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A NON-IMMERSION RESULT FOR
LENS SPACES L*(2™)

BErRNARD JUNOD

1. Introduction. The lens space L™(2™) is the quotient of the
sphere S?"*! by the free action of the cyclic group Z/2™ given by:

Ckz = (CkZO,Ckzl, e ,g'kzn),

where ¢ = exp(im/2™1) is the generator of Z/2™, and z = (20,21,...,
z) € C™*1is such that "7 4 |2:|% = 1. A classical question is to determine
the smallest integer k& such that L™(2™) immerses into R*"*'t*_In [3], we
have seen that for m sufficiently large, & is greater or equal than 2n—2a(n),
where a(n) denotes the number of 1 in the dyadic expansion of n. More
precisely, we have proved the following theorem

Theorem 1.1. For m > [log, n] + [n/2], L™(2™) does not immerse
into R0,

Here [z] denotes the integer part of 2. Some other results have been
published in the same direction, (see [1], [5], [6] and [7]). In this note, we
are completing theorem 1.1 for the case m < [log, n] 4+ [n/2] — 1. Let {(n)
be the integer

I(n) = max{l <i<n -1 such that (n +7ll+ 1) #0 (1nod4)}.
We prove:

Theorem 1.2. Let m > 2.
a) Ifn #2541 and n > 2, L'(2™) does not immerse in R¥H1+24(),

by If n = 2° + 1, with s > 1, L™(2™) does not immerse into
R2n+2[(n) — R4n—4'

We apply theorem 1.2 to some particular values of n, and we obtain

Corollary 1.1. Letm > 2.
a) Ifn = 2% with s > 1, L™*(2™) does not immerse in R"71,
b) Ifn = 2542, withs >t > 1, L™(2™) does not immerse in R ™3,
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138 B. JUNOD

This improves for these two cases the results obtained by theorem 1.1.
Recalling that for n = 2%, the space L"(2™) immerses in R%", we note that
our result is the best possible for this case.

2. Preliminaries. In this section we establish some cohomology
properties of the spaces B(n, k) defined in [4] (see also [2]). This properties
will be used to prove theorem 1.2. We begin with a yesult about spherical
fibrations and recall that for any sphere bundle S* = E L. B there is long

exact sequence of H*(B;Z)-modules called the Gysin sequence (see [8]
p.143 or [9] p.356)
. — HY(B:2) & HYE;Z2) 2 H*(B; Z) <
H"‘H(B;Z) _

where e is the Euler-class of the fibration. In particular we have:

Lemma 2.1. If in the above spherical fibration, B is connected and
the Fuler-class e is zero, then

H*(E,Z)=2 H*(B:Z)®aU H*(B; Z)

as an H*(B; Z)-module, where a is an element of H*(E; Z) such that ¢(a)
is a generator of H°(B;Z) = Z.

The proof of this lemma is straightforward.
We now turn to the space B(n,k) which by definition is the pull-back
space of the diagram

BSO(k)
BU(n) — BSO(2n)
Inductively we can identify the space B(n,k) with the pull-back of the

diagram

BSO(k)

B(n,k+1) — BSO(k + 1)
Let be Vi, 2n—2; the Stiefel manifold SO(2r)/SO(2j), and let

(21) VZn.’Zn—Zj _l]—’ B(naZJ) L BU(")
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be the fibration induced from
Vaman—2j 2+ BSO(2j) — BSO(2n)

by the canonical map BU(n) 2 BSO(2n).
Let u; be the generator of H'Zj(‘f"gn,gn_g_.,-; Z) = Z such that

l;(e.)) = —QU'ja

where ¢; € H*(BSO(25); Z) is the universal Euler-Poincaré class. By the

pull-back property, there is a map BU(j)i B(n,2j) and a commutative
diagramm
BU(5) .
N
o\ B(n.2j) — BSO(2j)
f2_1
7|
BU(n) — BSO(2n)

where all the others maps are canonical maps.

Lemma 2.2. For everyn > 1 and 1 < 7 < n — 1, there is an
element a; in the abelian group H¥(B(n,2j); Z) such that

f2;(e5) = p"(e;) — 2a;.  i1(a;) = uj,  h7(a;) = 0.

