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ON HARPER’S TORSION MOLECULE

Dedicated to Professor Teiichi Kobayashi on his 60th birthday

ATsusHl YAMAGUCHI

Introduction. Harper’s torsion molecule (1] for an odd prime p
is a finite simply connected Hopf space K'(p) whose cohomology in F,-
coefficients is given by H*(K(p); F;) = E(z3,22p41) ® Fplzopral/(2h,42)
and p'(z3) = Tap41, B(T2p+1) = Top+2. Here we study homotopy groups
and BP-Hurewicz homomorphism of K (p).

The organization of this note is as follows. In the first section, we
compute the Z)-homology and the BP-homology of the Harper’s tor-
sion molecule K'(p) [1] and determine the Thom map Tz : BR(K(p)) —
H.(K(p); Z(p)), by using the Adams spectral sequence.

In section 2, we observe that the space F' obtained by killing the 3-
dimensional homotopy group of K(p) is homotopy equivalent to the Toda’s
spectrum V(1/2) in the stable range. By making use of this fact and ap-
plying the Adams-Novikov spectral sequence, we examine the unstable
homotopy groups of K'(p) for dimension less than 4p? — 1. We also com-
pute the stable homotopy group of the (2p? + 2p — 2)-skeleton of K'(p) in
dimension 2p® 4 2p — 2, where the attaching map of the (2p? + 2p — 1)-cell
of K(p) lives.

In section 3, we determine the BP-Hurewicz homomorphism hBF:
T.(K(p)) = BR.(K(p)) for dimension less than 4p% — 1 and show that it is
a split monomorphism in this range.

In the last section, by showing that the image of the homology suspen-
sion coincides with the set of the diagonal primitive elements of BE.(K(p)).
we completely determine the BP-Hurewicz homomorphism, that is, it is a
trivial map in dimension other than 3 and 2p? + 2p — 1.

This work is motivated by G. Moreno’s paper [4], where the BP-
Hurewicz homomorphism of the Harper’s torsion molecule is first studied.
Our result improves the main result of [4].

1. Computations in the Adams spectral sequences. First we
fix the notations. Let p be an odd prime number. We denote by A, be
the mod p Steenrod algebra generated by the Bockstein operator 4 and
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114 A. YAMAGUCHI

the reduced power operators p' for i = 1,2,.... Ap+ denotes the dual of
the Steenrod algebra which is isomorphic to E(sg, s1, S2,...)®@ F;[t1,t2,...].
Here, s; and t; are the conjugates by the canonical anti-automorphism of 7;
and &; in Milnor’s paper [2]. In particular, —s; and —t; are the duals of @Q;
and p' with respect to the Milnor basis. Then, the coproduct ¢, of A,.
is given by
; _
¢(t:) = ¥ t; @1,
(1.1) =0
bu(si) = ZDSJ' ®,+1®s:.
j=

For an abelian group G, we denote by K(G) the Eilenberg-MacLane
spectrum for the group G. We only deal with the cases G = F, and Z(,.
In these cases, K(G) is a commutative ring spectrum. There is a cofiber
sequence

(1.2) K(Zy) 2 K(Z) 2 K(B) 5 SK(Zy),

where p denotes the p times of the identity map, p the map induced by the
mod p reduction Z;) — F'p. Then p is a map of ring spectra and the compo-
sition K (F,) KN YK(Z,)) % Y K(F,) is the Bockstein operator. It is easy
to show (also well-known) that p*: A, = H*(K(F); F) = H*(K(Z)); Fp)
is an epimorphism of left .4,-modules with kernel A,3. By dualizing this,
we have the following.

Proposition 1.3. p.: HJ(K(Zy)) Fp)— Ho(K(F); F) = Ape
is a monomorphism of left Ap-comodule algebras onto a subalgebra
E(51,82, .o ) ® .E,[t],tz, .o ]

Thus we identify H.(K(Z,)); F;) with the image of p.

Let E and X be connective spectra. We consider the Adams spectral
sequence

(1.4) Byt = Ext} (B HAEAX:E)) = Eis(X).

If E is a ring spectrum and there is a map of ring spectra f: E — K(F,)
such that f.: H.(E; F,)— H(K(F,); F,) = Ay is injective, by applying
the change-of-rings isomorphism ([6] A1.3.13), E;-term of the above spec-
tral sequence is identified with Extj;:_ 11,(F H( X1 ), where I is an
ideal of A, generated by f.(}is0 Hi(E; Fp)).
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In the case E = K(Z()), by (1.3) we have a spectral sequence
(1.5) Ey' = Extyl, (B Ho(X; F)) = Hio(X: Z).

In the case E = BP, since the Thom reduction map Tf,: BP — K(F,)
induces a monomorphism Tf,.: H.(BP;F,)— H.(K(F,); F,) = Ap- onto
F[t1.t,,...], we have

(1.6) Ey' = Exty, . (B Ho(X;F)) = BR_y(X).

Remark 1.7. We note that the Thom map Tz ,: BP — K(Z(;))
induces a morphism of spectral sequences from (1.6) to (1.5). Since
pTz(p) = Tf,, the map

Ty(p) : Exta,. (Fp, Hu(BP A X; F))
— Extu,. (5, Ho(K(Z)) A X3 F))

induced by TZ(P) is identified with the map
Ext5(sg,s1,..)(Fps Ho( X3 F)) — Extgsy)(Fp, Ho(X; Fp))

induced by the projection E(so,s1,...)— E(s0,81:...)/(81:...) = E(s0)
through the change-of-rings isomorphisms.

