(G)$ such that $c(\widehat{\mu})=\mu$. Then $\beta_{R}(\widehat{\mu})\in \widetilde{KO}^{-1}(G)$ and $c(\beta_{R}(\widehat{\mu}))=\beta(\mu)$. Thus $\widetilde{KO}^{*}(G)$ has a summand $\widetilde{KO}^{*}(S^{0})\{\beta_{R}(\widehat{\mu})\}$ corresponding to the summand $N(\beta(\mu))$ in $\widetilde{K}^{*}(G)$. In the second case, there exists a unique element $\widehat{\mu}\in RSp(G)$ such that $c'(\widehat{\mu})=\mu$. Then $\beta_{H}(\widehat{\mu})\in \widetilde{KSp}^{-1}(G)$ and $c'(\beta_{H}(\widehat{\mu}))=\beta(\mu)$. By Proposition 8(iv), since $\widetilde{KSp}^{-1}(X)=[X,Sp]$ (where $[\ ,\]$ denotes the set of homotopy classes of maps preserving base points) is identified with $\widetilde{KO}^{-5}(X)$, it is restated as $c(\beta_{H}(\widehat{\mu}))=g^{2}\beta(\mu)$, where we regard $\beta_{H}(\widehat{\mu})$ as an element of $\widetilde{KO}^{-5}(G)$. Thus $\widetilde{KO}^{*}(G)$ has a summand $\widetilde{KO}^{*}(S^{0})\{\beta_{H}(\widehat{\mu})\}$ corresponding to the summand $N(g^{2}\beta(\mu))$ in $\widetilde{K}^{*}(G)$.

After all, Seymour determined the ring structure of $\widetilde{KO}^*(G)$ except the following point (see [16, Appendix]): what are the squares $\beta_R(\widehat{\mu})^2$ and $\beta_H(\widehat{\mu})^2$ in the above situation? The Bott's exact sequence tells us only that they are in the image of η . M. Crabb [6, p.67] and H. Minami [14, Proposition 2.2] answered these questions. They showed that

$$(2.12) \quad \beta_{\mathbf{R}}(\widehat{\mu})^2 = \eta \cdot \lambda^2(\beta_{\mathbf{R}}(\widehat{\mu})) \quad \text{and} \quad \beta_{\mathbf{H}}(\widehat{\mu})^2 = \eta \sigma \cdot \beta_{\mathbf{R}}(\widehat{\lambda^2(\mu)})$$

where in the first relation, $\mu \in R(G)$ is real, and in the second relation, $\mu \in R(G)$ is quaternionic and $\lambda^2(\mu) \in R(G)$ is real (see [1, Remark 3.63]). So the problems reduce to determine $\lambda^2(\beta_R(\widehat{\mu}))$ and $\beta_R(\widehat{\lambda^2(\mu)})$ in $\widetilde{KO}^{-1}(G)$.

3. The rings $KO^*(SU(3))$, $KO^*(Sp(2))$ and $KO^*(G_2)$. Using the notation of the previous section, we describe the $KO^*(pt)$ -algebra structure of $KO^*(G)$, together with the action of ψ^k on it.

$$G = SU(3)$$

As seen in [16, Theorem 5.6], there exists an element $\zeta_{1,2} \in \widetilde{KO}^0(SU(3))$ such that $c(\zeta_{1,2}) = g^{-1}\beta(\lambda_1)\beta(\lambda_2)$. It follows from this and Proposition 7(1) that

(3.1)
$$\widetilde{K}^*(SU(3)) = T\langle \beta(\lambda_1) \rangle \oplus N\langle g^{-1}\beta(\lambda_1)\beta(\lambda_2) \rangle$$

Theorem 9. As a Z-graded module,

$$\widetilde{KO}^*(SU(3)) = r(\widetilde{K}^*(S^0)\{\beta(\lambda_1)\}) \oplus \widetilde{KO}^*(S^0)\{\zeta_{1,2}\}.$$

More precisely,

$$\begin{split} \widetilde{KO}^0(SU(3)) &= Z\{\zeta_{1,2}\}, \\ \widetilde{KO}^{-1}(SU(3)) &= Z/(2)\{\eta\zeta_{1,2}\} \oplus Z\{r(\beta(\lambda_1))\}, \\ \widetilde{KO}^{-2}(SU(3)) &= Z/(2)\{\eta^2\zeta_{1,2}\}, \\ \widetilde{KO}^{-3}(SU(3)) &= Z\{r(g\beta(\lambda_1))\}, \\ \widetilde{KO}^{-4}(SU(3)) &= Z\{\nu\zeta_{1,2}\}, \\ \widetilde{KO}^{-5}(SU(3)) &= Z\{r(g^2\beta(\lambda_1))\}, \\ \widetilde{KO}^{-6}(SU(3)) &= 0, \\ \widetilde{KO}^{-7}(SU(3)) &= Z\{r(g^3\beta(\lambda_1))\}. \end{split}$$