Proof. There is an exact sequence coming from the Serre spectral
sequence of the fibration (2.1)

0 — H¥(BU(n); Z) 2~ H¥(B(n,2)); Z)
sz("anﬂn—?.j;z) — 0

since Vap2n-2; is (2§ — 1)-connected and BU(n) is 1-connected without
cohomology in odd degree. Let z € H¥(B(n,2j); Z) be such that i*(z) =
u;. Since the map g7} is an isomorphism in degree < 2j we can replace z
by a; = z—p™((g7)7'(h*(z))) so that h*(a;) = 0. The above exact sequence
splits and we have an isomorphism

H¥(B(n,2j); Z) = im(p™)® Za; ¥ HY¥(BU(n); Z) ® Za;.

On the other hand h*(f3;(e;)) = r5(€;) = ¢; so f3;(e;) = p*(c;)+ ma;.
As 7((f5;(e5))) = 13(ej) = —2u; we see that m = ~2 and f3;(e;) =
p™(¢;) = 2a;.
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Let now
(2.2) S$™! — B(n,r—-1) 2= B(n,r)

be the spherical fibration induced from

S™~! — BSO(r - 1) — BSO(r)

by the map B(n,r) EiA BSO(r). We consider the Gysin sequence of (2.2)
which becomes, using lemma 2.2,

U(p*(c;)—2e;)

HY(B(n,2j); Z2) 2224
H¥(B(n,2j —1);2) — ---.

- — HY(B(n,2j); Z)

By exactness, p3;_;(p™(¢;)) = 2p3;_,(a;).

In the following, we note p3._;(a;) = b;, more generally, (PropPigpi0---
op3;—1)(a;) = b; and for simpicity (PkoPky10 -+ 0p3;_1)(p*(e;)) = ¢;. So
we have for every space B(n,k) a family of elements b;, [k/2] +1 < i <
n — 1, such that 2b; = ¢;. We can now give the additive structure of
H*(B(n,k); Z). This result already appears in [2] and [4].

Theorem 2.1. H*(B(n.k); Z) is a free Z-module determined by the
isomorphism

Zlerse) @ Alag,bigry v bny) if k=2t

(B(n, k) 2) = { | =
Z[C],...,Cd@A(bt.l.],...,bn_l) ifk=2t+1

where A(zy,+++,24,) ts the free abelian group generated by the elements

TiHTiy e Ti, 1<31<iz< - <ig<m.

Proof of theorem 2.1. We proceed by induction descending over k,
beginning with & = 2n — 1. In this case the result is valid since B(n,2n —
1) = BU(n —1). Next we examine the case k¥ = 2n — 2. Here we consider
the spherical fibration (2.2) with r = 2n—1. As H**~Y(BU(n—1); Z) = 0,
the Euler class of this fibration is 0 and the Gysin sequence splits into short
exact sequences

0 — H¥(BU(n —1);2) 222=% H2(B(n,2n — 2); Z)
H* 2t3(BU(n - 1);Z) — 0.
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In lemma 2.2 we have seen that
H™ 2(B(n,2n - 2); Z) 2 im(p*) @ Zan_,.

But im(p*) C im(p3,,_;) = ker(@), so the element ¢(a,—1) is a generator of
H°(BU(n-1); Z) = Z. Under the map p},_, we have a H*(BU(n—1); Z)-
module structure over H*(B(n,2n — 2); Z). With the help of lemma 2.1,
we can see that this structure is given by the isomorphism

H*(B(n,2n —2);Z) =2 H*(BU(n—1);Z)® an-1 U H*(BU(n—-1); Z)
= Z[cla v ’cn—l] ® A(a'n—l)

this achieves the proof in this case. Moreover the multiplicative structure
is well-known in this case, since

(n-1— 2an—l)2 = f;n—‘z(e?z—l) = f;n—‘z(Pn—l)
= p (1 (Pa-1)) = p*(ci_) — 2cn_2¢y)

_ 2
=Ch1

where P,_; is the (n — 1)*"-Pontrjagin class in H"~4(BSO(2n — 2); Z) or

in H4"=4(BSO(2n); Z). The relations used here are proved for example

in [8] (see also proof of lemma (2.3)). So we have a2_; = ¢p—1ap-1.