Now we compute the E,-terms of the spectral sequences (1.5) and
(1.6) for X = K(p) the Harper’s torsion molecule. The structure of
H*(K(p); F,) is given by

H*(K(p); F) = E(73,23,41) ® F;J[x2p+2]/(x12>p+2)’

(1.8) '
p'(z3) = Top+1, B(T2p41) = Tapsa.

Let b; (i = 3, 2p + 1, 2p + 2) be the dual of z;, then the structure of
H.(K(p); F,) as a left Ap+-comodule algebra is given as follows.

H (K (p): Fp) = E(bs,byp41) ® Fyplbgpy]/ (542,
p(bz)  =1@ b3,
@(b2p41) = 1 ® bopy1 — t1 ® b3,
@(bapt2) = 1 @ bapya + 50 ® bapy1 — 51 ® bz + sty @ bs

(1.9)
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E(sp) is a quotient Hopf algebra of A, by an ideal generated by
81,82, ..., t1,t2,... and H,.(K(p); F3) is regarded as a left E(sg)-comodule
via projection Ay« — E(sg). It follows from (1.9) that the E(sg)-comodule
structure of H,(K(p); F,) is given by

9’;0(()3) =1 ® b3v
(1.10) wol(bap+1) = 1 ® bypy1,
wo(bzpt2) = 1 @ bapya + S0 ® bapty.

Then H.(K(p); F;) is a direct sum of subcomodules M = E(b;, b2p+1b§;i2)
and Me; = F{b§by,, b5, 050h,,5) for € = 0,1, i = 1,2,...,p ~ L.
Here we denote by R{a,b,c,...} the free R-module generated by elements
ab.c,....

Since M. ; is isomorphic to E(sg) with shifting degree, we have
EXtgto) (Fps Mei) = Bp{b5by,1binis). Extyr (B, Mes) = 0if s #
0. On the other hand, since M consists of primitive elements and
EXtE(so)(I‘;,,FI',) = F;,[f)'()]._ we have EXtE(SD)(F;,,JW) = EXtE(so)(F;,,F;)) ®
M = FE,[59]® M, where 7, is an element of Extgzso)(ﬂ,, F,) represented by
[s0] in the cobar complex for E(so). Note that Extgso)(Fp. He(K(p); F))
has a structure of F,[Tg]-module. (1.10) implies a relation ‘l_)gbgbzp_’_]bé;_}_z
= 0.

Let 23, 23i(p41)~1 and 232si(p41)-1 be the elements of Ext%’?so)(l';,
H,(K(p); F,)) represented by cocycles []bs, []b2p+1b§;12 and [ ]bby,, 15,4
of the cobar complex, respectively. The above argument shows

Proposition 1.11.  As an Fy[To]-module, Ext g(s,)(Fp, Ho(K(p); F;))
is isomorphic to
Fy[o]/(To){22i(p+1)-1 2322i(p41)-1 | 1 L 1 < p — 1}
& Fp[tol{1, 23, 22p242p—1s 2322p2+2p—1}-

Since ¥p is a permanent cycle representing p, the preceding result
immediately implies the following.

Proposition 1.12. The Adams spectral sequence (1.5) collapses and
H.(K(p); Z(p)) is isomorphic to
Fp{zipr1)-1> 23220411 | L £ < p =1}

@ Z(p) {1, 23, 2op242p—1s 2322p2+2p—1}
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as a Zy)-module, where deg z; = 1.

We put £ = E(sg,81,...) for short. Since E is the quotient Hopf
algebra of A+ by an ideal generated by t1,12,..., it follows from (1.1) that
each s; is primitive in E. By (1.9), E-comodule structure of H.(K'(p); F;)
is given by

p1(b3) =1@ b3,
(1.13) ?1(b2p41) = 1 @ bappa,
©1(b2p4+2) = 1 @ bapia + 50 @ bapy1 — 51 ® ba.
Thus H.(K(p); F,) can be regarded as an E(sg, s1)-comodule. Put E’ =

E(s2,83,...), then E = E(sg,$;) ® E’ as a Hopf algebra and the external
product

(1'14) EXtE(so,sl)(F;h H*(A'(p); I‘;)) ® EXtE’(Ea F;J)
— Extp(k, H.(K(p): F))

is an isomorphism by the Kiinneth theorem.

Let ¥; be the element of Ext}éff:)_l (Fp, F,) represented by a cocycle [s;].
Then,

(1.15) ExtEl(I‘;,,F;,) = F;,['ﬁg,‘ﬁg,...,i_),',...],

and Extg(s o) (Fp, He(K (p); Fp)) has a structure of F,[7;,7;]-module. In
order to compute Extg(y o )(Fp. H(K(p); F;)), we apply the Cartan-
Eilenberg spectral sequence to an extension of Hopf algebras E(sy)—
E(So,sl)—i' E(SQ) ([6] 4A1.3.14)
Ey' = Exti,,) (B Extly ) (B, Ha(K(p): B)))
= EXtSE‘»*(..:o.s;)(IPP’ H,.(K(p); F,)).