Its $\widetilde{KO}^*(S^0)$ -module structure is given by

$$\eta \cdot r(g^i \beta(\lambda_1)) = 0, \quad \nu \cdot r(g^i \beta(\lambda_1)) = 2r(g^{i+2} \beta(\lambda_1)) \quad and$$

$$\sigma \cdot r(g^i \beta(\lambda_1)) = r(g^{i+4} \beta(\lambda_1)).$$

Its multiplicative structure is given by

$$r(g^{i}\beta(\lambda_{1})) \cdot r(g^{j}\beta(\lambda_{1})) = (-1)^{j}r(g^{i+j+1})\zeta_{1,2},$$

 $r(g^{i}\beta(\lambda_{1})) \cdot \zeta_{1,2} = 0$ and $\zeta_{1,2}^{2} = 0.$

The action of ψ^k on $\widetilde{KO}^*(SU(3))$ is given by

$$\psi^k(r(g^i\beta(\lambda_1))) = \begin{cases} k^{i+2}r(g^i\beta(\lambda_1)) & \text{if } i \equiv 0 \pmod{2} \\ k^{i+3}r(g^i\beta(\lambda_1)) & \text{if } i \equiv 1 \pmod{2} \end{cases}$$
and
$$\psi^k(\zeta_{1,2}) = k^4\zeta_{1,2}.$$

Proof. The additive structure follows from (3.1) and Lemmas 4, 5. For the $\widetilde{KO}^*(S^0)$ -module structure, we have

$$\eta \cdot r(g^{i}\beta(\lambda_{1})) = r(g^{i}\beta(\lambda_{1}))\eta$$

$$= r(g^{i}\beta(\lambda_{1}) \cdot c(\eta)) \quad \text{by (2.1b)}$$

$$= 0 \quad \text{since } c(\eta) = 0 \text{ by (2.3a)}$$

and the other equalities are obtained similarly.

For the multiplicative structure, we have

$$\begin{split} r(g^{i}\beta(\lambda_{1})) \cdot r(g^{j}\beta(\lambda_{1})) &= r(g^{i}\beta(\lambda_{1}) \cdot cr(g^{j}\beta(\lambda_{1})) & \text{by (2.1b)} \\ &= r(g^{i}\beta(\lambda_{1}) \cdot (1+t)(g^{j}\beta(\lambda_{1}))) & \text{by (2.1a)} \\ &= r(g^{i}\beta(\lambda_{1}) \cdot (g^{j}\beta(\lambda_{1}) + (-1)^{j}g^{j}\beta(\lambda_{2}))) & \text{since } t(\beta(\lambda_{1})) = \beta(\lambda_{2}) \\ &= r(g^{i+j}\beta(\lambda_{1})^{2}) + (-1)^{j}r(g^{i+j}\beta(\lambda_{1})\beta(\lambda_{2})) \\ &= (-1)^{j}r(g^{i+j+1}g^{-1}\beta(\lambda_{1})\beta(\lambda_{2})) & \text{since } \beta(\lambda_{1})^{2} = 0 \\ &= (-1)^{j}r(g^{i+j+1})\zeta_{1,2} & \text{by (2.1b) and the definition of } \zeta_{1,2} \end{split}$$

and the other equalities are obtained similarly.

For the action of ψ^k , we have

$$c(\psi^{k}r)(g^{i}\beta(\lambda_{1})))$$

$$= \psi^{k}(cr(g^{i}\beta(\lambda_{1})))$$

$$= \psi^{k}(g^{i}\beta(\lambda_{1}) + (-1)^{i}g^{i}\beta(\lambda_{2}))$$

$$= k^{i}g^{i}\left(\frac{k^{2}(k+1)}{2}\beta(\lambda_{1}) - \frac{k^{2}(k+1)}{2}\beta(\lambda_{2})\right)$$

$$+ (-1)^{i}k^{i}g^{i}\left(-\frac{k^{2}(k-1)}{2}\beta(\lambda_{1}) + \frac{k^{2}(k+1)}{2}\beta(\lambda_{2})\right)$$
by (1.2) and Theorem 1(i)
$$= \frac{k^{i+2}(k+1-(-1)^{i}k+(-1)^{i})}{2}(g^{i}\beta(\lambda_{1}) + (-1)^{i}g^{i}\beta(\lambda_{2}))$$

$$= c\left(\frac{k^{i+2}(k+1-(-1)^{i}k+(-1)^{i})}{2}r(g^{i}\beta(\lambda_{1}))\right).$$

By examining the behavior of $c: \widetilde{KO}^{-1-2i}(SU(3)) \to \widetilde{K}^{-1-2i}(SU(3))$, we see that this gives the first equality. The second equality follows similarly, and the proof is completed.