Now we suppose that the result is valid for r < & < 2n - 1. We
consider the Gysin sequence of the sphere bundle (2.2):

. — HY(B(n,r); Z2) 2= HY(B(n,r - 1);2) >
H ™Y B(n,r); Z) = HYB(n,r);2) — --- .
1) If r is odd, say r = 25 + 1, we prove exactly as above that
H*(B(n,2j); Z)= H*(B(n,2j+1): Z)& a; UH(B(n,2j + 1); Z)
= H*(B(n.2j+1); Z) ® A(a;)
o Z[cl,...,c_,'] ® Alaj,bjt1y...,bn_1).

Moreover the group homomorphism

Uy Z[cl,...,c,'_l,cJ- —'2(1_7'] ® Ala;,bj41,.0.,bn1)
— H*(B(n,25); Z)

defined by ¢,(z ® y) = z U y, is an isomorphism.
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We proceed by induction on n, beginning with n = j+ 1. In this case,
the morphism %, becomes

Yit1: Zery. ..y ci-1,¢5 — 2a5) @ Aa;) — H*(B(j+1,25); Z).
We have seen above that a? = ¢;c; in H*(B(j + 1,2§); Z), so
¢j = $ir1((e; — 205) @ 1+ 2(1 ® ;)
¢; = pin((cj — 2¢;)° ® 1)

and ¥;41 is surjective. As we have a bijection between the Z-module basis,
¥j4+1 is an isomorphism.

Suppose now that the result is true for n — 1, and let h: B(n—1,25) —
B(n,2j) the map induced by the pull-back property of B(n,2j). Let

A=Z[cr,.. . 621,65 ® A(aj bjt1,. ., bp—2)
and
B =2Z[c1,...,cj—1,¢; — 2a;] ® A(aj,bjt1,.-.,bn_2).

By definition of A* we have a short exact sequence
A
n h*
ker(h") — H*(B(n,27); Z) > H*(B(n - 1,2); Z)
where ker(h™) = AU b,_. We also have a Z-modules isomorphism

H*(B(n,2j); Z) 2 A AUby,_;.

If (z4)g>1 is the canonical Z-module basis of A, (4 U by_1)s>1 is a basis
of AUb,—1. Since h* is a ring homomorphism, we have the commutative
diagramm

B
’f"'nlBl/ \‘V"n—l |B
H*(B(n,25); Z) —~— H*(B(n — 1,2§); Z)

By the induction hypothesis, ¥,—_; is an isomorphism and so %, |B is
a monomorphism and there is a basis (y;),>1 of B, such that

Un(Yg) = g+ 2Ubp_y for ¢ > 1, with z; € A.
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As b2, = 0in H*(B(n,2j); Z), ¥n| B U b,_; is injective and ¥, (B U
bn—l) = A U bn—l-

2) If r is even, say r = 27, we know by lemma 2.2 that the Euler-
class of the spherical fibration (2.2) is the element ¢; — 2a; and since ¥, is
injective, we can say that the multiplication by the Euler-class is injective,
so the map ¢ = 0 in the Gysin sequence of (2.2) and we have the group
isomorphisms

H*(B(n,2] — 1), 2) & H*(B(n,2}); Z)/{¢; — 2a;)
= Z[cl,. . ,Cj_l] ® A(aj,b]-+1,. . -abn—l)-

We can now describe the multiplicative structure of H*(B(n,2j); Z)
as follows.

Lemma 2.3. Foreveryn>1and1<j<n—1, the element a; in
the abelian group H*(B(n,2j); Z) satisfies the relation

_min(2j,n—1)

(2.3) a} = aje; + (-1) Zj+1 (=1)"byegj—r-
=]

Proof. Recall that the universal Euler-Poincaré class e; €
H%(BS0(27); Z), satisfies the relation

2 _ p.
ﬁj——P]

where P; is the j*! universal Pontrjagin class in H%(BSO(2j); Z), and
that
. 9 ) . min(2j.n)
(P =c;+ (=1 ¥ (=1)2¢cojr
r=)+1
in H¥(BU(n); Z), here P; is the j* universal Pontrjagin class in
H*(BSO(2n); Z), (see [8]). From the definition of a; and the above rela-

tions, we see that
2 2 12
and

. min(27,n—1)
POn(P)) =+ (=17 32 (=1)2eep5-,
r=3+1
) . min(2j.n—1)
=24+ (=1Y Y (—1)dbregi.

r=j+1
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Since H*(B(n,2j); Z) has no torsion, the relation (2.3) is valid.