It follows from (1.11) that the E(s;)-comodule structure of Extg(, (5,
H_(K(p); F,)) is given by

(1.16) 1(22i(p+1)-1) = 1® 23ip41)-1 — (i = 1)$1 ® 23233:-1)(p1)—1>
P1(z322i(p41)-1) = 1 ® 23229(p41)-1-
We set

N = Fp{z2p11} @ FB[00{1, 23, Bozop242p-15 23222 12p-1 )

Ni = Fy{2322i(p41)-1- Z2(3i41)(p+1) -1 }
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H,(K(p); F,)). N consists of primitive elements and N; is isomorphic to
E(s;) with shifting degrees.

Since Extg(so)(Fp, Hu(K (p); F)) is a direct sum of N and N; for i =
1,2,....p— 1, Extgs,)(Fp, Extp(so)(Fps Ho (K (p); Fp))) is isomorphic to

fori =1,2,....,p— 1. Then N and N; are subcomodules of Extg(so) (Fps

F{Xiipr1)42l 1 1< p— 1} ® Bp[51]{z2p41}
& F[Bo, 5, ]{1, 23, 2052 4 9p 1> Xop2 42p42 )+

where Xy;(p41)42 and Z;p2+2p—l are the classes of []z322i(p41)-1 and
[1022p2 4 2p—1, Tespectively.

We note that Xy;(p41)42, 22p41, 23 2nd z;p2+2p_1 belong to ES°, hence
the spectral sequence collapses. We use the same symbols as Xj, 2,44,
25 and z;p2+2p_l to denote the elements of Extgs,,s,)(Fp, Ha(K(p); F))
corresponding to them. The cocycles representing Xo;(p41)425 Zopt+1s 23
and z;p2+2p_1 in the cobar complex are given by []b3bzp+1b§;i2, (1b2ps1s
(165 and [50]b2p+1b§;-|1-2 + [8031]b3b2p+1b72);}1>2 - [SI]bSbg;-{l-% respectively.

By (1.13), [so]b2p+1 is cohomologous to [s;]bs, thus we have a relation
Bozap41 = D123. Similarly, [s;]bgby, 1054, (5 =0,1,i=1,2,...,p—1) are
cohomologous to 0 in the cobar complex, hence Xj;(,11)42 is annihilated
by 7o and 77 if ¢ < p.

We put R = Extg(F,, F,) = Fp[%,%;,...]. By virtue of the isomor-
phism (1.14) we obtain the following result. ‘

Proposition 1.17. Extg(F,, H.(K(p); F,)) is isomorphic to

R/(%o. Pi{ Xaipr1)42| 1 <1 < p— 1}
® R{z3, 20p41}/(B123 — To2zop41)

! -
® R{1, 23,2195 1 Xop242p42}

as an R-module.

Since X; € Eg’j, z; € Eg"j and z;p2+2p_1 € E21’2p2+2p, the Adams
spectral sequence (1.6) collapses for dimensional reason. Moreover, the
extension problem of the BF,-module structure is trivial also for dimen-
sional reason.

Consider the morphism of spectral sequences Tz, from (1.6) to (1.5)

induced by the Thom map Tz, ,: BP — K(Z,)). It follows from (1.7) that
(») (r)
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N /
Iz, maps Xzz(g+1)+2 10 Z329i(p41)—1> 23 10 Z3s Zopy1 1O 295 and 2550
to Tyzy 0,5, | iN the Ep-terms.

Proposition 1.18. BP.(K(p)) is isomorphic to

BE[(p, i { Xai(pa1y42| 1 <1< p—1}
® BP {23, z0p41}/(v123 — P22p41)
@ BR{I- z;P2+2P_1 1 X2p2+2p+2}

as an BF,-module, where deg X; = j, degz; = j and degz;pz_Hp_1 =
2p +2p - 1. T3,y.: BE(K(p)) = H(K(p); Z(p)) maps Xaipy1)42 to

R /
2322i(p+1)-1, 23 10 23, 23,4 10 2544 and Zop2 p2p1 10 P2y on 1

Remark 1.19. (1) Since K(p) is a Hopf space, the spectral se-
quences (1.5) and (1.6) are multiplicative. Thus, in BE.(K'(p)), we have
relations 2322541 = Xop4s and zgz;p2+2p_1 = pXop2topt2 + Y12 Xopyq for
some Y € Z;). (See (4.14).)

(2) Let us denote by %: BE.(K(p))— BR.BP ®pp, BE.(K(p)) the
BF, BP-comodule structure map. Then, it follows from (1.9) and (1.18)
that Xpip41)42 (1 < @ < p) and z3 are primitive and that ¥(22p41) =
1 ® 22p41 — t1 ® z3. We note that EE(I((p)) is the direct sum of
subcomodules BE./(p, v1 { Xzip+1)+2} (1 € ¢ < p— 1), BE{Xpp249p12}
and BR{z3,z0p+1}/(v123 — pz2ps1) @ BRAz}2,,, 1}, Let us denote
by K(p)* the n-skeleton of K'(p), then it is shown that the inclusion map
K(p)?’+%-2 . K(p) induces a monomorphism BP.(K (p)***+2P-2)
BE,(K(p)) onto the direct sum of BP.{z3,z20p41}/(v123 — pzop_1) and
BR./(p:v1){ Xai(p41)42} for L <i<p—1.