$$G = Sp(2)$$

It follows from Proposition 7(2) that

$$(3.2) \quad \widetilde{K}^*(Sp(2)) = N\langle g^2\beta(\mu_1')\rangle \oplus N\langle \beta(\mu_2')\rangle \oplus N\langle g^2\beta(\mu_1')\beta(\mu_2')\rangle.$$

Theorem 10. As a KO*(pt)-module (but not as a ring),

$$KO^*(Sp(2)) = KO^*(pt) \otimes \Lambda_{\mathbf{Z}}(\beta_{\mathbf{H}}(\widehat{\mu'_1}), \beta_{\mathbf{R}}(\widehat{\mu'_2})).$$

Its multiplicative structure is given by

$$\beta_{\mathbf{H}}(\widehat{\mu_1'})^2 = \eta \sigma \cdot \beta_{\mathbf{R}}(\mu_2')$$
 and $\beta_{\mathbf{R}}(\widehat{\mu_2'})^2 = 0$.

The action of ψ^k on $\widetilde{KO}^*(Sp(2))$ is given by

$$\begin{split} \psi^{k}(\beta_{H}(\widehat{\mu'_{1}})) &= \frac{k^{4}(k^{2}+2)}{3}\beta_{H}(\widehat{\mu'_{1}}) - \frac{k^{4}(k^{2}-1)}{12}\nu\beta_{R}(\widehat{\mu'_{2}}), \\ \psi^{k}(\beta_{R}(\widehat{\mu'_{2}})) &= -\frac{2k^{2}(k^{2}-1)}{3}\nu\sigma^{-1}\beta_{H}(\widehat{\mu'_{1}}) + \frac{k^{2}(2k^{2}+1)}{3}\beta_{R}(\widehat{\mu'_{2}}), \\ \psi^{k}(\beta_{H}(\widehat{\mu'_{1}})\beta_{R}(\widehat{\mu'_{2}})) &= k^{8}\beta_{H}(\widehat{\mu'_{1}})\beta_{R}(\widehat{\mu'_{2}}). \end{split}$$

Proof. It follows from (3.2) and Lemma 5 that, as a $\widetilde{KO}^*(S^0)$ -module,

$$(3.3) \quad \widetilde{KO}^*(Sp(2)) = \widetilde{KO}^*(S^0) \{ \beta_{\mathbf{H}}(\widehat{\mu_1'}) \} \oplus \widetilde{KO}^*(S^0) \{ \beta_{\mathbf{R}}(\widehat{\mu_2'}) \} \\ \oplus \widetilde{KO}^*(S^0) \{ \beta_{\mathbf{H}}(\widehat{\mu_1'}) \beta_{\mathbf{R}}(\widehat{\mu_2'}) \}.$$

So the first statement follows.

For the multiplicative structure, the first equality is a consequence of the second relation of (2.12). It remains to prove the second equality. In view of the first relation of (2.12), we have to determine $\lambda^2(\beta_R(\widehat{\mu'_2}))$. For this purpose, since $c : \widetilde{KO}^{-1}(Sp(2)) \to \widetilde{K}^{-1}(Sp(2))$ is a monomorphism of λ -rings (compare (3.3) with (3.2)), it suffices to compute $\lambda^2(\beta(\mu'_2))$. We quote from Theorem 2(i) with k=2 that

$$\psi^2(\beta(\mu_2')) = -16\beta(\mu_1') + 12\beta(\mu_2').$$

Using the formula $\psi^2(x) - x^2 + 2\lambda^2(x) = 0$ for $x \in K(X)$ (see [2]) and the relation $\beta(\mu_2')^2 = 0$, we have

$$\lambda^{2}(\beta(\mu_{2}')) = 8\beta(\mu_{1}') - 6\beta(\mu_{2}').$$

By (2.12), since $2\eta = 0$, this gives the second equality. For the action of ψ^k , we have

$$\begin{split} c\psi^k(\beta_{\pmb{H}}(\widehat{\mu_1'})) &= \psi^k c(\beta_{\pmb{H}}(\widehat{\mu_1'})) \\ &= \psi^k(g^2\beta(\mu_1')) \\ &= \psi^k(g)^2 \psi^k(\beta(\mu_1')) \\ &= (kg)^2 \Big(\frac{k^2(k^2+2)}{3}\beta(\mu_1') - \frac{k^2(k^2-1)}{6}\beta(\mu_2')\Big) \\ &\quad \text{by (1.2) and Theorem 2(i)} \\ &= \frac{k^4(k^2+2)}{3}g^2\beta(\mu_1') - \frac{k^4(k^2-1)}{6}g^2\beta(\mu_2') \\ &= c\Big(\frac{k^4(k^2+2)}{3}\beta_{\pmb{H}}(\widehat{\mu_1'}) - \frac{k^4(k^2-1)}{12}\nu\beta_{\pmb{R}}(\widehat{\mu_2'})\Big) \quad \text{by (2.3a)}. \end{split}$$

Since $c: \widetilde{KO}^{-5}(Sp(2)) \to \widetilde{K}^{-5}(Sp(2))$ is injective (compare (3.3) with (3.2)), this gives the first equality. The other equalities are obtained similarly, and the proof is completed.

