ON HARPER'S TORSION MOLECULE

Dedicated to Professor Teiichi Kobayashi on his 60th birthday

ATSUSHI YAMAGUCHI

Introduction. Harper's torsion molecule [1] for an odd prime p is a finite simply connected Hopf space K(p) whose cohomology in F_p -coefficients is given by $H^*(K(p); F_p) = E(x_3, x_{2p+1}) \otimes F_p[x_{2p+2}]/(x_{2p+2}^p)$ and $\wp^1(x_3) = x_{2p+1}$, $\beta(x_{2p+1}) = x_{2p+2}$. Here we study homotopy groups and BP-Hurewicz homomorphism of K(p).

The organization of this note is as follows. In the first section, we compute the $Z_{(p)}$ -homology and the BP-homology of the Harper's torsion molecule K(p) [1] and determine the Thom map $T_{Z_{(p)}}$: $BP_*(K(p)) \to H_*(K(p); Z_{(p)})$, by using the Adams spectral sequence.

In section 2, we observe that the space F obtained by killing the 3-dimensional homotopy group of K(p) is homotopy equivalent to the Toda's spectrum V(1/2) in the stable range. By making use of this fact and applying the Adams-Novikov spectral sequence, we examine the unstable homotopy groups of K(p) for dimension less than $4p^2 - 1$. We also compute the stable homotopy group of the $(2p^2 + 2p - 2)$ -skeleton of K(p) in dimension $2p^2 + 2p - 2$, where the attaching map of the $(2p^2 + 2p - 1)$ -cell of K(p) lives.

In section 3, we determine the BP-Hurewicz homomorphism h^{BP} : $\pi_*(K(p)) \to BP_*(K(p))$ for dimension less than $4p^2 - 1$ and show that it is a split monomorphism in this range.

In the last section, by showing that the image of the homology suspension coincides with the set of the diagonal primitive elements of $BP_*(K(p))$, we completely determine the BP-Hurewicz homomorphism, that is, it is a trivial map in dimension other than 3 and $2p^2 + 2p - 1$.

This work is motivated by G. Moreno's paper [4], where the BP-Hurewicz homomorphism of the Harper's torsion molecule is first studied. Our result improves the main result of [4].

1. Computations in the Adams spectral sequences. First we fix the notations. Let p be an odd prime number. We denote by A_p be the mod p Steenrod algebra generated by the Bockstein operator β and

the reduced power operators \wp^i for $i=1,2,\ldots, \mathcal{A}_{p^*}$ denotes the dual of the Steenrod algebra which is isomorphic to $E(s_0,s_1,s_2,\ldots)\otimes F_p[t_1,t_2,\ldots]$. Here, s_i and t_i are the conjugates by the canonical anti-automorphism of τ_i and ξ_i in Milnor's paper [2]. In particular, $-s_i$ and $-t_1$ are the duals of Q_i and \wp^1 with respect to the Milnor basis. Then, the coproduct ϕ_* of \mathcal{A}_{p^*} is given by

(1.1)
$$\phi_{*}(t_{i}) = \sum_{j=0}^{i} t_{j} \otimes t_{i-j}^{p^{j}},$$

$$\phi_{*}(s_{i}) = \sum_{j=0}^{i} s_{j} \otimes t_{i-j}^{p^{j}} + 1 \otimes s_{i}.$$

For an abelian group G, we denote by K(G) the Eilenberg-MacLane spectrum for the group G. We only deal with the cases $G = \mathbb{F}_p$ and $\mathbb{Z}_{(p)}$. In these cases, K(G) is a commutative ring spectrum. There is a cofiber sequence

$$(1.2) K(\mathbf{Z}_{(p)}) \xrightarrow{p} K(\mathbf{Z}_{(p)}) \xrightarrow{\rho} K(\mathbf{F}_{p}) \xrightarrow{\delta} \Sigma K(\mathbf{Z}_{(p)}),$$

where p denotes the p times of the identity map, ρ the map induced by the mod p reduction $Z_{(p)} \to F_p$. Then ρ is a map of ring spectra and the composition $K(F_p) \stackrel{\delta}{\to} \Sigma K(Z_{(p)}) \stackrel{\rho}{\to} \Sigma K(F_p)$ is the Bockstein operator. It is easy to show (also well-known) that $\rho^* \colon \mathcal{A}_p = H^*(K(F_p); F_p) \to H^*(K(Z_{(p)}); F_p)$ is an epimorphism of left \mathcal{A}_p -modules with kernel $\mathcal{A}_p\beta$. By dualizing this, we have the following.

Proposition 1.3. ρ_* : $H_*(K(Z_{(p)}); F_p) \to H_*(K(F_p); F_p) = A_{p^*}$ is a monomorphism of left A_{p^*} -comodule algebras onto a subalgebra $E(s_1, s_2, \ldots) \otimes F_p[t_1, t_2, \ldots]$.

Thus we identify $H_*(K(\mathbf{Z}_{(p)}); \mathbf{F}_p)$ with the image of ρ_* .

Let E and X be connective spectra. We consider the Adams spectral sequence

$$(1.4) E_2^{s,t} = \operatorname{Ext}_{\mathcal{A}_{p^*}}^{s,t}(\mathbf{F}_p, H_*(E \wedge X; \mathbf{F}_p)) \Rightarrow E_{t-s}(X).$$

If E is a ring spectrum and there is a map of ring spectra $f: E \to K(\mathbf{F}_p)$ such that $f_*: H_*(E; \mathbf{F}_p) \to H_*(K(\mathbf{F}_p); \mathbf{F}_p) = \mathcal{A}_{p^*}$ is injective, by applying the change-of-rings isomorphism ([6] A1.3.13), E_2 -term of the above spectral sequence is identified with $\operatorname{Ext}_{\mathcal{A}_{p^*}/I_f}^{s,t}(\mathbf{F}_p, H_*(X; \mathbf{F}_p))$, where I_f is an ideal of \mathcal{A}_{p^*} generated by $f_*(\sum_{i>0} H_i(E; \mathbf{F}_p))$.

In the case $E = K(\mathbf{Z}_{(p)})$, by (1.3) we have a spectral sequence

(1.5)
$$E_2^{s,t} = \operatorname{Ext}_{E(s_0)}^{s,t}(F_p, H_*(X; F_p)) \Rightarrow H_{t-s}(X; Z_{(p)}).$$

In the case E=BP, since the Thom reduction map $T_{\mathbf{F}_p}\colon BP\to K(\mathbf{F}_p)$ induces a monomorphism $T_{\mathbf{F}_p^*}\colon H_*(BP;\mathbf{F}_p)\to H_*(K(\mathbf{F}_p);\mathbf{F}_p)=\mathcal{A}_{p^*}$ onto $F_p[t_1,t_2,\ldots]$, we have

(1.6)
$$E_2^{s,t} = \operatorname{Ext}_{E(s_0,s_1,\ldots)}^{s,t}(F_p, H_*(X; F_p)) \Rightarrow BP_{t-s}(X).$$

Remark 1.7. We note that the Thom map $T_{\mathbf{Z}_{(p)}} \colon BP \to K(\mathbf{Z}_{(p)})$ induces a morphism of spectral sequences from (1.6) to (1.5). Since $\rho T_{\mathbf{Z}_{(p)}} = T_{\mathbf{F}_p}$, the map

$$T_{\mathbf{Z}(p)^{\bullet}} : \operatorname{Ext}_{\mathcal{A}_{p^{\bullet}}}(F_{p}, H_{*}(BP \wedge X; F_{p})) \\ \longrightarrow \operatorname{Ext}_{\mathcal{A}_{p^{\bullet}}}(F_{p}, H_{*}(K(\mathbf{Z}_{(p)}) \wedge X; F_{p}))$$

induced by $T_{Z_{(p)}}$ is identified with the map

$$\operatorname{Ext}_{E(s_0,s_1,\ldots)}(F_p,H_*(X;F_p)) \longrightarrow \operatorname{Ext}_{E(s_0)}(F_p,H_*(X;F_p))$$

induced by the projection $E(s_0, s_1, ...) \rightarrow E(s_0, s_1, ...)/(s_1, ...) = E(s_0)$ through the change-of-rings isomorphisms.

Now we compute the E_2 -terms of the spectral sequences (1.5) and (1.6) for X = K(p) the Harper's torsion molecule. The structure of $H^*(K(p); F_p)$ is given by

(1.8)
$$H^*(K(p); \mathbf{F}_p) = E(x_3, x_{2p+1}) \otimes \mathbf{F}_p[x_{2p+2}] / (x_{2p+2}^p),$$
$$\wp^1(x_3) = x_{2p+1}, \quad \beta(x_{2p+1}) = x_{2p+2}.$$

Let b_i (i = 3, 2p + 1, 2p + 2) be the dual of x_i , then the structure of $H_*(K(p); \mathbf{F}_p)$ as a left A_{p^*} -comodule algebra is given as follows.

(1.9)
$$H_{*}(K(p); \mathbf{F}_{p}) = E(b_{3}, b_{2p+1}) \otimes \mathbf{F}_{p}[b_{2p+2}]/(b_{2p+2}^{p}),$$

$$\varphi(b_{3}) = 1 \otimes b_{3},$$

$$\varphi(b_{2p+1}) = 1 \otimes b_{2p+1} - t_{1} \otimes b_{3},$$

$$\varphi(b_{2p+2}) = 1 \otimes b_{2p+2} + s_{0} \otimes b_{2p+1} - s_{1} \otimes b_{3} + s_{0}t_{1} \otimes b_{3}$$

 $E(s_0)$ is a quotient Hopf algebra of \mathcal{A}_{p^*} by an ideal generated by $s_1, s_2, \ldots, t_1, t_2, \ldots$ and $H_*(K(p); F_p)$ is regarded as a left $E(s_0)$ -comodule via projection $\mathcal{A}_{p^*} \to E(s_0)$. It follows from (1.9) that the $E(s_0)$ -comodule structure of $H_*(K(p); F_p)$ is given by

(1.10)
$$\varphi_0(b_3) = 1 \otimes b_3,$$

$$\varphi_0(b_{2p+1}) = 1 \otimes b_{2p+1},$$

$$\varphi_0(b_{2p+2}) = 1 \otimes b_{2p+2} + s_0 \otimes b_{2p+1}.$$

Then $H_*(K(p); F_p)$ is a direct sum of subcomodules $M = E(b_3, b_{2p+1}b_{2p+2}^{p-1})$ and $M_{\varepsilon,i} = F_p\{b_3^{\varepsilon}b_{2p+1}b_{2p+2}^{i-1}, b_3^{\varepsilon}b_{2p+2}^{i}\}$ for $\varepsilon = 0, 1, i = 1, 2, \dots, p-1$. Here we denote by $R\{a, b, c, \dots\}$ the free R-module generated by elements a, b, c, \dots