2. The homotopy groups of K(p). We calculate H*(K (p); Z(;))
by using the Bockstein long exact sequence

- — HU(E(p); Z) 25 HY(K(p): Zy) 2
iope 6 i -
H{(K(p)s F) — HFTYK(p) Zp)) — -+

We can easily show the following.

Proposition 2.1. We put yypi2 = 8(29p41) and there are ele-
ments y3 and Yop249, 1 of H*(K(p); Z(p)) such that p(y3) = x3 and
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-1 *( " e .
P(Ygp249p_1) = Top+1T5ps2- H*(K(p); Z(p)) is isomorphic to

F;’{yép+2!y3yép+2| 1<i<p-1}
& Z(p){17 Y3:Yop242p-1> 93y2p2+2p—1}~

Let F be the homotopy fiber of y3: K'(p) = K(Z),3). f: F— K(p)
denotes the inclusion map of the fiber. Applying the Serre spectral se-

quence to the fibration ¥ 4, K(p)8 K(Z),3), a routine argument shows

Proposition 2.2. For degree < 2p3, H*(F; F,) is isomorphic to
E(ugp i1, U2 42p-1) ® Fluge] with Ap-action B(ugye) = ugey; and
Pl(‘u2p2+1) = Ugp242p—1-

Corollary 2.3. The (4p* — 1)-skeleton of F is homotopy equiva-
lent to a 3-cell complez X = Sy e+l y 20 +20=1 guch that the
subcomplex Y = 527 U e2P’+1 js the mod p Moore space and the top
cell e’ +2P=1 js attached to 2Y by theﬂmap A1 € Topeqop—2(Y) which
maps to oy € Topriq, oS TY) = 78 3(8°) by the map induced by
Y S Y/§% = %1,

Namely, X is nothing but the 2p?-fold suspension of the Toda’s spec-
trum V(1/2) [7].

Corollary 2.4. m;(K(p)) =0 fori< 3 or3 < i< 2p? and there are
isomorphisms

m3(K (p)) = Z),
mi(K(p)) = 73 0 (V(1/2))  for 2p* <i < 4p® - 2.

Hence it suffices to know 77 (V/(1/2)) for i < 2p? — 2 to know =;( K'(p))
for i < 4p? — 2.

We denote by M, the modp Moore spectrum S° U, e!. Consider
the long exact sequences of stable homotopy groups associated with the
cofibrations $O & §9 2 a1, 8 81 and §%-2 3y, L v (1/2) 2 521,

(25) - — 75(5%) L 75(5°) 2 f(M,) 2

:
"TIS—I(SD) 7t
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(2.6) oo — 73572 T aS(M,) 2 xF(v(1/2) 28
w5 (52772 — ...,

We recall several stable homotopy groups of the sphere.

Theorem 2.7. For i < 2p?, the p-component of 7.'1-5(50) is trivial
except for the following cases.
7‘—5(50) = Z{l}v
Top-1)-15°) = Z/plas} for 1< r<porr=p+1,
7‘-251,2..21,_2(50) = Z/p{:Bl}y
7‘"25102—229—1(50) = Z/pz{apﬂ}’
m5a o(SY) = Z/p{any).

Let a: SZ(P‘I).MP — M, denote the Adams map. We put & = o,
then a, = dpa,. Since every element of 7rf(M,,) is order p, the long exact
sequence (2.5) splits into split short exact sequences
(2.8) 0 — wP(89)/pr(8°) — 7P (Mp) —

Ker{p: 7i_1(5%) » n_,(5%)} — 0.
If z € 7% (S°) is an element of order p, we denote by Z an element
of 77 (M,) such that 9 = z. Theorem (2.7) immediately implies

Proposition 2.9. Fori < 2p?% ﬂf(MP) = 0 except for the follow-
ing cases.

75 (Mp) = Z/p{eo},

Trgr(p—]]—l("lip) = Z/P{Ll)ar} foril<r<porr=p+1,
7r2Sr(;c»_1)(1\’fzo) =Z/p{la,} forl<r<porr=p+1,
”§p2—2p_2(Mp) = Z/p{eoB},

W§p2—2p—](‘;‘5[p) = Z/p{Loap/Z’BI}S

752 ap(Mp) = Z/p{Pa, 3},

”§p2—5(Mp) = Z/p{rocaph},

sa_a(Mp) = Z/p{@ip}.

We need to determine the map @-: 7r£5_.2p+.2(50)—>7ris(Mp) for i <

2p? — 2. Consider the Adams-Novikov spectral sequences for BP-theory
converging to 75(S5%) and 75 (M,).

T
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From now on, for a BE.BP-comodule M, we set HS'{(M) =

Recall from [3] that the cocycles representing a, and a3 in HY*(BR.)
are the following elements of the cobar complex 2*(BE, ).

Al + 5 (5)(-py e,

(2.10) P o
(™ + 3 (5) (w1

Here we regard BP. as a left BF. BP-comodule.
We summarize the structure of H®!(BR.), H®*'(BF./(p)) and
H*(BR./(p,v1)).

Proposition 2.11. (1) Fort— s < 2p® + 2p, H>!(BP.) = 0 ezcept
for the following cases.

H%Y(BR) = Zip{1},

H12r(p-1)(BR,) = Z/p{ar} for 1<r<porr=p+1,
H2p(p=1)(BP, ) = Z/p* {ap2}

H*2(P-1)(BR.) = Z/p{1},

H32-2(BR) = Z/p{a1:},

where B is represented by a cocycle Y.0-] (1:) [t%]t’l’-i]/p.
(2) Fort—s< 2p* H*'(BE./(p)) = 0 except for the following cases.