 $G=G_2$

It follows from Proposition 7(3) that

$$\widetilde{K}^*(G_2) = N\langle \beta(\rho_1) \rangle \oplus N\langle \beta(\rho_2) \rangle \oplus N\langle \beta(\rho_1)\beta(\rho_2) \rangle.$$

Theorem 11. As a $KO^*(pt)$ -module (but not as a ring),

$$KO^*(G_2) = KO^*(pt) \otimes \Lambda_{\mathbf{Z}}(\beta_{\mathbf{R}}(\widehat{\rho_1}), \beta_{\mathbf{R}}(\widehat{\rho_2})).$$

Its multiplicative structure is given by

$$\beta_{\mathbf{R}}(\widehat{\rho_1})^2 = \eta \cdot \beta_{\mathbf{R}}(\widehat{\rho_1}) + \eta \cdot \beta_{\mathbf{R}}(\widehat{\rho_2}) = \beta_{\mathbf{R}}(\widehat{\rho_2})^2.$$

The action of ψ^k on $\widetilde{KO}^*(G_2)$ is given by

$$\begin{split} \psi^k(\beta_{\mathbf{R}}(\widehat{\rho_1})) &= \frac{k^2(k^4+5)}{6} \beta_{\mathbf{R}}(\widehat{\rho_1}) - \frac{k^2(k^4-1)}{30} \beta_{\mathbf{R}}(\widehat{\rho_2}), \\ \psi^k(\beta_{\mathbf{R}}(\widehat{\rho_2})) &= -\frac{25k^2(k^4-1)}{6} \beta_{\mathbf{R}}(\widehat{\rho_1}) + \frac{k^2(5k^4+1)}{6} \beta_{\mathbf{R}}(\widehat{\rho_2}), \\ \psi^k(\beta_{\mathbf{R}}(\widehat{\rho_1})\beta_{\mathbf{R}}(\widehat{\rho_2})) &= k^8 \beta_{\mathbf{R}}(\widehat{\rho_1})\beta_{\mathbf{R}}(\widehat{\rho_2}). \end{split}$$

Proof. It follows from (3.4) and Lemma 5 that, as a $\widetilde{KO}^*(S^0)$ -module,

$$(3.5) \quad \widetilde{KO}^*(G_2) = \widetilde{KO}^*(S^0) \{ \beta_{\mathbf{R}}(\widehat{\rho_1}) \} \oplus \widetilde{KO}^*(S^0) \{ \beta_{\mathbf{R}}(\widehat{\rho_2}) \} \\ \oplus \widetilde{KO}^*(S^0) \{ \beta_{\mathbf{R}}(\widehat{\rho_1}) \beta_{\mathbf{R}}(\widehat{\rho_2}) \}.$$

So the first statement follows.

For the multiplicative structure, in view of the first relation of (2.12), we have to determine $\lambda^2(\beta_R(\widehat{\rho_i}))$ for i=1,2. For this purpose, since $c\colon \widetilde{KO}^{-1}(G_2)\to \widetilde{K}^{-1}(G_2)$ is a monomorphism of λ -rings (compare (3.5) with (3.4)), it suffices to compute $\lambda^2(\beta(\rho_i))$ for i=1,2. We quote from Theorem 3(i) with k=2 that

$$\psi^{2}(\beta(\rho_{1})) = 14\beta(\rho_{1}) - 2\beta(\rho_{2}),$$

$$\psi^{2}(\beta(\rho_{2})) = -250\beta(\rho_{1}) + 54\beta(\rho_{2}).$$

Using the formula $\psi^2(x) - x^2 + 2\lambda^2(x) = 0$ and the relation $\beta(\rho_i)^2 = 0$, we have

$$\lambda^{2}(\beta(\rho_{1})) = -7\beta(\rho_{1}) + \beta(\rho_{2}),$$

$$\lambda^{2}(\beta(\rho_{2})) = 125\beta(\rho_{1}) - 27\beta(\rho_{2}).$$

By (2.12), since $2\eta = 0$, these give the stated equalities.

The equalities describing the action of ψ^k are obtained in the same way as in the proof of Theorem 10.