Since $M_{\varepsilon,i}$ is isomorphic to $E(s_0)$ with shifting degree, we have $\operatorname{Ext}_{E(s_0)}^{0,*}(F_p, M_{\varepsilon,i}) = F_p\{b_3^\varepsilon b_{2p+1} b_{2p+2}^{i-1}\}$, $\operatorname{Ext}_{E(s_0)}^{s,*}(F_p, M_{\varepsilon,i}) = 0$ if $s \neq 0$. On the other hand, since M consists of primitive elements and $\operatorname{Ext}_{E(s_0)}(F_p, F_p) = F_p[\bar{v}_0]$, we have $\operatorname{Ext}_{E(s_0)}(F_p, M) = \operatorname{Ext}_{E(s_0)}(F_p, F_p) \otimes M = F_p[\bar{v}_0] \otimes M$, where \bar{v}_0 is an element of $\operatorname{Ext}_{E(s_0)}^{1,1}(F_p, F_p)$ represented by $[s_0]$ in the cobar complex for $E(s_0)$. Note that $\operatorname{Ext}_{E(s_0)}(F_p, H_*(K(p); F_p))$ has a structure of $F_p[\bar{v}_0]$ -module. (1.10) implies a relation $\bar{v}_0b_3^\varepsilon b_{2p+1}b_{2p+2}^{i-1} = 0$.

Let z_3 , $z_{2i(p+1)-1}$ and $z_3z_{2i(p+1)-1}$ be the elements of $\operatorname{Ext}_{E(s_0)}^{0,*}(F_p, H_*(K(p); F_p))$ represented by cocycles $[]b_3, []b_{2p+1}b_{2p+2}^{i-1}$ and $[]b_3b_{2p+1}b_{2p+2}^{i-1}$ of the cobar complex, respectively. The above argument shows

Proposition 1.11. As an $F_p[\bar{v}_0]$ -module, $\operatorname{Ext}_{E(s_0)}(F_p, H_*(K(p); F_p))$ is isomorphic to

$$F_p[\bar{v}_0]/(\bar{v}_0)\{z_{2i(p+1)-1}, z_3z_{2i(p+1)-1} \mid 1 \le i \le p-1\}$$

$$\oplus F_p[\bar{v}_0]\{1, z_3, z_{2p^2+2p-1}, z_3z_{2p^2+2p-1}\}.$$

Since \bar{v}_0 is a permanent cycle representing p, the preceding result immediately implies the following.

Proposition 1.12. The Adams spectral sequence (1.5) collapses and $H_*(K(p); \mathbb{Z}_{(p)})$ is isomorphic to

$$F_p\{z_{2i(p+1)-1}, z_3 z_{2i(p+1)-1} \mid 1 \le i \le p-1\}$$

$$\oplus Z_{(p)}\{1, z_3, z_{2p^2+2p-1}, z_3 z_{2p^2+2p-1}\}$$

as a $Z_{(p)}$ -module, where $\deg z_i = i$.

We put $E = E(s_0, s_1, ...)$ for short. Since E is the quotient Hopf algebra of A_p , by an ideal generated by $t_1, t_2, ...$, it follows from (1.1) that each s_i is primitive in E. By (1.9), E-comodule structure of $H_*(K(p); F_p)$ is given by

$$\varphi_1(b_3) = 1 \otimes b_3,
(1.13) \qquad \varphi_1(b_{2p+1}) = 1 \otimes b_{2p+1},
\varphi_1(b_{2p+2}) = 1 \otimes b_{2p+2} + s_0 \otimes b_{2p+1} - s_1 \otimes b_3.$$

Thus $H_*(K(p); F_p)$ can be regarded as an $E(s_0, s_1)$ -comodule. Put $E' = E(s_2, s_3, \ldots)$, then $E = E(s_0, s_1) \otimes E'$ as a Hopf algebra and the external product

(1.14)
$$\operatorname{Ext}_{E(s_0,s_1)}(F_p, H_*(K(p); F_p)) \otimes \operatorname{Ext}_{E'}(F_p, F_p) \\ \longrightarrow \operatorname{Ext}_E(F_p, H_*(K(p); F_p))$$

is an isomorphism by the Künneth theorem.

Let \bar{v}_i be the element of $\operatorname{Ext}_{E(s_i)}^{1,2p^i-1}(F_p,F_p)$ represented by a cocycle $[s_i]$. Then,

(1.15)
$$\operatorname{Ext}_{E'}(F_p, F_p) = F_p[\bar{v}_2, \bar{v}_3, \dots, \bar{v}_i, \dots],$$

and $\operatorname{Ext}_{E(s_0,s_1)}(F_p,H_*(K(p);F_p))$ has a structure of $F_p[\bar{v}_1,\bar{v}_2]$ -module. In order to compute $\operatorname{Ext}_{E(s_0,s_1)}(F_p,H_*(K(p);F_p))$, we apply the Cartan-Eilenberg spectral sequence to an extension of Hopf algebras $E(s_1) \to E(s_0,s_1) \to E(s_0)$ ([6] A1.3.14)

$$E_2^{s,t} = \text{Ext}_{E(s_1)}^s(F_p, \text{Ext}_{E(s_0)}^t(F_p, H_*(K(p); F_p)))$$

$$\Rightarrow \text{Ext}_{E(s_0, s_1)}^{s+t}(F_p, H_*(K(p); F_p)).$$

It follows from (1.11) that the $E(s_1)$ -comodule structure of $\operatorname{Ext}_{E(s_0)}(F_p, H_{\star}(K(p); F_p))$ is given by

$$(1.16) \quad \begin{array}{ll} \widetilde{\varphi}_1(z_{2i(p+1)-1}) &= 1 \otimes z_{2i(p+1)-1} - (i-1)s_1 \otimes z_3 z_{2(i-1)(p+1)-1}, \\ \widetilde{\varphi}_1(z_3 z_{2i(p+1)-1}) &= 1 \otimes z_3 z_{2i(p+1)-1}. \end{array}$$

We set

$$\begin{split} N &= F_p\{z_{2p+1}\} \oplus F_p[\bar{v}_0]\{1, z_3, \bar{v}_0 z_{2p^2+2p-1}, z_3 z_{2p^2+2p-1}\},\\ N_i &= F_p\{z_3 z_{2i(p+1)-1}, z_{2(i+1)(p+1)-1}\} \end{split}$$

for i = 1, 2, ..., p - 1. Then N and N_i are subcomodules of $\operatorname{Ext}_{E(s_0)}(F_p, H_*(K(p); F_p))$. N consists of primitive elements and N_i is isomorphic to $E(s_1)$ with shifting degrees.

Since $\operatorname{Ext}_{E(s_0)}(F_p, H_*(K(p); F_p))$ is a direct sum of N and N_i for $i = 1, 2, \ldots, p-1$, $\operatorname{Ext}_{E(s_1)}(F_p, \operatorname{Ext}_{E(s_0)}(F_p, H_*(K(p); F_p)))$ is isomorphic to

$$\begin{aligned} F_p\{X_{2i(p+1)+2} | & 1 \le i \le p-1\} \oplus F_p[\bar{v}_1]\{z_{2p+1}\} \\ & \oplus F_p[\bar{v}_0, \bar{v}_1]\{1, z_3, z'_{2p^2+2p-1}, X_{2p^2+2p+2}\}, \end{aligned}$$

where $X_{2i(p+1)+2}$ and z'_{2p^2+2p-1} are the classes of $[]z_3z_{2i(p+1)-1}$ and $[]\bar{v}_0z_{2p^2+2p-1}$, respectively.

We note that $X_{2i(p+1)+2}$, z_{2p+1} , z_3 and z'_{2p^2+2p-1} belong to $E_2^{0,0}$, hence the spectral sequence collapses. We use the same symbols as X_j , z_{2p+1} , z_3 and z'_{2p^2+2p-1} to denote the elements of $\operatorname{Ext}_{E(s_0,s_1)}(F_p,H_*(K(p);F_p))$ corresponding to them. The cocycles representing $X_{2i(p+1)+2}$, z_{2p+1} , z_3 and z'_{2p^2+2p-1} in the cobar complex are given by $[]b_3b_{2p+1}b_{2p+2}^{i-1}$, $[]b_{2p+1}$, $[]b_3$ and $[s_0]b_{2p+1}b_{2p+2}^{p-1} + [s_0s_1]b_3b_{2p+1}b_{2p+2}^{p-1} - [s_1]b_3b_{2p+2}^{p-1}$, respectively.

By (1.13), $[s_0]b_{2p+1}$ is cohomologous to $[s_1]b_3$, thus we have a relation $\overline{v}_0z_{2p+1}=\overline{v}_1z_3$. Similarly, $[s_j]b_3b_{2p+1}b_{2p+2}^{i-1}$ ($j=0,1,i=1,2,\ldots,p-1$) are cohomologous to 0 in the cobar complex, hence $X_{2i(p+1)+2}$ is annihilated by \overline{v}_0 and \overline{v}_1 if i< p.

We put $R = \operatorname{Ext}_E(F_p, F_p) = F_p[\bar{v}_0, \bar{v}_1, \ldots]$. By virtue of the isomorphism (1.14) we obtain the following result.

Proposition 1.17. $\operatorname{Ext}_E(F_p, H_*(K(p); F_p))$ is isomorphic to

$$R/(\bar{v}_0, \bar{v}_1)\{X_{2i(p+1)+2} \mid 1 \le i \le p-1\}$$

$$\oplus R\{z_3, z_{2p+1}\}/(\bar{v}_1 z_3 - \bar{v}_0 z_{2p+1})$$

$$\oplus R\{1, z'_{2p^2+2p-1}, X_{2p^2+2p+2}\}$$

as an R-module.

Since $X_j \in E_2^{0,j}$, $z_j \in E_2^{0,j}$ and $z'_{2p^2+2p-1} \in E_2^{1,2p^2+2p}$, the Adams spectral sequence (1.6) collapses for dimensional reason. Moreover, the extension problem of the BP_* -module structure is trivial also for dimensional reason.