Using the relation (2.3) we can now give the Steenrod squares of the
mod 2 reduction of the elements a; in H*(B(n,2j); Z/2).

Theorem 2.2. For everyn > 1, every 1 < j < n — 1 and every
0 < k < j the following relation is valid in H*(B(n,2j); Z/2).

. k=1 P _
(24) SqZk(aj) = Z (‘I]»“ _ :)bk+_i—'rc~r + a;C.
r=max(0,k+j+1-n)

Proof. We proceed by an induction argument over n. We begin with
the case n = 1 where all relations are empty. Forn =2, j =1 and k =
or 1, so the only non trivial relation in H*(B(2,2); Z/2) is S¢*(a1) = a? =
ai¢; which is compatible with (2.4).

Now we suppose the result is valid for n > 2. First we observe that
(2.4) is still true for k+j < n —1in H*(B(n + 1,25); Z/2) since

HY(B(n+ 1,2j); 2/2) = HY(B(n,2j): 2/2)  q < 2n.

If £+ 7 > n, we consider the following diagram, where all the arrows are
canonical.

B(n,2j — 2) x CP™ » BSO(2j — 2) x CP*®

B(n +1,2j) — BSO(2§)

! |

BU(n)x CP*® —— BUn+1) — BSO(2n + 2)
In particular the next square is homotopy commutative

B(n,2j — 2) x CP® —  BSO(2j)
(2.5)
BU(n+1) — BSO(2n + 2)

and replacing if necessary B(n,2j—2)x CP* — BSO(2j) by a map homo-
topy equivalent, we can suppose that the diagramm (2.5) is commutative
since the map BSO(25) — BSO(2n + 2) is a fibration.
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So there is a map f: B(n,2j—2) X CP* — B(n+1,27) such that the
squares
B(n,2j — 2) Xx CP*® —— BSO(2j — 2) x CP*®
1
B(n +1,2j) — BS0(27)
and

B(n,2j —2) x CP~* - B(n +1.2j)

BU(n)x CP® — BU(n + 1)

are still commutative. We can easy see that

fflei)=ci+ i1z (1 <i<j), fr(a;) =bj +a;_12,
frb)=bi+biiz (J+1<i<n-1), f*(bn) =bn_1z

in H*(B(n,2j—-2)xCP*;Z) = H*(B(n,2j—2); Z)®@ H*(CP>; Z), where
z is the canonical generator of H%(CP*; Z).

Let be G = Z/Q[C], e ,Cj_l] ® (Z/Q(q,) D Z/Q(bJ+1) $H-E Z/Z(bn>),
where Z/2(z) is the group of order two with generator 2. It is clear that
G is a subgroup of H*(B(n + 1,27); Z/2) and we can easy see that the
restriction of f* to G is injective. Let h: B(n,2j) — B(n + 1,2j) be the
canonical map as in the proof of theorem 2.1. For j > 1, k < j and
k+3j2>n,

h*(5¢*(a;)) = S4**(h*(a;)) = 5¢%*(a;)

k-1 :
-T
= Z ('Z, _ ,’,)bk-}-j-—rcr + a;Ck
r=k+j+1-n "

by the induction hypothesis, and since ker(h*) = b, U H*(B(n,25); Z/2),
we have

2k =l Jj-r
S¢*(a))= 5 (37 7)bkajores + ajek + bupler, s jaran)
r=k+j+1-n
where p(cy,...,¢j4k-n) € Z/2[c1,...,¢j_1]. Then, the element Sq2k(aj) is
in G and we can give its image under f*
F*(54%* (a3)) = S¢**(£*(a5)) = S¢°*(b; + aj-12)
= S¢**(b;) + S¢**(aj_1)z + S¢**(a;_1)7 .
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Applying once more the induction hypothesis,

k —
) = % (L) bkeiorer
r=k+j+1-n
+ kil (j -1- T)b ; Cr2
e k—rp k+j—1—rCr
k=2 i 1—7
+ > (i_} )bk+3 2— 707-22

r=max(0,k+j-1-n)
. . 2
+aj_1ckz2 + aj_1¢k1 2

and since (jzl—r>:(i:i_r)+(k )(mod?)