4. The rings $KO^*(SU(2n+1)/SO(2n+1))$ and $KO^*(SU(2n)/Sp(n))$. Lemma 6 together with Proposition 8 can be used to compute the KO-theory of compact symmetric spaces SU(2n+1)/SO(2n+1) and SU(2n)/Sp(n). To begin with, the following result is in [1, Remark 3.63 and Theorems 7.3, 7.6, 7.7].

Proposition 12. For G = SU(n+1), SO(2n+1) and Sp(n), the action of t on R(G) is given by:

(1) In $R(SU(n+1)) = \mathbf{Z}[\lambda_1, \dots, \lambda_n]$ (where $\lambda_1 = [\mathbf{C}^{n+1}]$ and $\lambda_k = \lambda^k(\lambda_1)$),

$$t(\lambda_k) = \lambda_{n+1-k}$$
 for $k = 1, \ldots, n$.

(2) In $R(SO(2n+1)) = \mathbf{Z}[\mu_1, \dots, \mu_n]$ (where $\mu_1 = [(\mathbf{R}^{2n+1})^C]$ and $\mu_k = \lambda^k(\mu_1)$),

$$t(\mu_k) = \mu_k$$
 for $k = 1, \ldots, n$

where μ_k is real.

(3) In $R(Sp(n)) = Z[\mu'_1, \dots, \mu'_n]$ (where $\mu'_1 = [(H^n)_C]$ and $\mu'_k = \lambda^k(\mu'_1)$),

$$t(\mu'_k) = \mu'_k$$
 for $k = 1, \ldots, n$

where μ'_{2l-1} is quaternionic and μ'_{2l} is real.

The K-rings of SU(2n+1)/SO(2n+1) and SU(2n)/Sp(n) were determined by H. Minami [12]. We recall his result. Let G be a compact 1-connected Lie group. Suppose that there is an automorphism $\sigma\colon G\to G$ such that $\sigma^2=1_G$. Then the fixed point set $G^\sigma=\{x\in G|\sigma(x)=x\}$ forms a closed connected subgroup of G, and the coset space G/G^σ becomes a compact symmetric space (e.g., see [11, Chapter 3, §6]). Consider the induced homomorphism $\sigma^*\colon R(G)\to R(G)$ and let $\sigma^*(\lambda)=\lambda'$, where λ is a representation of G. Then $\dim \lambda=\dim \lambda'$ (=n) and $\lambda |G^\sigma=\lambda'|G^\sigma$. So we have a map $f_\lambda\colon G/G^\sigma\to U(n)$ defined by

(4.1)
$$f_{\lambda}(xG^{\sigma}) = \lambda(x)\lambda'(x)^{-1} \quad \text{for} \quad xG^{\sigma} \in G/G^{\sigma}.$$

Let $\iota_n: U(n) \to U$ be the canonical injection. Then the composite $\iota_n f_{\lambda}$ gives rise to a homotopy class $\beta(\lambda - \lambda')$ in $[G/G^{\sigma}, U] = \widetilde{K}^{-1}(G/G^{\sigma})$.

Let $\sigma = \sigma_{2n+1} \colon SU(2n+1) \to SU(2n+1)$ be the involution defined as in (2.10). Then, in the notation of Proposition 12,

(4.2)
$$\sigma^*(\lambda_k) = \lambda_{2n+1-k} \quad \text{and} \quad i_C^*(\lambda_k) = \mu_k = i_C^*(\lambda_{2n+1-k})$$
 for $k = 1, \dots, n$.

Similarly, let $\sigma = \sigma_n' \colon SU(2n) \to SU(2n)$ be the involution defined as in (2.11). Then

(4.3)
$$\sigma^*(\lambda_k) = \lambda_{2n-k} \quad \text{and} \quad i_{\mathbf{C'}}(\lambda_k) = \mu'_k = i_{\mathbf{C'}}(\lambda_{2n-k})$$
 for $k = 1, \dots, n$.

Proposition 13. (1) ([12, Proposition 8.1]) As an algebra over $K^*(pt)$,

$$K^*(SU(2n+1)/SO(2n+1))$$

$$= K^*(pt) \otimes \Lambda_{\mathbf{Z}}(\beta(\lambda_1 - \lambda_{2n}), \cdots, \beta(\lambda_n - \lambda_{n+1})).$$

(2) ([12, Proposition 6.1]) As an algebra over $K^*(pt)$,

$$K^*(SU(2n)/Sp(n)) = K^*(pt) \otimes \Lambda_{\mathbf{Z}}(\beta(\lambda_1 - \lambda_{2n-1}), \dots, \beta(\lambda_{n-1} - \lambda_{n+1})).$$

We can now deduce our main result.