H°(BE./(p)) = Z/p{1},

HO2(=1)(BR./(p)) = Z/p{xT} Jor 1<r<p+1,
HY2(-1D(BR/(p)) = Z/p{v] a1} for L<r<porr=p+1,
HY2(=1)(BR [(p)) = Z/p{v? ‘a1, 1},

H2*2(e=1)(BP./(p)) = Z/p{$1},

H22*~2(BR/(p)) = Z/p{v1/1},

H***=2(BR./(p)) = Z/p{eafr}.

hy is the element represented by a cocycle [t}], a; and 3, here are the
mod p reduction of the elements of (1) with the same symbol.
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(38) For t — s < 2p%, H®'(BE./(p,v1)) = 0 except for the follow-
ing cases.

H®°(BR./(p.m)) = Z{p{1},

H%' =2(BR/(p.n1)) = Z/p{va},
HY=%(BR/(p,v1)) = Z/p{en},
HV2#®=1(BP.[(p,21)) = Z/p{h1},
H2#@=1)(BP./(p,v1)) = Z/p{5:1},
H3*-%(BR./(p.%1)) = Z/p{e1B1}.

hi, oy and 3y are the mod (p, v, ) reduction of the elements of (2) with the
same symbol,

Since ¢g+: BP.(S°) — BP.(M,) = BE./(p) is the mod p reduction map,
in the Ej-level, tg-: H**(BP.(5%)) — H**(BE.(M,;)) maps a, and a,,
to the elements represented by r[t,]v;~! and [tl]vf_l, respectively. On
the other hand, since a: Z2P~1V A, - M, induces the v;-multiplication
map on BR.(M,), & = aig induces &.: H**(BR.(S°)) — H**(BR.(M,))
which maps a,_; and a,/; to the elements represented by (r — D[t 0!
and [t,]v}, respectively. Thus @+(a,~1) = ((r = 1)/7)to+(a,) for2<r < p
or r = p+2, @-(ap-1) = ~to-(0y2) and @1+(a,/;) = to+(aps1) hold in
the F-term.

It follows from (2.11) that H1'2”2"2P(BR(11/IP)) is a 2-dimensional vec-
tor space over F, and Hs*'z”z_?p*'s(BR(}lJp)) = 0 for s > 1, hence both
elements tpa,/; and B, of 3 (M) are in the same Adams filtration.

2p2 —2p-1
These arguments show the following.

Proposition 2.12. a;-: 7r,~s_2p+2(.5'°) — 7P (M,) is given as follows.

61*(1) = &ly

_ r—1

ars(or-1) = oy for2<r<porr=p+2,
51"(“?-1) = _l‘l)a‘p/'zg

By-(0p/2) = toQpir,

C_Yl'(.’Bl) = a1.‘6’1,'

ais(a1) = 0.

Applving the above result to (2.6) we obtain
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Proposition 2.13. Fori < 2p? — 2, 77 (V(1/2)) = 0 except for the
following cases.

73 (V(1/2)) = Z/p{uto},
To-a(V(1/2)) = Z/p{reca),
71'251)__1("[(1/2)) = Z(p){‘w‘Zp—l}a

where wap_1 maps to p € ©5(S°) by dy+,
7";(7,_1)(‘/(1/2)) = Z/pla;} for2<r<p,
70 2(V(1/2)) = Zpliof),
ngz_-zp_l(v(l/Q)) = Z/p{u B},
7o (V/2) = Z/p{uBo),
ngz_s(v(l/'z)) = Z/p{tiroar fr}.

Furthermore, there is @ short exact sequence

S ty* - 6 *
0 — ”5;:2—2(-7”?) - 7"'292—2(‘/(1/2)) -

pwf,,?_zp_l(so) — 0.

Next, we solve the extension problem in 7r25p2_2(V(1 /2)). Consider
the long exact sequence of BP-homology associated with cofibration
§2-1 L v(1/2) 3 V(1) 2, 5%, Since BR.(5%771) is concentrated in odd
dimensions and BE.(V(1)) = BE./(p,v1) is concentrated in even dimen-
sions, the long exact sequence splits and give an isomorphism of BPF,-
modules,

(2.14) BR(V(1/2)) % BRAwsp—1} ® BE/(p,v1){1}.

Here we put wap_1 = n.(tdg2p-1) € BPyp_1(V(1/2)) and 1 € BPy(V(1/2))
is the unique element that maps to 1 € BFy(V(1)) by ¢.. Both of them
are primitive and the above isomorphism is an isomorphism of BF.BP-
comodules.

We consider the Adams-Novikov spectral sequence

(2.15) Byt = H*(BR(V(1/2)) = 75,(V(1/2)).
By (2.14), we have an isomorphism

(2.16) Eyt = g5 BP Y w,y, 1} @ H*(BE./(p,v1)).
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Then, there are non trivial elements 3ywe,_1 € Eg‘zz’?“l, vy € Eg’2p2_2 of
2 -

order p, and ap,/wyp—1 € E;’b =1 of order p?. Since w§p2_3(‘/(1/2)) =0

by (2.13), Bywzp—1 is killed by v; and apjwy,—; is a permanent cycle

representing an element of order p?. This solves the extension problem.