Consider the morphism of spectral sequences $T_{Z_{(p)}}$, from (1.6) to (1.5) induced by the Thom map $T_{Z_{(p)}}$: $BP \to K(Z_{(p)})$. It follows from (1.7) that

 $T_{\mathbf{Z}_{(p)}}$ maps $X_{2i(p+1)+2}$ to $z_3z_{2i(p+1)-1}$, z_3 to z_3 , z_{2p+1} to z_{2p+1} and z'_{2p^2+2p-1} to $\overline{v}_0z_{2p^2+2p-1}$ in the E_2 -terms.

Proposition 1.18. $BP_*(K(p))$ is isomorphic to

$$BP_*/(p, v_1)\{X_{2i(p+1)+2} \mid 1 \le i \le p-1\}$$

$$\oplus BP_*\{z_3, z_{2p+1}\}/(v_1 z_3 - p z_{2p+1})$$

$$\oplus BP_*\{1, z'_{2p^2+2p-1}, X_{2p^2+2p+2}\}$$

as an BP*-module, where $\deg X_j = j$, $\deg z_j = j$ and $\deg z'_{2p^2+2p-1} = 2p^2 + 2p - 1$. $T_{\mathbf{Z}_{(p)^*}} \colon BP_*(K(p)) \to H_*(K(p); \mathbf{Z}_{(p)})$ maps $X_{2i(p+1)+2}$ to $z_3z_{2i(p+1)-1}$, z_3 to z_3 , z_{2p+1} to z_{2p+1} and z'_{2p^2+2p-1} to pz_{2p^2+2p-1} .

Remark 1.19. (1) Since K(p) is a Hopf space, the spectral sequences (1.5) and (1.6) are multiplicative. Thus, in $BP_*(K(p))$, we have relations $z_3z_{2p+1} = X_{2p+4}$ and $z_3z'_{2p^2+2p-1} = pX_{2p^2+2p+2} + \gamma v_2X_{2p+4}$ for some $\gamma \in \mathbb{Z}_{(p)}$. (See (4.14).)

- (2) Let us denote by ψ : $BP_*(K(p)) \to BP_*BP \otimes_{BP_*} BP_*(K(p))$ the BP_*BP -comodule structure map. Then, it follows from (1.9) and (1.18) that $X_{2i(p+1)+2}$ ($1 \le i \le p$) and z_3 are primitive and that $\psi(z_{2p+1}) = 1 \otimes z_{2p+1} t_1 \otimes z_3$. We note that $\widetilde{BP}_*(K(p))$ is the direct sum of subcomodules $BP_*/(p,v_1)\{X_{2i(p+1)+2}\}$ ($1 \le i \le p-1$), $BP_*\{X_{2p^2+2p+2}\}$ and $BP_*\{z_3,z_{2p+1}\}/(v_1z_3-pz_{2p+1}) \oplus BP_*\{z'_{2p^2+2p-1}\}$. Let us denote by $K(p)^n$ the n-skeleton of K(p), then it is shown that the inclusion map $K(p)^{2p^2+2p-2} \hookrightarrow K(p)$ induces a monomorphism $\widetilde{BP}_*(K(p)^{2p^2+2p-2}) \to \widetilde{BP}_*(K(p))$ onto the direct sum of $BP_*\{z_3,z_{2p+1}\}/(v_1z_3-pz_{2p-1})$ and $BP_*/(p,v_1)\{X_{2i(p+1)+2}\}$ for $1 \le i \le p-1$.
- 2. The homotopy groups of K(p). We calculate $H^*(K(p); Z_{(p)})$ by using the Bockstein long exact sequence

$$\cdots \longrightarrow H^{i}(K(p); \mathbf{Z}_{(p)}) \xrightarrow{p \times} H^{i}(K(p); \mathbf{Z}_{(p)}) \xrightarrow{\rho} H^{i}(K(p); \mathbf{F}_{p}) \xrightarrow{\delta} H^{i+1}(K(p); \mathbf{Z}_{(p)}) \longrightarrow \cdots$$

We can easily show the following.

Proposition 2.1. We put $y_{2p+2} = \delta(x_{2p+1})$ and there are elements y_3 and y_{2p^2+2p-1} of $H^*(K(p); Z_{(p)})$ such that $\rho(y_3) = x_3$ and

$$\begin{split} \rho(y_{2p^2+2p-1}) &= x_{2p+1} x_{2p+2}^{p-1}. \ H^*(K(p); Z_{(p)}) \ is \ isomorphic \ to \\ & F_p\{y_{2p+2}^i, y_3 y_{2p+2}^i \mid 1 \leq i \leq p-1\} \\ & \oplus Z_{(p)}\{1, y_3, y_{2p^2+2p-1}, y_3 y_{2p^2+2p-1}\}. \end{split}$$

Let F be the homotopy fiber of y_3 : $K(p) \to K(\mathbf{Z}_{(p)}, 3)$. $f: F \to K(p)$ denotes the inclusion map of the fiber. Applying the Serre spectral sequence to the fibration $F \xrightarrow{f} K(p) \xrightarrow{y_3} K(\mathbf{Z}_{(p)}, 3)$, a routine argument shows

Proposition 2.2. For degree $\leq 2p^3$, $H^*(F; F_p)$ is isomorphic to $E(u_{2p^2+1}, u_{2p^2+2p-1}) \otimes F_p[u_{2p^2}]$ with A_p -action $\beta(u_{2p^2}) = u_{2p^2+1}$ and $\wp^1(u_{2p^2+1}) = u_{2p^2+2p-1}$.

Corollary 2.3. The $(4p^2-1)$ -skeleton of F is homotopy equivalent to a 3-cell complex $X=S^{2p^2}\cup e^{2p^2+1}\cup e^{2p^2+2p-1}$ such that the subcomplex $Y=S^{2p^2}\cup e^{2p^2+1}$ is the mod p Moore space and the top cell e^{2p^2+2p-1} is attached to Y by the map $\overline{\alpha}_1\in\pi_{2p^2+2p-2}(Y)$ which maps to $\alpha_1\in\pi_{2p^2+2p-2}(S^{2p^2+1})\cong\pi_{2p-3}^S(S^0)$ by the map induced by $Y\to Y/S^{2p^2}=S^{2p^2+1}$.

Namely, X is nothing but the $2p^2$ -fold suspension of the Toda's spectrum V(1/2) [7].

Corollary 2.4. $\pi_i(K(p)) = 0$ for i < 3 or $3 < i < 2p^2$ and there are isomorphisms

$$\pi_3(K(p)) \cong \mathbb{Z}_{(p)},$$
 $\pi_i(K(p)) \cong \pi_{i-2p^2}^S(V(1/2)) \quad \text{for } 2p^2 \le i \le 4p^2 - 2.$

Hence it suffices to know $\pi_i^S(V(1/2))$ for $i \leq 2p^2 - 2$ to know $\pi_i(K(p))$ for $i \leq 4p^2 - 2$.

We denote by M_p the mod p Moore spectrum $S^0 \cup_p e^1$. Consider the long exact sequences of stable homotopy groups associated with the cofibrations $S^0 \stackrel{p}{\to} S^0 \stackrel{\iota_0}{\to} M_p \stackrel{\partial_0}{\to} S^1$ and $S^{2p-2} \stackrel{\overline{\Delta_1}}{\to} M_p \stackrel{\iota_1}{\to} V(1/2) \stackrel{\partial_1}{\to} S^{2p-1}$.

$$(2.5) \qquad \cdots \longrightarrow \pi_i^S(S^0) \xrightarrow{p} \pi_i^S(S^0) \xrightarrow{\iota_0 *} \pi_i^S(M_p) \xrightarrow{\partial_0 *} \\ \pi_{i-1}^S(S^0) \longrightarrow \cdots,$$

$$(2.6) \qquad \cdots \longrightarrow \pi_i^S(S^{2p-2}) \xrightarrow{\bar{\alpha}_1^*} \pi_i^S(M_p) \xrightarrow{\iota_1^*} \pi_i^S(V(1/2)) \xrightarrow{\partial_1^*} \\ \pi_{i-1}^S(S^{2p-2}) \longrightarrow \cdots.$$

We recall several stable homotopy groups of the sphere.

Theorem 2.7. For $i \leq 2p^2$, the p-component of $\pi_i^S(S^0)$ is trivial except for the following cases.

$$\begin{split} \pi^S_0(S^0) &= \mathbf{Z}\{1\}, \\ \pi^S_{2r(p-1)-1}(S^0) &= \mathbf{Z}/p\{\alpha_r\} \quad for \ 1 \leq r$$

Let α : $\Sigma^{2(p-1)}M_p \to M_p$ denote the Adams map. We put $\bar{\alpha}_r = \alpha^r \iota_0$, then $\alpha_r = \partial_0 \bar{\alpha}_r$. Since every element of $\pi_*^S(M_p)$ is order p, the long exact sequence (2.5) splits into split short exact sequences

(2.8)
$$0 \longrightarrow \pi_i^S(S^0)/p\pi_i^S(S^0) \longrightarrow \pi_i^S(M_p) \longrightarrow \operatorname{Ker}\{p: \pi_{i-1}^S(S^0) \to \pi_{i-1}^S(S^0)\} \longrightarrow 0.$$

If $x \in \pi_{i-1}^S(S^0)$ is an element of order p, we denote by \bar{x} an element of $\pi_i^S(M_p)$ such that $\partial_0 \bar{x} = x$. Theorem (2.7) immediately implies

Proposition 2.9. For $i \leq 2p^2$, $\pi_i^S(M_p) = 0$ except for the following cases.

$$\begin{array}{ll} \pi^S_0(M_p) &= Z/p\{\iota_0\},\\ \pi^S_{2\tau(p-1)-1}(M_p) &= Z/p\{\iota_0\alpha_r\} \quad for \ 1 \leq r$$

We need to determine the map $\bar{\alpha}_1 : \pi_{i-2p+2}^S(S^0) \to \pi_i^S(M_p)$ for $i \leq 2p^2 - 2$. Consider the Adams-Novikov spectral sequences for *BP*-theory converging to $\pi_*^S(S^0)$ and $\pi_*^S(M_p)$.

From now on, for a BP_*BP -comodule M, we set $H^{s,t}(M) = \operatorname{Ext}_{BP,BP}^{s,t}(BP_*,M)$.

Recall from [3] that the cocycles representing α_r and $\alpha_{p/2}$ in $H^{1,*}(BP_*)$ are the following elements of the cobar complex $\Omega^*(BP_*)$.