Theorem 14. (1) As an algebra over $KO^*(pt)$,

$$KO^*(SU(2n+1)/SO(2n+1)) = KO^*(pt) \otimes \Lambda_{\mathbf{Z}}(\lambda_{1,2n}, \dots, \lambda_{n,n+1})$$

where $\lambda_{k,2n+1-k} \in \widetilde{KO}^1(SU(2n+1)/SO(2n+1))$ is a unique element such that

$$c(\lambda_{k,2n+1-k}) = g^{-1}\beta(\lambda_k - \lambda_{2n+1-k}).$$

(2) As an algebra over $KO^*(pt)$,

$$KO^*(SU(2n)/Sp(n)) = KO^*(pt) \otimes \Lambda_{\mathbf{Z}}(\lambda'_{1,2n-1}, \dots, \lambda'_{n-1,n+1})$$

where $\lambda'_{2l-1,2n-2l+1} \in \widetilde{KO}^{-3}(SU(2n)/Sp(n))$ is a unique element such that

$$c(\lambda'_{2l-1,2n-2l+1}) = g\beta(\lambda_{2l-1} - \lambda_{2n-2l+1}),$$

and $\lambda'_{2l,2n-2l} \in \widetilde{KO}^1(SU(2n)/Sp(n))$ is a unique element such that

$$c(\lambda'_{2l,2n-2l}) = g^{-1}\beta(\lambda_{2l} - \lambda_{2n-2l}).$$

Proof. We first show (1). Consider λ_k : $SU(2n+1) \to U(\binom{2n+1}{k})$ for $k=1,\ldots,n$. By (4.2), $i_C^*(\lambda_k)=\mu_k$ and by Proposition 12(2), $\mu_k \in R(SO(2n+1))$ is real, i.e., there is a (unique) $\widehat{\mu_k} \in RO(SO(2n+1))$ such that $c(\widehat{\mu_k})=\mu_k$. Therefore, in the diagram

$$SO(2n+1) \xrightarrow{i_C} SU(2n+1) \xrightarrow{\pi_C} SU(2n+1)/SO(2n+1)$$

$$(4.4) \qquad \downarrow^{\kappa_{2n+1,k}\widehat{\mu_k}} \qquad \downarrow^{\iota_{2n+1,k}\lambda_k} \qquad \lambda_{k,2n+1-k} \downarrow \qquad \searrow^{\beta(\lambda_k - \lambda_{2n+1-k})}$$

$$O \xrightarrow{i_C} \qquad U \xrightarrow{\pi_C} \qquad U/O \xrightarrow{c_1} U$$

(where $\kappa_{2n+1,k}\colon O(\binom{2n+1}{k})\to O$ and $\iota_{2n+1,k}\colon U(\binom{2n+1}{k})\to U$ are the canonical injections), the left square is commutative. So we have a map $\lambda_{k,2n+1-k}\colon SU(2n+1)/SO(2n+1)\to U/O$ which makes the middle square commute. Indeed, it is defined by

(4.5)
$$\lambda_{k,2n+1-k}(xSO(2n+1)) = (\iota_{2n+1,k}\lambda_k)(x)O$$

for $xSO(2n+1) \in SU(2n+1)/SO(2n+1)$. Since $\sigma_{2n+1}^*(\lambda_k) = \lambda_{2n+1-k} = t(\lambda_k)$ by (4.2) and Proposition 12(1), the diagram

$$SU(2n+1) \xrightarrow{\lambda_k} U(\binom{2n+1}{k}) \xrightarrow{\iota_{n,k}} U$$

$$\sigma_{2n+1} \downarrow \qquad \qquad \downarrow \sigma_{2n+1,k} \qquad \downarrow \sigma_{\infty}$$

$$SU(2n+1) \xrightarrow{\lambda_k} U(\binom{2n+1}{k}) \xrightarrow{\iota_{n,k}} U$$

(where $\sigma_{2n+1,k}$ is defined as in (2.10)) is commutative. So the right triangle in (4.4) is commutative:

$$(c_{1}\lambda_{k,2n+1-k})(xSO(2n+1))$$

$$= (\iota_{2n+1,k}\lambda_{k})(x)\sigma_{\infty}((\iota_{2n+1,k}\lambda_{k})(x))^{-1} \quad \text{by (2.9) and (4.5)}$$

$$= (\iota_{2n+1,k}\lambda_{k})(x)(\iota_{2n+1,k}\lambda_{k}\sigma_{2n+1})(x)^{-1}$$

$$= \iota_{2n+1,k}(\lambda_{k}(x)(\lambda_{k}\sigma_{2n+1})(x)^{-1})$$

$$= \beta(\lambda_{k} - \lambda_{2n+1-k})(xSO(2n+1)) \quad \text{by (4.1) and (4.2)}.$$

By Proposition 8(ii), this implies that $c(\lambda_{k,2n+1-k}) = g^{-1}\beta(\lambda_k - \lambda_{2n+1-k})$, where we regard $\lambda_{k,2n+1-k}$ as an element of $\widetilde{KO}^1(SU(2n+1)/SO(2n+1)) =$