Proposition 2.17.

mon_(V(1/2)) = Z/p.

Proposition 2.18. For i < 4p* — 2, m(K(p)) = 0 ezcept for the
following cases.

n3(K (p)) > Z(,

map2 (K (P)) = Mg 2p-3(K (P)) = Z/p,
Top242p-1(K(P)) = Zyy),
Top22r(p—1) (K (P)) = Z[p for 2 <1 < p,
Tap2_ap-2(K(P)) = Typ2_gp_1(K(p)) = Z/p,
Taz_op(K(p)) =7y s(K(p)) = Z/p,
Tap2 2 (K(p)) > Z/p?

The rest of this section is devoted to show the following lemma which
is needed in the next section.

Lemma 2.19.
. 241292\ A
T s2p_a(K(0)7 T27%) = Z/p.

To show this lemma, we use the Adams-Novikov spectral sequence
(220)  B3' = H*(BR(K (Y7 7%) = il (K(p)™ %72,

Set L; = BR/(p.v1){Xai(p41)+2} (i < P)s Lp = BRA{Xyp240p40}: Mo =
BPAz3}, M1 = BP.{23,22p11}/(n123 — pzops1), M2 = BP{2z3,20p11}/
(v123—pzop+1) B BRA2y 2 9, }. They are subcomodules of BE,(/'(p)) and
BP.(K (p)?"+?7=2) is the direct sum of L; (1 < i < p—1) and M, ((1.19)).



126 A. YAMAGUCHI

Consider the long exact sequence associated with a short exact se-
quence of BP, BP-comodules 0 — Mg — M, — M;1/My— 0.

(2.21) -+ — HY(Mo) — H(My) — H>(My/Mg) -
Hs-H‘t(;Mo) —_— e

We denote by Zap41 € Mo/M; represented by zyp41. Since My/Mo
= BB/(pMEaps1), HH(My/Mp) is identified with H*t~=1(BP./
(P)H{Z2p+1}. We can verify the formula

(2.22) Y(vizep41) = 1 @ v1z2p41 — Ti; (T T 1)(—P)i_lt’i ® vit! 2.
Then, it follows from (2.11) that é6: H**(M; /M) —» H*+t1*(M,) is given
by 6(v]Zap41) = @rpr123, 6(v] larZapt1) = 0, 8(BiZaps1) = a1fizs,
6(v18122p41) = 6(1B1Z2p41) = 0. ' _

We put & = 7oy (—p)"1)/G + 1) () E )i € Q1(BR.). Then,
we have oy, = d(—¢,) in 2%(BR.) and [t,]0] "' 25,4, — £,23 is a cocycle
of QY(M;). Let w, be the element of H1.27(P=1)+2P+1( ;) represented by
[ty]0] ' 2541 — £,25. It is easy to see that w, maps to o]~ a;Zy,,; by
H**(My)— H**(M;/Mp) and that pwp_1 = —0,/23 holds in the cobar
complex of M;. Therefore we obtain

Proposition 2.23. H*!(M;) =0 ift — s < 2p? + 2p ezcept for the
following cases.

H3(My) = Zp){z},

HYZ -+t 1 (M) = Z/p{w,} for r<p—1lorr=p+1,
HYP =430, = Z)p*{w,1},

H1‘2P2+1(1W1) = Z/p{wp,h122p+1};

H2,2p2—-2p+3(M1) = Z/p{B123},

H2W =Y (M) = Z/p{v1frzaper )

H3,2p2+2p—1(Ml) = Z/p{Brn }.

(2.11) implies that H**(L;) = H**~2(F+1)=2(BP, /(p,v;)) = 0 for 1
i<p-1lift—s=2p?+2p—2 Since H*'(BR(K(p)¥ +2~2))
HsY (M) @ Y02 H3Y(L;), (2.19) follows from (2.23).

IR IA
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Remark 2.24. It is easy to verify from (2.21) that H%(M;) = 0
unless ¢ = 3.

3. The Hurewicz homomorphism. To begin with, we exam-
ine the Hurewicz homomorphisms #5F: 7;( F') — BP,(F) and h: mj(F)—
Hi(F; Z(p)) for ¢ < 4p2 -2,

Since EY* = HOYBE(V(1/2))) = 0 if t # 2p — 1,2r(p? — 1)
(r=0,1,...) in (2.14) and v, supports a dlfferentia.l_, hBP: 75(V(1/2)) —
BP;(V(1/2)) is trivial if i # 0, 2p — 1 and 7 < 2p? — 2, and it is an isomor-
phism if ¢ =0 or 2p — 1.

Proposition 3.1. For i < 4p? — 2, the Hurewicz homomorphism
BP. n,(F)— BP;(F) is trivial if i # 2p*, 2p* + 2p — 1, and it is an iso-
morphism if i = 2p? or 2p* 4 2p — 1.