-7

k .
rePe) =y (12 :) bktj—r(er + €,-12)
r=k+j+1—-n

+7~ :g n(k )bk-i-] 1-rCr2

+ kil (i,—r)bkﬂ 1-rCr—122

r=max(1,k+j—n)
+ aj_12(ck + ck—12).

If K+ 7> n we have

k —
ey = x (I rﬂH]4w+a1a
r=k+j+1-n
k-1 _
+ X ({c )bk+] 1-r2(¢r + €r-12)
r=k4j—n
T ajoaz(en + k1)
k=1 _
= > (‘l]\ r)(bk+1 r+bk+g 1- TZ)(Cr—I—C,- 12)
r=k+j+1—-n

+ (b + aj_12)(ck + €x-12)

k
+ (Z_J)b'n. 12(C4k—n + Cjpk—1-n2)

. k=1 ]
= % (L) bkrsrer + ajen)
r=max(0,k+j—n)

as expected since f*|G is injective. If k + j = n, we proceed exactly as
above. It remains two cases; the first is for § = 1, but the only non trivial
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Steenrod operations are 5¢°(a;) = a; and S¢*(a;) = a? = aje; + b2 by
lemma 2.3. The second is for & = j but in this case

. . j=1
Sq2.7(aj) = aJZ- = ajc; + Z sz_rcr

r=2j—n
i=1 s
_ J =Ty . s
= Y ( 7 baj_rer + ajc;
r=23—-n J

always by lemma 2.3.

3. Proof of Theorem 1.2. The integral cohomology and the mod 2
cohomology of L™(2™) are well known, they are given by the isomorphisms
of abelian groups:

Z ifg=0,2n+1
HY(L™2");Z) = {Z/?m ifg=2t, 0<21<n
0 otherwise,

Zf2 if0<g<2n+1

H(L™(2™); 2/2) = 0 otherwise.

Let be w: L™(2™) — CP" the natural projection, p the canoni-
cal complex line bundle over CP™, and let denote z = ¢j(7*(n)) =
7*(ci(p)) € H(L™(2™); Z). We observe that z' is an additive genera-
tor of H#(L™(2™); Z) for every 1 < i < n.

Let us still write 2* for the mod 2 reduction of the additive generator
above, we see readily that

(3.1) 5¢(2') = iz't?
(3.2) Sq'(2) = (;) 2+2,

Finally, let {(n) denote the integer
(n) =max {0 <i<n—1suchthat ("+1+ 1) #0 (mod4)}.
Recall the 2-divisibility of (" tit1):
ug((" +;’;‘+ 1)) =a(n)+a(i+l)—a(n+i+1).

We observe that for a(n) = 1 and ¢ = n — 1, we get 1/2((""",’;'*' 1)) =
a(n) = 1and so l(n) = n—1. For a(n) = 2 we obtain, likewise, I(n) = n—2.
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For a(n) > 3, we have the next result where we relate /(n) with the dyadic
expansion of n.

Lemma 3.1. Ifn=214+2%24...42% withs; > 83> >8>0
and k > 3, l(n) = 2% 4 2%2 — 2 - 2% — ... - 2%,

Proof. The 2-divisibility of (" +i+1)is0or 1if n and i + 1 have
at most one common term in their dyadic expansion. So ¢ + 1 is greatest
possible, if there is one common term of highest 2-valuation, here 251, The
rest of the expansion of i + 1 contains all powers 2" with r < s;, except
T =83,...,8.