[SU(2n+1)/SO(2n+1), U/O]. By this equality and Proposition 13(1), we can apply Lemma 6 to the case X = SU(2n+1)/SO(2n+1) and obtain the $KO^*(pt)$ -module structure of $KO^*(SU(2n+1)/SO(2n+1))$. For the multiplicative structure, as is discussed at the end of section 2, whether $\lambda_{k,2n+1-k}^2$ is zero or not is a remaining question. Fortunately it says in Crabb [6, Example (6.6)] that $\lambda_{k,2n+1-k}^2 = 0$ since $\lambda_{k,2n+1-k}$ has degree 1 and $1 \equiv -3 \pmod{4}$. Hence (1) follows.

We next show (2). Consider λ_k : $SU(2n) \to U(\binom{2n}{k})$ for $k = 1, \ldots, n-1$. By (4.3), $i_{C'}^*(\lambda_k) = \mu_k'$. From now on, our argument is divided into two cases.

Suppose that k is odd, i.e., k=2l-1 for some $l \geq 1$. Then, by Proposition 12(3), $\mu'_k \in R(Sp(n))$ is quaternionic, i.e., there is a (unique) $\widehat{\mu'_k} \in RSp(Sp(n))$ such that $c'(\widehat{\mu'_k}) = \mu'_k$. Therefore, in the diagram

$$(4.6) \qquad \begin{array}{c} Sp(n) \xrightarrow{i_{C'}} SU(2n) \xrightarrow{\pi_{C'}} SU(2n)/Sp(n) \\ \downarrow \iota_{2n,k}\lambda_k & \downarrow \lambda'_{k,2n-k} & \searrow \beta(\lambda_k - \lambda_{2n-k}) \\ Sp \xrightarrow{i_{C'}} & U \xrightarrow{\pi_{C'}} & U/Sp \xrightarrow{c-3} U \end{array}$$

(where $\xi_{2n,k}$: $Sp(\binom{2n}{k}/2) \to Sp$ and $\iota_{2n,k}$: $U(\binom{2n}{k}) \to U$ are the canonical injections), the left square is commutative. So we have a map $\lambda'_{k,2n-k}$: $SU(2n)/Sp(n) \to U/Sp$ which makes the middle square commute. Since ${\sigma'_n}^*(\lambda_k) = \lambda_{2n-k} = t(\lambda_k)$ by (4.3) and Proposition 12(1) and since $j\alpha j^{-1} = \bar{\alpha}$ for $\alpha \in C$, the diagram

$$SU(2n) \xrightarrow{\lambda_k} U(\binom{2n}{k}) \xrightarrow{\iota_{n,k}} U$$

$$\sigma'_n \downarrow \qquad \qquad \downarrow \sigma'_{n,k} \qquad \downarrow \sigma'_{\infty}$$

$$SU(2n) \xrightarrow{\lambda_k} U(\binom{2n}{k}) \xrightarrow{\iota_{n,k}} U$$

(where $\sigma'_{n,k}$ is defined as in (2.11)) is commutative and so the right triangle in (4.6) is commutative. By Proposition 8(vi), this implies that $c(\lambda'_{k,2n-k}) = g\beta(\lambda_k - \lambda_{2n-k})$, where $\lambda'_{k,2n-k} \in \widetilde{KO}^{-3}(SU(2n)/Sp(n)) = [SU(2n)/Sp(n), U/Sp].$

Suppose that k is even, i.e., k=2l for some $l \geq 1$. Then, by Proposition 12 (3), $\mu'_k \in R(Sp(n))$ is real, i.e., there is a (unique) $\widehat{\mu'_k} \in RO(Sp(n))$

such that $c(\widehat{\mu_k'}) = \mu_k'$. Therefore, in the diagram

$$(4.7) \qquad \begin{array}{c} Sp(n) \xrightarrow{i_{C'}} SU(2n) \xrightarrow{\pi_{C'}} SU(2n)/Sp(n) \\ \kappa_{2n,k}\widehat{\mu_k^{\prime}} \Big\downarrow \qquad \qquad \downarrow_{\iota_{2n,k}}\lambda_k \qquad \qquad \downarrow_{\lambda_{k,2n-k}^{\prime}} \searrow_{\beta(\lambda_k-\lambda_{2n-k})} \\ O \xrightarrow{i_{C}} U \xrightarrow{\pi_{C}} U/O \xrightarrow{c_1} U \end{array}$$