Remark 3.2. It follows from (2.13) that, for degree < 4p? — 2,
BP.(F) is isomorphic to BP./(p,v1){Y2p2} ©@ BR{Y2p2 4251}
Consider the long exact sequence of ordinary homology theory of Z,)-

coefficients associated with a cofibration §2P~2 % M, 3V (1/2) 8y grw-1,

e L]o ; d]-u
(3.3) — Hi(5%7 % Z,)) =5 Hi(My; Z,) == Hi(V(1/2); Z) =
Hia(5%7% Z)) —

Then, we see the following fact
Proposition 3.4. (1) Hi(V(1/2);Z))=0ifi #0, 2p—1,

L1+ o HO(J’VIP;Z(p)) —_— H() 1/2) ZP]) and
O1e 2 Hap-1(V(1/2); Zp)) — Hap-2(S5%7% Zp))

are isomorphisms, where Ho(My; Z(,)) & Fp, Hop—o(S%P72, Z(p)) = Zp)-

(2) Hi(F;Zp)) = 04f 1 £ 0, 202, 2p* + 2p — 1 for i < 4p* — 2,
and there are isomorphisms Ho(F; Z(p)) = Hopyop1(Fi Z(p) = Zy) and
Hop(F; Z(py) = Fp

The Hurewicz homomorphisms give a morphism of the long ex-
act sequences from (2.6) to (3.3). It follows from (2.12) and
(3.4) that h: wfp_l(V(l/'Z))ang_l(V(l/:Z); Z(;)) maps injectively onto
pHZp—l(V(l/‘z);Z(p))'
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Proposition 3.5. For i < 4p? — 2, the Hurewicz homomorphism
h: mi(F) = Hi(F; Zy,) is trivial if i # 2p?, 2p* 4+ 2p — 1, it is an iso-
morphism if i = 2p%, and it is an injection onto pH2p2+2p_1(F;Z(p)) if
i=2p*+2p—1. ’

Remark 3.6. (3.4) and (3.5) imply that the Thom map Tz ,:
BP{(F)— Hi(F; Z(,)) is a bijection if i = 0,2p? and it is an injection
onto pHyp y9p1(F; Zp)) if i = 2p +2p— L.

Recall that H.(K(Z,),3); Z,)) for degree < 2p* + 2p + 1 is isomor-
phic to

(3.7) Z(p){00793} & FL{92r(p+1)—1|7' <p}® ‘FI"{92r(p+l)+2|T <p}
® 1‘73{0‘2p2+1a02p2+4}$

where deg§; = 1.
Consider the homology Serre spectral sequence associated with the
fibration F 4 K p)BK (Z(p)»3);

Est = I‘(Z(p)a3)) Hy(F; Z(p))) = H,p(K(p)s p))

By (1.12) and (3.4), 05,241 € E2p2+1’0 supports a differential and kills a
generator of E§2p2 = Hyp(F;Z,)) = Z[p. Since E2, = 0if s+t =
2p? +2p—2 or 2p? +2p, elements of total degree 2p% +2p— 1 are permanent
cycles. We also note the fact Ef,i =0ifs+t=2p*+2p—1ands,t>0.
Hence we have a short exact sequence

jv - -
0 — H2p2+2p—1(F§ Z(p)) B H2p2+2p—1(1\ (P)?Z(p)) =
Hop2yap-1(H(Z(p):3): Z(p)) — 0.

By virtue of (1.12), (3.4) and (3.7), we obtain

Proposition 3.8. fi: Hi(F: Z,)) = Hi{(K(p): Zp)) is a bijection if
i = 0, an injection onto pHyy2y o, 1 (K (p); Zpy) if i = 2p* +2p — 1. Oth-
erwise f,. is a zero map.

Combining (3.5) and (3.8), we have the following result by the natu-
rality of the Hurewicz homomorphism

Proposition 3.9. The Hurewicz homomorphism h: x;(K(p))—
Hi(K(p): Z(p)) is trivial if i # 3, ,2p% +2p— 1, an isomorphism if i = 3 and
an injection onto p ng 21 (K(p); Zpy) f i = 2p? +2p — 1.
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It follows from (1.18) and the above result that the BP-Hurewicz ho-
momorphism hBF: Top242p—1(K(P)) = BByp242p_1 (K (p)) maps a generator
to an element, say ¢, of the form p22p2+2p ) T (/\Lerl + pvp)2zgpyq- Since
¢ is primitive, (/\'r)p+ + pv,)22p4¢ is primitive modulo p Recall that
v123 = Pzepy1, MR(V1) = v1 + ptr and r(v2) = v, + vyt] — oft; mod-
ulo p [5], then we can easily verify from (1.19) that v} 1z2p+1 is primitive
modulo p and that 9(vy25,1,) = 1 ® va29,40 +t; ® V254 — 1) ® v,25
modulo p. This implies that g = 0 modulo p, hence we may assume p = 0
by replacing z;p2+2p_1 + (p/p)'0222p+1 by z;p2+2p_1 .

We set 1/)(z;p2+2p_1) =1® z;p2+2p_l + AQ z9p41 + B® 23 for A €
BPy2_oBP and B € BBy, 9, 4BP. We may assume B = bt”"'2 + cvyty +
dt ty (b,c,d € Zp)) and put A = Yl et 771-{(1)1)7’+l ‘4 at, +a'v,. Then,
(e® 1)1,’)(2;pz+2p_1) = z;p2+2p_l implies that ag = a’ = 0. An easy calcu-
lation shows that the equality ¥(¢) = 1 ® ( forces a; = A(—p)i~! (p—;—Q)’
b= Ap? and a = ¢ = d = 0. Then we have

(3.10) ¢(2’2p2+2p—1) =1® Z;p +'2p 1+ AP+ 2)t @ v 22p 4
SAS () e

Consider the long exact sequence associated with a short exact se-
quence of BF.BP-comodules 0 — M; — M2 — My /M — 0.