This description of I(n) gives for a(n) > 3:

2 (mod4) if n=0(mod4)
1 (mod4) if n=1(mod4)
0 (mod4) if n=2(mod4)
3 (mod4) if n =3 (mod4).

(3.3) l(n)=

We come back to the immersion problem for L?(2™). We know that
the stable class of the tangent bundle of L™(2™) is r(n + 1)o (see [10]),
where r denotes the realification. So, if L*(2™) immerses in R¥H1+k the
stable class of the normal bundle of this immersion is —r(n + 1)o and its
classifying map '

—r(n+1)o: L™(2™) — BSO(2n + 2)

lifts to BU(n + 1) and to BSO(k). Therefore, this map also lifts to B(n +
1,k), and we obtain the commutative diagram

B(n+ 1,k)
Y4 Jf»
L"(2™)—> BU(n + 1)
where g: L™*(2™) — BU(n+ 1) denotes a lifting of —7(n+1)c to BU(n+1)
and fi a lifting of g in B(n + 1,k). We also note that
*(e:) = ool — _(—n—-1)
g (¢;) =ci(—(n+ 1)) = ( ; ),{,
= (-Di(nFi)2
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since for the total Chern class of —(n + 1)o we find

e(=(n+ 1)) = (o)™ = (L4 ex(0) ™" = (14 2)7
- gﬂ(—”i— b,
For i > [k/2] + 1, we have p*(c;) = 2b; in H*(B(n + 1,k): Z), hence
2fk(bi) = fi(26)) = fi(p™(ei)) = g%(ci)
and therefore, if (" T ") # 0 (mod2™),

PN e R AU R 2
i) =5 (M) =15
Now, if k = 2i, and a; € H*(B(n+1,2i); Z) as in the previous section,
f3:(a;) is an element A;z' of H¥#(L™(2™); Z) = Z/2™ where \; € Z/2™.
The Steenrod squares are natural and so with the help of rela-
tions (2.4), (3.1) and (3.2), we deduce for i < n — 2

(3.4) A= (4 DA+ z%(” +it1) (mod2),
(3.5) (D= ("TH)r+6- D+ 1) (" tit1)

+())5("+i%2) (mod2).

We shall note that (3.4) is still valid for ¢ = n — 1. In the following we
shall take ¢ = I(n) and m > 2.

First we suppose n = 2° with s > 1. In this case, i = l/(n) = n — 1
and (3.4) becomes

("+'+1) =0 (mod2)

N | —

which is impossible.
When n is even with a(n) > 2, ¢ = I(n) is even and < n — 2, so
by (3.4)
Ai =0 (mod 2).

Using (3.5) we deduce

0

S+ (G5t

(Pt it1) (mod2),

N =N —
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since ¢ + 1 > I(n), which is in contradiction with the definition of I(n).
When n is odd with a(n) > 3,1 =I(n) < n—3 is odd, the relation (3.4)

becomes )

2
Now, using (3.5) and (3.3) we obtain

A

il

(n +-rz;+ 1) (mod 2).

_ 0 (mod2) if n=1(mod4)
l(n +it 1) ={ o
2 n 5(" +rlz+ 2) (mod2) if n=3(mod4).

As before we have a contradiction since i+ 1 > I(n) and so we have proved
part a) of theorem 1.2. -

Finally, if » = 2° + 1 with s > 1, and if L™(2™) immerses in
R¥H1+2(n=2)-1 ‘the classifying map g of —(n + 1)o lifts to B(n+1,2(n —
2) — 1), and also to B(n + 1,2(n — 2)). With the same notations, rela-
tion (3.4) becomes in this case

1700 _
An—2 = 5(27172‘ 1) (mod 2)
and so
An—2 =1 (mod?2).
However, if the map g lifts to B(n + 1,2(n — 2) — 1), we have

/\n—ZZn_2 = f;(n—z)(an—-z)
= f3(n-2)-1(P2n—s(an-2))
= fn-2)-1(bn—2)
1 s : .
— 2 (2n—-2\_n-2
B 2( n )Z
=0 (mod2)

where py,_s5 denotes the canonical map B(n + 1,2(n —2) — 1) — B(n +
1,2(n — 2)). So, we have proved part b) of theorem 1.2.
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