(where $\kappa_{2n,k}$: $O(\binom{2n}{k}) \to O$ is the canonical injection), the left square is commutative. So we have a map $\lambda'_{k,2n-k}$: $SU(2n)/Sp(n) \to U/O$ which makes the middle square commute. Since $\sigma'_n^*(\lambda_k) = \lambda_{2n-k} = t(\lambda_k)$ by (4.3) and Proposition 12(1), the diagram

$$SU(2n) \xrightarrow{\lambda_k} U(\binom{2n}{k}) \xrightarrow{\iota_{n,k}} U$$

$$\sigma'_n \downarrow \qquad \qquad \downarrow \sigma_{2n,k} \qquad \downarrow \sigma_{\infty}$$

$$SU(2n) \xrightarrow{\lambda_k} U(\binom{2n}{k}) \xrightarrow{\iota_{n,k}} U$$

(where $\sigma_{2n,k}$ is defined as in (2.10)) is commutative and so the right triangle in (4.7) is commutative. By Proposition 8(ii), this implies that $c(\lambda'_{k,2n-k}) = g^{-1}\beta(\lambda_k - \lambda_{2n-k})$, where $\lambda'_{k,2n-k} \in \widetilde{KO}^1(SU(2n)/Sp(n))$.

By these equalities and Proposition 13(2), we can apply Lemma 6 to the case X = SU(2n)/Sp(n). The rest is quite similar to the proof of (1), and (2) follows.

Remark. We have no good reasons to assert that, for example, $\lambda_{k,2n+1-k}$ lies in $\widetilde{KO}^1(SU(2n+1)/SO(2n+1))$ and does not lie in $\widetilde{KO}^{8m+1}(SU(2n+1)/SO(2n+1))$ for some $m \neq 0$. But, since the CW-complex structure of SU(2n+1)/SO(2n+1) is known for small n, one can compute $\widetilde{KO}^*(SU(2n+1)/SO(2n+1))$ by using cofibre sequences. Only such observation justifies our assertion.

REFERENCES

- [1] J. F. Adams: Lectures on Lie Groups, Math. Lecture Note Ser., W. A. Benjamin, 1969.
- [2] J. F. ADAMS: Vector fields on spheres, Ann. of Math. 75 (1962), 603-632.
- [3] M. F. ATIYAH and F. HIRZEBRUCH: Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math., vol. III, Amer. Math. Soc., 1961, 7-38.

- [4] R. BOTT: Lectures on K(X), Math. Lecture Note Ser., W. A. Benjamin, 1969.
- [5] Séminaire H. CARTAN: Périodicité des groupes d'homotopie stables des groupes classiques, d'après Bott (en collaboration avec J. C. Moore), (1959/60), W. A. Benjamin, 1967.
- [6] M. C. CRABB: Z/(2)-Homotopy Theory, London Math. Soc. Lecture Note Ser., no. 44, Cambridge Univ. Press, 1980.
- [7] E. DYER and R. LASHOF: A topological proof of the Bott periodicity theorems, Ann. Mat. Pure Appl. 54 (1961), 231-254.
- [8] L. HODGKIN: On the K-theory of Lie groups, Topology 6 (1967), 1-36.
- [9] D. HUSEMOLLER: Fibre Bundles, 2nd edition, Graduate Texts in Math., vol. 20, Springer, 1974.
- [10] W. S. MASSEY: Exact couples in algebraic topology, I and II, Ann. of Math. 56 (1952), 363-396.
- [11] M. MIMURA and H. TODA: Topology of Lie Groups, I and II, Transl. Math. Monog., vol. 91, Amer. Math. Soc., 1991.
- [12] H. MINAMI: K-groups of symmetric spaces I, Osaka J. Math. 12 (1975), 623-634.
- [13] H. MINAMI: On the K-theory of SO(n), Osaka J. Math. 21 (1984), 789-808.
- [14] H. MINAMI: The real K-groups of SO(n) for n = 3, 4 and 5 mod 8. Osaka J. Math. 25 (1988), 185-211.
- [15] H. MINAMI: On the K-theory of PE7, Osaka J. Math. 30 (1993), 235-266.
- [16] R. M. SEYMOUR: The real K-theory of Lie groups and homogeneous spaces, Quart. J. Math. Oxford (2) 24 (1973), 7-30.
- [17] T. WATANABE: Chern characters on compact Lie groups of low rank, Osaka J. Math. 22 (1985), 463-488.
- [18] T. WATANABE: Adams operations in the connective K-theory of compact Lie groups, Osaka J. Math. 23 (1986), 617-632.
- [19] G. W. WHITEHEAD: Elements of Homotopy Theory, Graduate Texts in Math., vol. 61, Springer, 1978.
- [20] I. YOKOTA: Groups and Representations, Shōkabō, 1973 (in Japanese).

DEPARTMENT OF APPLIED MATHEMATICS
OSAKA WOMEN'S UNIVERSITY
2-1 DAISEN, SAKAI, OSAKA 590, JAPAN
E-mail: takashiw@appmath.osaka-wu.ac.jp

(Received April 24, 1994)