(2.10)
$$r[t_1]v_1^{r-1} + \sum_{j=2}^{r} {r \choose j} (-p)^{j-1} [t_1^j] v_1^{r-j}, \\ [t_1]v_1^{p-1} + \sum_{j=2}^{p} {p \choose j} (-p)^{j-2} [t_1^j] v_1^{p-j}$$

Here we regard BP* as a left BP*BP-comodule.

We summarize the structure of $H^{s,t}(BP_*)$, $H^{s,t}(BP_*/(p))$ and $H^{s,t}(BP_*/(p,v_1))$.

Proposition 2.11. (1) For $t - s < 2p^2 + 2p$, $H^{s,t}(BP_*) = 0$ except for the following cases.

$$\begin{split} H^{0,0}(BP_{\star}) &= Z_{(p)}\{1\}, \\ H^{1,2r(p-1)}(BP_{\star}) &= Z/p\{\alpha_r\} \quad for \ 1 \leq r$$

where β_1 is represented by a cocycle $\sum_{i=1}^{p-1} {p \choose i} [t_1^i | t_1^{p-i}]/p$.

(2) For $t - s < 2p^2$, $H^{s,t}(BP_*/(p)) = 0$ except for the following cases.

$$\begin{split} &H^{0,0}(BP_*/(p)) &= \mathbb{Z}/p\{1\}, \\ &H^{0,2r(p-1)}(BP_*/(p)) = \mathbb{Z}/p\{v_1^r\} & \text{for } 1 \leq r \leq p+1, \\ &H^{1,2r(p-1)}(BP_*/(p)) = \mathbb{Z}/p\{v_1^{r-1}\alpha_1\} & \text{for } 1 \leq r$$

 h_1 is the element represented by a cocycle $[t_1^p]$, α_1 and β_1 here are the mod p reduction of the elements of (1) with the same symbol.

(3) For $t-s < 2p^2$, $H^{s,t}(BP_*/(p,v_1)) = 0$ except for the following cases.

$$\begin{split} H^{0,0}(BP_{\star}/(p,v_{1})) &= Z/p\{1\}, \\ H^{0,2p^{2}-2}(BP_{\star}/(p,v_{1})) &= Z/p\{v_{2}\}, \\ H^{1,2p-2}(BP_{\star}/(p,v_{1})) &= Z/p\{\alpha_{1}\}, \\ H^{1,2p(p-1)}(BP_{\star}/(p,v_{1})) &= Z/p\{h_{1}\}, \\ H^{2,2p(p-1)}(BP_{\star}/(p,v_{1})) &= Z/p\{\beta_{1}\}, \\ H^{3,2p^{2}-2}(BP_{\star}/(p,v_{1})) &= Z/p\{\alpha_{1}\beta_{1}\}. \end{split}$$

 h_1 , α_1 and β_1 are the mod (p, v_1) reduction of the elements of (2) with the same symbol.

Since $\iota_{0^*}\colon BP_*(S^0)\to BP_*(M_p)=BP_*/(p)$ is the mod p reduction map, in the E_2 -level, $\iota_{0^*}\colon H^{*,*}(BP_*(S^0))\to H^{*,*}(BP_*(M_p))$ maps α_r and $\alpha_{p/2}$ to the elements represented by $r[t_1]v_1^{r-1}$ and $[t_1]v_1^{p-1}$, respectively. On the other hand, since $\alpha\colon \varSigma^{2(p-1)}M_p\to M_p$ induces the v_1 -multiplication map on $BP_*(M_p)$, $\bar{\alpha}_1=\alpha\iota_0$ induces $\bar{\alpha}_1\colon H^{*,*}(BP_*(S^0))\to H^{*,*}(BP_*(M_p))$ which maps α_{r-1} and $\alpha_{p/2}$ to the elements represented by $(r-1)[t_1]v_1^{r-1}$ and $[t_1]v_1^p$, respectively. Thus $\bar{\alpha}_1\cdot(\alpha_{r-1})=((r-1)/r)\iota_0\cdot(\alpha_r)$ for $2\le r< p$ or r=p+2, $\bar{\alpha}_1\cdot(\alpha_{p-1})=-\iota_0\cdot(\alpha_{p/2})$ and $\bar{\alpha}_1\cdot(\alpha_{p/2})=\iota_0\cdot(\alpha_{p+1})$ hold in the E_2 -term.

It follows from (2.11) that $H^{1,2p^2-2p}(BP_*(M_p))$ is a 2-dimensional vector space over F_p and $H^{s,2p^2-2p+s}(BP_*(M_p))=0$ for s>1, hence both elements $\iota_0\alpha_{p/2}$ and $\bar{\beta}_1$ of $\pi^S_{2p^2-2p-1}(M_p)$ are in the same Adams filtration.

These arguments show the following.

Proposition 2.12. $\bar{\alpha}_{1} \cdot : \pi_{i-2n+2}^{S}(S^{0}) \to \pi_{i}^{S}(M_{p})$ is given as follows.

$$\begin{split} \overline{\alpha}_{1^*}(1) &= \overline{\alpha}_1, \\ \overline{\alpha}_{1^*}(\alpha_{r-1}) &= \frac{r-1}{r} \iota_0 \alpha_r \quad \textit{for } 2 \leq r$$

Applying the above result to (2.6) we obtain

Proposition 2.13. For $i < 2p^2 - 2$, $\pi_i^S(V(1/2)) = 0$ except for the following cases.

$$\begin{array}{ll} \pi_0^S(V(1/2)) &= Z/p\{\iota_1\iota_0\},\\ \pi_{2p-3}^S(V(1/2)) &= Z/p\{\iota_1\iota_0\alpha_1\},\\ \pi_{2p-1}^S(V(1/2)) &= Z_{(p)}\{w_{2p-1}\},\\ &\qquad \qquad where\ w_{2p-1}\ maps\ to\ p\in\pi_0^S(S^0)\ by\ \partial_{1^*},\\ \pi_{2r(p-1)}^S(V(1/2)) &= Z/p\{\overline{\alpha}_r\}\quad for\ 2\leq r< p,\\ \pi_{2p^2-2p-2}^S(V(1/2)) &= Z/p\{\iota_1\iota_0\beta_1\},\\ \pi_{2p^2-2p-1}^S(V(1/2)) &= Z/p\{\iota_1\overline{\beta}_1\},\\ \pi_{2p^2-2p}^S(V(1/2)) &= Z/p\{\iota_1\overline{p}\overline{\alpha}_{p/2}\},\\ \pi_{2p^2-2p}^S(V(1/2)) &= Z/p\{\iota_1\iota_0\alpha_1\beta_1\}. \end{array}$$

Furthermore, there is a short exact sequence

$$0 \longrightarrow \pi_{2p^2-2}^S(M_p) \xrightarrow{\iota_1 \cdot} \pi_{2p^2-2}^S(V(1/2)) \xrightarrow{\partial_1 \cdot} p\pi_{2p^2-2p-1}^S(S^0) \longrightarrow 0.$$

Next, we solve the extension problem in $\pi_{2p^2-2}^S(V(1/2))$. Consider the long exact sequence of BP-homology associated with cofibration $S^{2p-1} \stackrel{\eta}{\to} V(1/2) \stackrel{\iota_2}{\to} V(1) \stackrel{\partial}{\to} S^{2p}$. Since $BP_*(S^{2p-1})$ is concentrated in odd dimensions and $BP_*(V(1)) = BP_*/(p,v_1)$ is concentrated in even dimensions, the long exact sequence splits and give an isomorphism of BP_* -modules,

$$(2.14) BP_*(V(1/2)) \cong BP_*\{w_{2p-1}\} \oplus BP_*/(p, v_1)\{1\}.$$

Here we put $w_{2p-1} = \eta_*(id_{S^{2p-1}}) \in BP_{2p-1}(V(1/2))$ and $1 \in BP_0(V(1/2))$ is the unique element that maps to $1 \in BP_0(V(1))$ by ι_{2^*} . Both of them are primitive and the above isomorphism is an isomorphism of BP_*BP -comodules.

We consider the Adams-Novikov spectral sequence

(2.15)
$$E_2^{s,t} = H^{s,t}(BP_*(V(1/2))) \Rightarrow \pi_{t-s}^S(V(1/2)).$$

By (2.14), we have an isomorphism

$$(2.16) E_2^{s,t} \cong H^{s,t-2p+1}(BP_*)\{w_{2p-1}\} \oplus H^{s,t}(BP_*/(p,v_1)).$$

Then, there are non trivial elements $\beta_1 w_{2p-1} \in E_2^{2,2p^2-1}$, $v_2 \in E_2^{0,2p^2-2}$ of order p, and $\alpha_{p/2} w_{2p-1} \in E_2^{1,2p^2-1}$ of order p^2 . Since $\pi_{2p^2-3}^S(V(1/2)) = 0$ by (2.13), $\beta_1 w_{2p-1}$ is killed by v_2 and $\alpha_{p/2} w_{2p-1}$ is a permanent cycle representing an element of order p^2 . This solves the extension problem.

Proposition 2.17.

$$\pi_{2p^2-2}^S(V(1/2)) \cong \mathbb{Z}/p^2.$$

Proposition 2.18. For $i \leq 4p^2 - 2$, $\pi_i(K(p)) = 0$ except for the following cases.

$$\begin{array}{ll} \pi_3(K(p)) & \cong Z_{(p)}, \\ \pi_{2p^2}(K(p)) & \cong \pi_{2p^2+2p-3}(K(p)) \cong Z/p, \\ \pi_{2p^2+2p-1}(K(p)) & \cong Z_{(p)}, \\ \pi_{2p^2+2r(p-1)}(K(p)) \cong Z/p \quad for \ 2 \leq r < p, \\ \pi_{4p^2-2p-2}(K(p)) & \cong \pi_{4p^2-2p-1}(K(p)) \cong Z/p, \\ \pi_{4p^2-2p}(K(p)) & \cong \pi_{4p^2-5}(K(p)) \cong Z/p, \\ \pi_{4p^2-2}(K(p)) & \cong Z/p^2 \end{array}$$

The rest of this section is devoted to show the following lemma which is needed in the next section.

Lemma 2.19.

$$\pi_{2p^2+2p-2}^S(K(p)^{2p^2+2p-2})\cong \mathbb{Z}/p.$$

To show this lemma, we use the Adams-Novikov spectral sequence

$$(2.20) E_2^{s,t} = H^{s,t}(BP_*(K(p)^{2p^2+2p-2})) \Rightarrow \pi_{t-s}^S(K(p)^{2p^2+2p-2}).$$

Set $L_i = BP_*/(p, v_1)\{X_{2i(p+1)+2}\}\ (i < p),\ L_p = BP_*\{X_{2p^2+2p+2}\},\ M_0 = BP_*\{z_3\},\ M_1 = BP_*\{z_3, z_{2p+1}\}/(v_1z_3 - pz_{2p+1}),\ M_2 = BP_*\{z_3, z_{2p+1}\}/(v_1z_3 - pz_{2p+1}) \oplus BP_*\{z'_{2p^2+2p-1}\}.$ They are subcomodules of $BP_*(K(p))$ and $BP_*(K(p)^{2p^2+2p-2})$ is the direct sum of L_i $(1 \le i \le p-1)$ and M_1 ((1.19)).

Consider the long exact sequence associated with a short exact sequence of BP_*BP -comodules $0 \to M_0 \to M_1 \to M_1/M_0 \to 0$.

$$(2.21) \cdots \longrightarrow H^{s,t}(M_0) \longrightarrow H^{s,t}(M_1) \longrightarrow H^{s,t}(M_1/M_0) \stackrel{\delta}{\longrightarrow} H^{s+1,t}(M_0) \longrightarrow \cdots$$

We denote by $\bar{z}_{2p+1} \in M_0/M_1$ represented by z_{2p+1} . Since $M_1/M_0 = BP_*/(p)\{\bar{z}_{2p+1}\}$, $H^{s,t}(M_1/M_0)$ is identified with $H^{s,t-2p-1}(BP_*/(p))\{\bar{z}_{2p+1}\}$. We can verify the formula

$$(2.22) \quad \psi(v_1^r z_{2p+1}) = 1 \otimes v_1^r z_{2p+1} - \sum_{i=1}^{r+1} {r+1 \choose i} (-p)^{i-1} t_1^i \otimes v_1^{r+1-i} z_3.$$

Then, it follows from (2.11) that $\delta \colon H^{s,t}(M_1/M_0) \to H^{s+1,t}(M_0)$ is given by $\delta(v_1^r \bar{z}_{2p+1}) = \alpha_{r+1} z_3$, $\delta(v_1^{r-1} \alpha_1 \bar{z}_{2p+1}) = 0$, $\delta(\beta_1 \bar{z}_{2p+1}) = \alpha_1 \beta_1 z_3$, $\delta(v_1 \beta_1 \bar{z}_{2p+1}) = \delta(\alpha_1 \beta_1 \bar{z}_{2p+1}) = 0$.

We put $\xi_r = \sum_{j=1}^r ((-p)^{j-1})/(j+1)) {r \choose j} [t_1^{j+1}] v_1^{r-j} \in \Omega^1(BP_*)$. Then, we have $\alpha_1 \alpha_r = d(-\xi_r)$ in $\Omega^2(BP_*)$ and $[t_1] v_1^{r-1} z_{2p+1} - \xi_r z_3$ is a cocycle of $\Omega^1(M_1)$. Let ω_r be the element of $H^{1,2r(p-1)+2p+1}(M_1)$ represented by $[t_1] v_1^{r-1} z_{2p+1} - \xi_r z_3$. It is easy to see that ω_r maps to $v_1^{r-1} \alpha_1 \bar{z}_{2p+1}$ by $H^{*,*}(M_1) \to H^{*,*}(M_1/M_0)$ and that $p\omega_{p-1} = -\alpha_{p/2} z_3$ holds in the cobar complex of M_1 . Therefore we obtain

Proposition 2.23. $H^{s,t}(M_1) = 0$ if $t - s \le 2p^2 + 2p$ except for the following cases.

$$\begin{array}{ll} H^{0,3}(M_1) & = Z_{(p)}\{z_3\}, \\ H^{1,2r(p-1)+2p+1}(M_1) = Z/p\{\omega_r\} & for \ r < p-1 \ or \ r = p+1, \\ H^{1,2p^2-2p+3}(M_1) & = Z/p^2\{\omega_{p-1}\}, \\ H^{1,2p^2+1}(M_1) & = Z/p\{\omega_p,h_1z_{2p+1}\}, \\ H^{2,2p^2-2p+3}(M_1) & = Z/p\{\beta_1z_3\}, \\ H^{2,2p^2+2p-1}(M_1) & = Z/p\{v_1\beta_1z_{2p+1}\}, \\ H^{3,2p^2+2p-1}(M_1) & = Z/p\{\beta_1\omega_1\}. \end{array}$$

(2.11) implies that $H^{s,t}(L_i) \cong H^{s,t-2i(p+1)-2}(BP_*/(p,v_1)) = 0$ for $1 \le i \le p-1$ if $t-s=2p^2+2p-2$. Since $H^{s,t}(BP_*(K(p)^{2p^2+2p-2})) \cong H^{s,t}(M_1) \oplus \sum_{i=1}^{p-1} H^{s,t}(L_i)$, (2.19) follows from (2.23).

Remark 2.24. It is easy to verify from (2.21) that $H^{0,t}(M_1) = 0$ unless t = 3.

3. The Hurewicz homomorphism. To begin with, we examine the Hurewicz homomorphisms h^{BP} : $\pi_i(F) \to BP_i(F)$ and h: $\pi_i(F) \to H_i(F; \mathbb{Z}_{(p)})$ for $i \leq 4p^2 - 2$.

Since $E_2^{0,t} = H^{0,t}(BP_*(V(1/2))) = 0$ if $t \neq 2p-1, 2r(p^2-1)$ $(r=0,1,\ldots)$ in (2.14) and v_2 supports a differential, $h^{BP}: \pi_i^S(V(1/2)) \to BP_i(V(1/2))$ is trivial if $i \neq 0, 2p-1$ and $i \leq 2p^2-2$, and it is an isomorphism if i=0 or 2p-1.

Proposition 3.1. For $i \leq 4p^2 - 2$, the Hurewicz homomorphism $h^{BP}: \pi_i(F) \to BP_i(F)$ is trivial if $i \neq 2p^2$, $2p^2 + 2p - 1$, and it is an isomorphism if $i = 2p^2$ or $2p^2 + 2p - 1$.

Remark 3.2. It follows from (2.13) that, for degree $\leq 4p^2 - 2$, $\widetilde{BP}_*(F)$ is isomorphic to $BP_*/(p,v_1)\{Y_{2p^2}\} \oplus BP_*\{Y_{2p^2+2p-1}\}$.

Consider the long exact sequence of ordinary homology theory of $Z_{(p)}$ coefficients associated with a cofibration $S^{2p-2} \xrightarrow{\bar{\alpha}_1} M_p \xrightarrow{\iota_1} V(1/2) \xrightarrow{\partial_1} S^{2p-1}$.

$$(3.3) \longrightarrow H_i(S^{2p-2}; \mathbf{Z}_{(p)}) \xrightarrow{\overline{\alpha}_{1^{\bullet}}} H_i(M_p; \mathbf{Z}_{(p)}) \xrightarrow{\iota_{1^{\bullet}}} H_i(V(1/2); \mathbf{Z}_{(p)}) \xrightarrow{\partial_{1^{\bullet}}} H_{i-1}(S^{2p-2}; \mathbf{Z}_{(p)}) \longrightarrow$$

Then, we see the following fact

Proposition 3.4. (1) $H_i(V(1/2); Z_{(p)}) = 0$ if $i \neq 0$, 2p - 1,

$$\iota_{1^{\bullet}}: H_{0}(M_{p}; Z_{(p)}) \longrightarrow H_{0}(V(1/2); Z_{(p)}) \text{ and } \partial_{1^{\bullet}}: H_{2p-1}(V(1/2); Z_{(p)}) \longrightarrow H_{2p-2}(S^{2p-2}; Z_{(p)})$$

are isomorphisms, where $H_0(M_p; Z_{(p)}) \cong F_p$, $H_{2p-2}(S^{2p-2}; Z_{(p)}) \cong Z_{(p)}$.

(2) $H_i(F; \mathbf{Z}_{(p)}) = 0$ if $i \neq 0$, $2p^2$, $2p^2 + 2p - 1$ for $i \leq 4p^2 - 2$, and there are isomorphisms $H_0(F; \mathbf{Z}_{(p)}) \cong H_{2p^2+2p-1}(F; \mathbf{Z}_{(p)}) \cong \mathbf{Z}_{(p)}$ and $H_{2p^2}(F; \mathbf{Z}_{(p)}) \cong \mathbf{F}_p$.

The Hurewicz homomorphisms give a morphism of the long exact sequences from (2.6) to (3.3). It follows from (2.12) and (3.4) that $h: \pi_{2p-1}^{\mathcal{S}}(V(1/2)) \to H_{2p-1}(V(1/2); \mathbf{Z}_{(p)})$ maps injectively onto $pH_{2p-1}(V(1/2); \mathbf{Z}_{(p)})$.

Proposition 3.5. For $i \leq 4p^2 - 2$, the Hurewicz homomorphism $h: \pi_i(F) \to H_i(F; \mathbf{Z}_{(p)})$ is trivial if $i \neq 2p^2$, $2p^2 + 2p - 1$, it is an isomorphism if $i = 2p^2$, and it is an injection onto $pH_{2p^2+2p-1}(F; \mathbf{Z}_{(p)})$ if $i = 2p^2 + 2p - 1$.

Remark 3.6. (3.4) and (3.5) imply that the Thom map $T_{Z_{(p)}}$: $BP_i(F) \to H_i(F; Z_{(p)})$ is a bijection if $i = 0, 2p^2$, and it is an injection onto $pH_{2p^2+2p-1}(F; Z_{(p)})$ if $i = 2p^2 + 2p - 1$.

Recall that $H_*(K(\mathbf{Z}_{(p)},3);\mathbf{Z}_{(p)})$ for degree $\leq 2p^2+2p+1$ is isomorphic to

$$(3.7) Z_{(p)}\{\theta_0, \theta_3\} \oplus F_p\{\theta_{2r(p+1)-1}|r \le p\} \oplus F_p\{\theta_{2r(p+1)+2}|r < p\} \\ \oplus F_p\{\theta_{2p^2+1}, \theta_{2p^2+4}\},$$

where deg $\theta_i = i$.

Consider the homology Serre spectral sequence associated with the fibration $F \xrightarrow{f} K(p) \xrightarrow{y_3} K(Z_{(p)}, 3)$;

$$E_{s,t}^2 = H_s(K(Z_{(p)},3); H_t(F; Z_{(p)})) \Rightarrow H_{s+t}(K(p); Z_{(p)}).$$

By (1.12) and (3.4), $\theta_{2p^2+1} \in E^2_{2p^2+1,0}$ supports a differential and kills a generator of $E^2_{0,2p^2} = H_{2p^2}(F; Z_{(p)}) \cong Z/p$. Since $E^2_{s,t} = 0$ if $s+t=2p^2+2p-2$ or $2p^2+2p$, elements of total degree $2p^2+2p-1$ are permanent cycles. We also note the fact $E^2_{s,t} = 0$ if $s+t=2p^2+2p-1$ and s,t>0. Hence we have a short exact sequence

$$0 \longrightarrow H_{2p^2+2p-1}(F; \mathbf{Z}_{(p)}) \xrightarrow{f_{\star}} H_{2p^2+2p-1}(K(p); \mathbf{Z}_{(p)}) \xrightarrow{y_{3^{\star}}} H_{2p^2+2p-1}(K(\mathbf{Z}_{(p)}, 3); \mathbf{Z}_{(p)}) \longrightarrow 0.$$

By virtue of (1.12), (3.4) and (3.7), we obtain

Proposition 3.8. f_* : $H_i(F; \mathbf{Z}_{(p)}) \to H_i(K(p); \mathbf{Z}_{(p)})$ is a bijection if i = 0, an injection onto $pH_{2p^2+2p-1}(K(p); \mathbf{Z}_{(p)})$ if $i = 2p^2 + 2p - 1$. Otherwise f_* is a zero map.

Combining (3.5) and (3.8), we have the following result by the naturality of the Hurewicz homomorphism

Proposition 3.9. The Hurewicz homomorphism $h: \pi_i(K(p)) \to H_i(K(p); \mathbf{Z}_{(p)})$ is trivial if $i \neq 3, 2p^2 + 2p - 1$, an isomorphism if i = 3 and an injection onto $p^2H_{2p^2+2p-1}(K(p); \mathbf{Z}_{(p)})$ if $i = 2p^2 + 2p - 1$.

It follows from (1.18) and the above result that the BP-Hurewicz homomorphism $h^{BP}\colon \pi_{2p^2+2p-1}(K(p))\to BP_{2p^2+2p-1}(K(p))$ maps a generator to an element, say ζ , of the form $pz'_{2p^2+2p-1}+(\lambda v_1^{p+1}+\mu v_2)z_{2p+1}$. Since ζ is primitive, $(\lambda v_1^{p+1}+\mu v_2)z_{2p+1}$ is primitive modulo p. Recall that $v_1z_3=pz_{2p+1},\ \eta_R(v_1)=v_1+pt_1$ and $\eta_R(v_2)\equiv v_2+v_1t_1^p-v_1^pt_1$ modulo p [5], then we can easily verify from (1.19) that $v_1^{p+1}z_{2p+1}$ is primitive modulo p and that $\psi(v_2z_{2p+1})\equiv 1\otimes v_2z_{2p+1}+t_1\otimes v_1^pz_{2p+1}-t_1\otimes v_2z_3$ modulo p. This implies that $\mu\equiv 0$ modulo p, hence we may assume $\mu=0$ by replacing $z'_{2p^2+2p-1}+(\mu/p)v_2z_{2p+1}$ by z'_{2p^2+2p-1} .

We set $\psi(z'_{2p^2+2p-1}) = 1 \otimes z'_{2p^2+2p-1} + A \otimes z_{2p+1} + B \otimes z_3$ for $A \in BP_{2p^2-2}BP$ and $B \in BP_{2p^2+2p-4}BP$. We may assume $B = bt_1^{p+2} + cv_2t_1 + dt_1t_2$ $(b, c, d \in Z_{(p)})$ and put $A = \sum_{i=0}^{p+1} a_it_1^i\eta_R(v_1)^{p+1-i} + at_2 + a'v_2$. Then, $(\varepsilon \otimes 1)\psi(z'_{2p^2+2p-1}) = z'_{2p^2+2p-1}$ implies that $a_0 = a' = 0$. An easy calculation shows that the equality $\psi(\zeta) = 1 \otimes \zeta$ forces $a_i = \lambda(-p)^{i-1} {p+2 \choose i}$, $b = \lambda p^p$ and a = c = d = 0. Then we have

(3.10)
$$\psi(z'_{2p^2+2p-1}) = 1 \otimes z'_{2p^2+2p-1} + \lambda(p+2)t_1 \otimes v_1^p z_{2p+1} - \lambda \sum_{i=0}^p (-p)^i \binom{p+2}{i+2} t_1^{i+2} \otimes v_1^{p-i} z_3$$

Consider the long exact sequence associated with a short exact sequence of BP_*BP -comodules $0 \to M_1 \to M_2 \to M_2/M_1 \to 0$.

$$(3.11) \cdots \longrightarrow H^{s,t}(M_1) \longrightarrow H^{s,t}(M_2) \longrightarrow H^{s,t}(M_2/M_1) \xrightarrow{\delta} H^{s+1,t}(M_1) \longrightarrow \cdots$$

We denote by $\bar{z}'_{2p^2+2p-1} \in M_2/M_1$ the class of $z'_{2p^2+2p-1} \in M_2$. Then \bar{z}'_{2p^2+2p-1} is primitive in M_2/M_1 and $H^{s,t}(M_2/M_1)$ is identified with $H^{s,t-2p^2-2p+1}(BP_*)\{\bar{z}'_{2p^2+2p-1}\}$. It follows from (2.23) and (3.10) that $\delta\colon H^{0,2p^2+2p-1}(M_2/M_1)\to H^{1,2p^2+2p-1}(M_1)$ maps \bar{z}'_{2p^2+2p-1} to $(p+2)\lambda\omega_{p+1}$. From (2.11), (2.23) and (3.11), we obtain

Lemma 3.12. If $\lambda \in pZ_{(p)}$, we have $H^{1,2p^2+2p-1}(M_2) = \mathbb{Z}/p\{\omega_{p+1}\}$. Thus $H^{1,2p^2+2p-1}(BP_*(K(p))) = \mathbb{Z}/p\{\omega_{p+1}\}$ and ω_{p+1} represents a nontrivial element of $\pi_{2p^2+2p-2}^S(K(p))$.

Let $g: S^{2p^2+2p-2} \to K(p)^{2p^2+2p-2}$ denote the attaching map of the $(2p^2+2p-1)$ -cell of K(p). Consider a cofiber sequence $S^{2p^2+2p-2} \xrightarrow{g}$

 $\begin{array}{lll} K(p)^{2p^2+2p-2} \stackrel{\iota}{\to} K(p)^{2p^2+2p-1}. & \text{Since } \wp^1(b_3b_{2p+2}^{p-1}) &= b_{2p+1}b_{2p+2}^{p-1} \text{ in } \\ H^*(K(p)^{2p^2+2p-1}; \emph{\textbf{\textit{F}}}_p) &= H^*(K(p); \emph{\textbf{\textit{F}}}_p)/(b_3b_{2p+1}b_{2p+2}^{p-1}), \ K(p)^{2p^2+2p-1} \text{ can not be stably homotopy equivalent to } K(p)^{2p^2+2p-2} \vee S^{2p^2+2p-1}. \ \text{Hence } \emph{\textbf{\textit{g}}} \\ \text{is stably non-trivial and generates } \pi^S_{2p^2+2p-2}(K(p)^{2p^2+2p-2}) \ ((2.19)). \end{array}$

Suppose that $\lambda \in pZ_{(p)}$ and let us denote by ω_{p+1} the element of $\pi^S_{2p^2+2p-2}(K(p))$ corresponding to $\omega_{p+1} \in H^{1,2p^2+2p-1}(BP_*(K(p)))$. There is a map $\omega'_{p+1} \colon S^{2p^2+2p-2} \to K(p)^{2p^2+2p-2}$ such that ω_{p+1} is a composition $S^{2p^2+2p-2} \xrightarrow{\omega'_{p+1}} K(p)^{2p^2+2p-2} \hookrightarrow K(p)$. By the preceding argument, $\omega'_{p+1} = cg$ for some $c \in \mathbb{Z}/p$. However, since $S^{2p^2+2p-2} \xrightarrow{g} K(p)^{2p^2+2p-2} \hookrightarrow K(p)$ is trivial, this contradicts the non-triviality of ω_{p+1} . Thus λ is a unit in $Z_{(p)}$, and $\zeta = pz'_{2p^2+2p-1} + \lambda v_1^{p+1} z_{2p+1}$ generates a direct summand of $BP_{2p^2+2p-1}(K(p)) = Z_{(p)}\{z'_{2p^2+2p-1}, v_1^{p+1} z_{2p+1}, v_2 z_{2p+1}\}$. Together with (1.18), (3.1), (3.5) and (3.8), we showed

Proposition 3.13. For $i \leq 4p^2 - 2$, the BP-Hurewicz homomorphism $h^{BP}: \pi_i(K(p)) \to BP_i(K(p))$ is an isomorphism if i = 3, a split monomorphism onto the set of primitive elements if $i = 2p^2 + 2p - 1$ and otherwise a zero map.

Remark 3.14. Put $PBP_t(K(p)) = \{x \in BP_t(K(p)) | \psi(x) = 1 \otimes x\} = H^{0,t}(BP_*(K(p)))$. Then, it follows from (2.24) and (3.11) that $PBP_t(K(p)) = 0$ except for the following cases.

$$PBP_{3}(K(p)) = Z_{(p)}\{z_{3}\},$$

$$PBP_{2p^{2}+2p-1}(K(p)) = Z_{(p)}\{\zeta\},$$

$$PBP_{2i(p+1)+2j(p^{2}-1)+2}(K(p)) = Z/p\{v_{2}^{j}X_{2i(p+1)+2}\}$$
for $1 \le i < p, j \ge 0,$

$$PBP_{2p^{2}+2p+2}(K(p)) = Z_{(p)}\{X_{2p^{2}+2p+2}\}.$$

4. The homology suspension. Consider the Serre spectral sequence for mod p cohomology associated with the path fibration $\Omega K(p) \to PK(p) \to K(p)$.

$$(4.1) E_2^{s,t} = H^s(K(p); H^t(\Omega K(p); F_p)) \Rightarrow H^{s+t}(PK(p); F_p)$$

There exists an element $\bar{x}_2 \in H^2(\Omega K(p); \mathbf{F}_p) = E_3^{0,2}$ which maps to $x_3 \in E_3^{3,0}$ by d_3 . The transgression theorem implies that $d_{2p+1}(\bar{x}_2^p) = x_{2p+1}$ and $d_{2p+2}(x_3 \otimes \bar{x}_2^{p-1}) = x_{2p+2}$.

Lemma 4.2. $H^{2p+1}(\Omega K(p); \mathbf{F}_p) = 0.$

We apply the Eilenberg-Moore spectral sequence associated with the above fibration.

$$E_{s,t}^2 = \operatorname{Cotor}_{s,t}^{H_{\bullet}(K(p);F_p)}(F_p, F_p) \implies H_{s+t}(\Omega K(p); F_p)$$

The E^2 -term is given by $E^2 = F_p[a_2, a_{2p}, a_{2p^2+2p-2}] \otimes E(a_{2p+1})$, where $a_2 \in E^2_{-1,3}, \ a_{2p} \in E^2_{-1,2p+1}, \ a_{2p+1} \in E^2_{-1,2p+2}$ and $a_{2p^2+2p-2} \in E^2_{-2,2p^2+2p}$ are the elements represented by $[b_3]$, $[b_{2p+1}]$, $[b_{2p+2}]$ and $\sum_{i=1}^{p-1} (1/p) \binom{p}{i}$ $[b^i_{2p+2}|b^{p-i}_{2p+2}]$, respectively, in the cobar complex $\Omega_*(H_*(K(p); F_p))$. Since $H_{2p+1}(\Omega K(p); F_p) = 0$ by (4.2), a_{2p+1} should support a differential. The only possible differential is $d_{p-1}(a_{2p+1}) = \nu a_2^p \ (\nu \in F_p, \ \nu \neq 0)$ for dimensional reasons. Hence $E^p = E^\infty = F_p[a_2, a_{2p}, a_{2p^2+2p-2}]/(a_2^p)$ and the extension is trivial.

Proposition 4.3. (1) $H_*(\Omega K(p); F_p) = F_p[a_2, a_{2p}, a_{2p^2+2p-2}]/(a_2^p)$. Let φ be the \mathcal{A}_{p^*} -comodule structure map, then $\varphi(a_{2p}) = 1 \otimes a_{2p} - t_1 \otimes a_2$. (2) The homology suspension map σ_* : $H_t(\Omega K(p); F_p) \to H_{t+1}(K(p); F_p)$ is given by $\sigma_*(a_2) = b_3$, $\sigma_*(a_{2p}) = b_{2p+1}$, $\sigma_*(a_{2p^2+2p-2}) = 0$.

The equality $\varphi(a_{2p})=1\otimes a_{2p}-t_1\otimes a_2$ follows from the fact that a_2 and a_{2p} are the duals of \bar{x}_2 and \bar{x}_2^p and that $\wp^1(\bar{x}_2)=\bar{x}_2^p$ in $H^*(\Omega K(p); F_p)$. The last statement follows from $d_3(\bar{x}_2)=x_3$ and $d_{2p+1}(\bar{x}_2^p)=x_{2p+1}$ in (4.1).

Since $H_t(\Omega K(p); F_p) = 0$ if t is odd, it follows from the Bockstein exact sequence that $H_*(\Omega K(p); Z_{(p)})$ is torsion free and that there are elements \tilde{a}_2 , \tilde{a}_{2p} and \tilde{a}_{2p^2+2p-2} of $H_*(\Omega K(p); Z_{(p)})$ such that $\rho(\tilde{a}_i) = a_i$ $(i = 2, 2p, 2p^2 + 2p - 2)$, where ρ is the mod p reduction map. Then we have $H_*(\Omega K(p); Z_{(p)}) = Z_{(p)}[\tilde{a}_2, \tilde{a}_{2p}, \tilde{a}_{2p^2+2p-2}]/(\tilde{a}_2^p - \kappa p \tilde{a}_{2p})$ for some $\kappa \in Z_{(p)}$.

Since $H_*(\Omega K(p); Z_{(p)})$ is torsion free, it has a structure of Hopf algebra. Let Δ_* denote the diagonal map. We set $\Delta_*(\tilde{a}_{2p}) = 1 \otimes \tilde{a}_{2p} + \sum_{i=1}^{p-1} l_i \tilde{a}_2^i \otimes \tilde{a}_2^{p-i} + \tilde{a}_{2p} \otimes 1$ for some $l_i \in Z_{(p)}$. On the other hand, we have $\Delta_*(\tilde{a}_2^p) = \sum_{i=0}^p \binom{p}{i} \tilde{a}_2^i \otimes \tilde{a}_2^{p-i}$ for \tilde{a}_2 is primitive. Applying Δ_* to the both sides of $\tilde{a}_2^p = \kappa p \tilde{a}_{2p}$, we have $l_i = (1/\kappa p) \binom{p}{i}$, therefore

(4.4)
$$\Delta_*(\tilde{a}_{2p}) = 1 \otimes \tilde{a}_{2p} + \sum_{i=1}^{p-1} \frac{1}{\kappa p} {p \choose i} \tilde{a}_2^i \otimes \tilde{a}_2^{p-i} + \tilde{a}_{2p} \otimes 1.$$

Let us denote by $\langle \rangle$: $H_*(\Omega K(p); F_p) \otimes H^*(\Omega K(p); F_p) \to F_p$ the canonical pairing and by Δ_*^{p-1} the (p-1)-fold diagonal map

$$\Delta_*^{p-1} = (\Delta_* \otimes \overbrace{1 \otimes \cdots \otimes 1}^{p-2 \text{ times}}) \cdots (\Delta_* \otimes 1 \otimes 1)(\Delta_* \otimes 1)\Delta_*.$$

Then, $\langle \Delta_{\mathbf{x}}^{p-1}(a_{2p}), \bar{x}_2 \otimes \cdots \otimes \bar{x}_2 \rangle = \langle a_{2p}, \bar{x}_2^p \rangle = 1$ and by (4.4),

$$\Delta_*^{p-1}(a_{2p}) = \frac{(p-1)!}{\kappa} \underbrace{a_2 \otimes \cdots \otimes a_2}_{p \text{ times}} + \cdots.$$

Thus we have $\kappa \equiv (p-1)! \equiv -1$ modulo p and we may replace $-\kappa \tilde{a}_{2p}$ by \tilde{a}_{2p} .

Proposition 4.5. $H_*(\Omega K(p); Z_{(p)}) = Z_{(p)}[\tilde{a}_2, \tilde{a}_{2p}, \tilde{a}_{2p^2+2p-2}]/(\tilde{a}_2^p + p\tilde{a}_{2p})$ with $\rho(\tilde{a}_i) = a_i$ ($i = 2, 2p, 2p^2 + 2p - 2$), and $\Delta_*(\tilde{a}_{2p}) = 1 \otimes \tilde{a}_{2p} - \sum_{i=1}^{p-1} (1/p) {p \choose i} \tilde{a}_2^i \otimes \tilde{a}_2^{p-i} + \tilde{a}_{2p} \otimes 1$.

To determine the homology suspension $\sigma_*: H_t(\Omega K(p); Z_{(p)}) \to H_{t+1}(K(p); Z_{(p)})$, we consider the Serre spectral sequence for $Z_{(p)}$ -homology associated with the path fibration $\Omega K(p) \to PK(p) \to K(p)$; $E_{s,t}^2 = H_s(K(p); H_t(\Omega K(p); Z_{(p)})) \Rightarrow H_{s+t}(PK(p); Z_{(p)})$. The routine argument shows that the differentials are given as follows (See (1.12)).

$$\begin{array}{ll} d^3(z_3) & = \tilde{a}_2, \\ d^3(z_3z_{2i(p+1)-1}) & = \tilde{a}_2z_{2i(p+1)-1} & (1 \le i \le p), \\ d^{2p-1}(z_{2(i+1)(p+1)-1}) & = \tilde{a}_2^{p-1}z_3z_{2i(p+1)-1} & (1 \le i \le p-1), \\ d^{2p+1}(z_{2p+1}) & = \tilde{a}_{2p}, \\ d^{2p^2+2p-1}(pz_{2p^2+2p-1}) & = \tilde{a}_{2p^2+2p-1} \end{array}$$

This implies that pz_{2p^2+2p-1} is transgressible though z_{2p^2+2p-1} is not.

Proposition 4.6. The homology suspension σ_* : $H_t(\Omega K(p); \mathbf{Z}_{(p)}) \to H_{t+1}(K(p); \mathbf{Z}_{(p)})$ is given by $\sigma_*(\tilde{a}_2) = z_3$, $\sigma_*(\tilde{a}_{2p}) = z_{2p+1}$ and $\sigma_*(\tilde{a}_{2p^2+2p-1}) = pz_{2p^2+2p-1}$.

Consider the Atiyah-Hirzebruch spectral sequence

$$E_{s,t}^2 = H_s(\Omega K(p); BP_t) \Rightarrow BP_{s+t}(\Omega K(p)).$$

It collapses for dimensional reason and $E^{\infty}=BP_{\star}[\tilde{a}_{2},\tilde{a}_{2p},\tilde{a}_{2p^{2}+2p-2}]/(\tilde{a}_{2}^{p}+p\tilde{a}_{2p})$. Let \hat{a}_{2} , \hat{a}_{2p} and $\hat{a}_{2p^{2}+2p-2}$ be the elements of $BP_{\star}(\Omega K(p))$ corresponding to \tilde{a}_{2} , \tilde{a}_{2p} and $\tilde{a}_{2p^{2}+2p-2}$ in the E^{∞} -term. There exists $\tau \in Z_{(p)}$ such that $\hat{a}_{2}^{p}+p\hat{a}_{2p}=\tau v_{1}\hat{a}_{2}$. By (4.3), we have $\psi(\hat{a}_{2p})=1\otimes\hat{a}_{2p}-t_{1}\otimes\hat{a}_{2}$, where $\psi\colon BP_{\star}(\Omega K(p))\to BP_{\star}BP\otimes_{BP_{\star}}BP_{\star}(\Omega K(p))$ is the $BP_{\star}BP$ -comodule structure map. Then, $\psi(\hat{a}_{2}^{p}+p\hat{a}_{2p})=1\otimes\hat{a}_{2}^{p}+1\otimes p\hat{a}_{2p}-t_{1}\otimes p\hat{a}_{2}$. On the other hand, $\psi(\tau v_{1}\hat{a}_{2})=\tau v_{1}\otimes\hat{a}_{2}=1\otimes \tau v_{1}\hat{a}_{2}-\tau t_{1}\otimes p\hat{a}_{2}$. Thus we have $\tau=1$.

By the naturality of the Thom map, it follows from (1.18) that the homology suspension $\sigma_* \colon \widetilde{BP}_l(\Omega K(p)) \to \widetilde{BP}_{l+1}(K(p))$ maps $\sigma_*(\hat{a}_2) = z_3$, $\sigma_*(\hat{a}_{2p}) = \nu z_{2p+1}$ and $\sigma_*(\hat{a}_{2p^2+2p-2}) = z'_{2p^2+2p-1} + \mu_1 v_1^{p+1} z_{2p+1} + \mu_2 v_2 z_{2p+1}$ for some ν , μ_1 , $\mu_2 \in Z_{(p)}$, $\nu \equiv 1$ modulo p.

Proposition 4.7. $BP_*(\Omega K(p)) = BP_*[\hat{a}_2, \hat{a}_{2p}, \hat{a}_{2p^2+2p-2}]/(\hat{a}_2^p + p\hat{a}_{2p} - v_1\hat{a}_2), T_{Z_{(p)}}(\hat{a}_i) = \tilde{a}_i \text{ for } i = 2, 2p, 2p^2 + 2p - 2.$ The image of the homology suspension $\sigma_* \colon \widetilde{BP}_*(\Omega K(p)) \to \widetilde{BP}_{*+1}(K(p))$ is a BP_* -submodule of $BP_*(K(p))$ generated by z_3 , z_{2p+1} and z'_{2p^2+2p-1} , that is, it coincides with $\sum_{i>0} BP_{2i+1}(K(p))$.

If X is a topological space with a base point x_0 and $E_*(-)$ is a generalized homology theory, then the set of diagonal primitive elements is defined to be the kernel of the reduced diagonal map $\widetilde{\Delta} \colon E_*(X) \to E_*(X \times X)$ which maps $x \in E_*(X)$ to $\Delta_*(x) - (i_1 \cdot (x) + i_2 \cdot (x))$. Here $\Delta \colon X \to X \times X$ denotes the diagonal map and $i_1, i_2 \colon X \to X \times X$ are the maps given by $i_1(x) = (x, x_0), i_2(x) = (x_0, x)$. Note that this definition does not depend on the choice of the base point if X is path connected.

Let us denote by $P_dE_*(X)$ the set of diagonal primitive elements of $E_*(X)$. Then, it is known that $P_dE_*(X)$ contains the image of the homology suspension $\sigma_* \colon \widetilde{E}_*(\Omega X) \to \widetilde{E}_{*+1}(X)$ and if a map $\eta \colon S^0 \to E$ is given, $P_dE_*(X)$ also contains the image of the unstable Hurewicz homomorphism $h^E \colon \pi_*(X) \to E_*(X)$.

To show that $P_dBP_*(K(p)) = \operatorname{Im} \sigma_*$, we consider a homology theory $P(2)_*(-)$ with coefficient ring $BP_*/(p,v_1)$. (It is also denoted by $BPI_{2^*}(-)$.) There are canonical maps of ring spectra $T_2 \colon BP \to P(2)$ and $\rho_2 \colon P(2) \to K(F_p)$ such that T_2 induces the natural projection $BP_* \to BP_*/(p,v_1)$ of the coefficient rings and composition ρ_2T_2 coincides with the Thom map. It is also known that $\rho_{2^*} \colon H_*(P(2); F_p) \to H_*(K(F_p); F_p) = \mathcal{A}_{p^*}$ is an injection onto $E(s_0,s_1) \otimes F_p[t_1,t_2,\ldots]$.

We apply the Adams spectral sequence (1.4) for E = P(2), X = K(p).

(4.8)
$$E_2^{s,t} = \operatorname{Ext}_{E(s_2,s_3,\ldots)}^{s,t}(F_p, H_*(K(p); F_p)) \Rightarrow P(2)_{t-s}(K(p))$$

It follows from (1.9) that every element of $H_*(K(p); \mathbf{F}_p)$ is primitive as an $E(s_2, s_3, \ldots)$ -comodule, thus $E_2 = \mathbf{F}_p[\bar{v}_2, \bar{v}_3, \ldots] \otimes H_*(K(p); \mathbf{F}_p)$. Therefore this spectral sequence collapses for dimensional reason. Note that $T_{2^*} \colon BP_*(K(p)) \to P(2)_*(K(p))$ induces morphism of the spectral sequences from (1.6) to (4.8), and that, as in (1.7), the maps between the E_2 -terms coincides with the maps induced by the natural projection $E(s_0, s_1, \ldots) \to E(s_2, s_3, \ldots)$. We obtain an analog of (1.18).

Proposition 4.9. $P(2)_*(K(p)) = BP_*/(p, v_1) \otimes E(b_3, b_{2p+1}) \otimes F_p[b_{2p+2}]/(b_{2p+2}^p)$ and $T_{2^*}: BP_*(K(p)) \to P(2)_*(K(p))$ is given by

$$T_{2*}(X_{2i(p+1)+2}) = b_3 b_{2p+1} b_{2p+2}^{i-1} \quad (1 \le i \le p),$$

$$T_{2*}(z_3) = b_3,$$

$$T_{2*}(z_{2p+1}) = b_{2p+1},$$

$$T_{2*}(z'_{2p^2+2p-1}) = 0.$$

Moreover, ρ_{2^*} : $P(2)_*(K(p)) \to H_*(K(p); \mathbf{F}_p)$ maps b_i to b_i .

The above result implies that $P(2)_*(K(p))$ is a free $BP_*/(p,v_1)$ -module, thus it has a structure of Hopf algebra. Hence $\rho_{2^*}\colon P(2)_*(K(p))\to H_*(K(p);F_p)$ is a map of a Hopf algebras, and b_i (i=3,2p+1,2p+2) are primitive. If $cX_{2i(p+1)+2}\in L_i\cap P_dBP_*(K(p))$ $(c\in BP_*/(p,v_1),1\leq i\leq p-1)$, then $T_{2^*}(cX_{2i(p+1)+2})\in P_dP(2)_*(K(p))$. On the other hand, $T_{2^*}(cX_{2i(p+1)+2})=cb_3b_{2p+1}b_{2p+2}^{i-1}$, which is not diagonal primitive unless c=0.

Lemma 4.10.

$$L_i \cap P_d BP_*(K(p)) = 0$$
 if $1 < i < p - 1$.

Consider the canonical map $BP_*(K(p)) \to BP_*(K(p)) \otimes \mathbf{Q}$ instead of T_{2^*} . Since $X_{2p^2+2p+2} = p^{-1}z_3z'_{2p^2+2p-1}$ in $BP_*(K(p)) \otimes \mathbf{Q}$ ((1.19)) and both z_3 and z'_{2p^2+2p-1} are primitive, the similar argument shows

Lemma 4.11.

$$L_p \cap P_d B P_*(K(p)) = 0.$$

Suppose that there exists a non-zero element x of $P_dBP_*(K(p))$ of even degree, say 2n. Then $x=\sum_{i=1}^p c_i X_{2i(p+1)+2}$ for some $c_i\in BP_{2n-2i(p+1)-2}$ and it follows from (4.10) and (4.11) that $c_i\neq 0$ for at least two i's. If $c_j\neq 0$ and $c_k\neq 0$ ($1\leq j< k\leq p$), 2n-2j(p+1)-2=2l(p-1) and 2n-2k(p+1)-2=2m(p-1) for some integers l,m. Hence we have (k-j)(p+1)=(l-m)(p-1) and this implies that j=1 and k=p. Thus $x=c_1X_{2p+4}+c_pX_{2p^2+2p+2}$. Since X_{2p+4} is a p-torsion element, we have $px=pc_pX_{2p^2+2p+2}\in L_p\cap P_dBP_*(K(p))$, hence $pc_pX_{2p^2+2p+2}=0$ by (4.11). But X_{2p^2+2p+2} is torsion free, this contradicts $c_p\neq 0$. Therefore we have shown $P_dBP_*(K(p))\cap \sum_{i\geq 0}BP_{2i}(K(p))=0$ and by (4.7), this implies the following result.

Proposition 4.12.

$$P_d BP_*(K(p)) = \operatorname{Im} \{ \sigma_* : \widetilde{BP}_*(\Omega K(p)) \to \widetilde{BP}_{*+1}(K(p)) \}.$$

By (3.14) and (4.7), we have $P_dBP_*(K(p)) \cap PBP_*(K(p)) = \mathbb{Z}_{(p)}\{z_3,\zeta\}$. The left hand side contains the Hurewicz image and we already showed that the Hurewicz image contains the right hand side. This implies $\operatorname{Im}\{h^{BP}: \pi_*(K(p)) \to BP_*(K(p))\} = \mathbb{Z}_{(p)}\{z_3,\zeta\}$. Finally we obtain

Theorem 4.13. The BP-Hurewicz homomorphism h^{BP} : $\pi_i(K(p)) \rightarrow BP_i(K(p))$ is an isomorphism if i = 3, a split monomorphism onto the set of primitive elements if $i = 2p^2 + 2p - 1$ and otherwise a zero map.

Remark 4.14. If we apply T_{2^*} to the both sides of a relation $z_3z'_{2p^2+2p-1}=pX_{2p^2+2p+2}+\gamma v_2X_{2p+4}$ ((1.19)), it follows that $\gamma\equiv 0$ modulo p. Since X_{2p+4} is a p-torsion element, we have $z_3z'_{2p^2+2p-1}=pX_{2p^2+2p+2}$ in $BP_*(K(p))$.

REFERENCES

- [1] J. HARPER: H-spaces with torsion, Memoirs of AMS 223 (1979).
- [2] J. W. MILNOR: The Steenrod algebra and its dual, Ann. of Math. 67 (1958), 150-171.
- [3] H. R. MILLER, D. C. RAVENEL and W. S. WILSON: Periodic phenomena in the Adams-Novikov spectral sequence, Ann. of Math. 106 (1977), 469-516.
- [4] G. MORENO: Spherical classes in the bordism of the torsion molecule. Bol. Soc. Mat. Mexicana 37 (1992), 417-429.

- [5] D. C. RAVENEL: The structure of BP.BP modulo an invariant prime ideal, Topology 15 (1976), 149-153.
- [6] D. C. RAVENEL: Complex Cobordism and Stable Homotopy Groups of Spheres, Academic Press, 1986.
- [7] H. Toda: On spectra realizing exterior parts of the Steenrod algebra, Topology 10 (1971), 53-65.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF OSAKA PREFECTURE SAKAI, OSAKA 593, JAPAN

(Received November 29, 1995)

CURRENT ADDRESS:
DEPARTMENT OF MATHEMATICS AND INFORMATION SCIENCES
OSAKA PREFECTURE UNIVERSITY
SAKAI, OSAKA 593, JAPAN