(3.11) +-» — H*(M;) — H¥(My) — H¥™(My/M;) -
Hs+1,t(liu'l) ey e

We denote by zzp +2p-1 € My/M; the classtof z2p2+2p , € M.
Then 2,,,,, ; is primitive in May/My and H*Y(M,/M,) is identified
with H*t=2° ‘2”+1(BR){ Zy249p-1)- 1t follows from (2.23) and (3.10)
that & HO2P*+2P=1()M, /M) — HY2P+22~1(Mf)) maps Zyayap 1 t0 (P +
2)Awp1. From (2.11), (2.23) and (3.11), we obtain

Lemma 3.12. If ) € pZ,), we have HY2P* 2=V M,) = Z/p{wpi ).

Thus H'2P*+2=1(BP.(K(p))) = Z/p{wps1} and wyy, represents a non-
trivial element of ﬂfpzﬂp_z(lx’(p)).

Let g¢: .S'r‘)pz"'z'”'z—+}'\'(p)2”2+27"2 denote the attaching map of the
(2p% + 2p — 1)-cell of K'(p). Consider a cofiber sequence 5 +2w-2 8,
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K(p)*+2=2 45 K (p)?*+%-1.  Since pl(bgbh ;) = bypy bhy, in
H*(KE(p)#"+%~1 F) = H*(K(p) )/ (babypprbhpyz), K (p)?P 477 can
not be stably homotopy equivalent to K (p)2*+2p=2 v §27"+2r~1_ Hence g
is stably non-trivial and generates ﬁ§p2+2p_2(1x"(p)2”2+27’_2) ((2.19)).
Suppose that A € pZ(,) and let us denote by wpi; the element of
n§p2+2p_2(1((p)) corresponding to wyy; € HY2P°+2P=1(BR(K (p))). There

. 2 - - 2 — . .
is a map wj . : S HP=2 5 K(p)?P +2P=2 such that wpyy is a composi-

w! . .
tion §2P°+2p=2 P4 [r(5)2°+20-2 , K(p). By the preceding argument,
wpyy = cg for some ¢ € Z/p. However, since S +2-2 5, | (p)2P 422
K (p) is trivial, this contradicts the non-triviality of wpy,. Thus A is a
unit in Z,), and ¢ = pz;p2 top1 T /\vf“zzp“ generates a direct sum-

mand of BB2yq, 1(K(p)) = Z(p){z;p2+2p_l,vf+122p+l,v._,z2p+l}. To-
gether with (1.18), (3.1), (3.5) and (3.8), we showed

Proposition 3.13. For i < 4p? — 2, the BP-Hurewicz homomor-
phism hBP: 1,(K(p))— BP,(K(p)) is an isomorphism if i = 3, a split
monomorphism onto the set of primitive elements if i = 2p* + 2p — 1
and otherwise a zero map.

Remark 3.14. Put PBR(K(p)) = {z € BR(K(p))|¥(z) = 1 ®
z} = H%(BR.(K(p))). Then, it follows from (2.24) and (3.11) that
PBF,(K(p)) = 0 except for the following cases.

PBPy(K(p)) = Zpy{z3},
PBPy2 4 9 1(K(p)) = Z(p){C_L
PBByi(p41)+2i(p2-1)+2(K(P)) = Z/p{v3 Xai(p41)42}

for 1<i<p, 720,
PBPy2 954 2(K(p)) = Zip){ Xop2 42p42}-

4. The homology suspension. Consider the Serre spectral se-
quence for mod p cohomology associated with the path fibration 2K(p)—
PK(p)— K (p).

(4.1)  Ey'= H(K(p)H'(QK(p):F)) = H*(PK(p); )
There exists an element 7, € H3(2K(p): F) = E3? which maps to z3 €
E§’° by ds. The transgression theorem implies that dy,,,(Z5) = 22,4, and

_p—1
d2p+2(373 Q)= Topt2e
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Lemma 4.2. H(QK(p);F,) =0.

We apply the Eilenberg-Moore spectral sequence associated with the
above fibration.

E2, = Cotort; WPBY B By = H, (K (p); F,)

The E?-term is given by E? = Faz,a2p,a252 19, 2] ® E(azpt1), where
az € E%,3, a5 € E31,2p+17 a2p41 € E2) 40 and agp249, 5 € E32,2p2+2p
are the elements represented by [b3], [b2p+1]; [b2p+2] and Ef’;ll(l/p)(f)
[bép“]bg;g], respectively, in the cobar complex Q,(H.(K(p); F;)). Since
Hop1(R2K (p); F) = 0 by (4.2), agp41 should support a differential. The
only possible differential is dp_1(azp+1) = vab (v € F,, v # 0) for di-
mensional reasons. Hence EP = E® = Fj[ay,azp,a3,242,2)/(a}) and the
extension is trivial.

Proposition 4.3. (1) H.(2K(p): F;) = Flas, a3, a2p242,5)/(a}).
Let ¢ be the Ap.-comodule structure map, then ¢(azy) = 1@ az, — 1 ® ay.

(2) The homology suspension map o,: H{(2K (p); F,) — Hyp1(K(p);
F,) is given by o.(az) = b3, gu(azp) = bopt1, ou(agp2i2,-2) = 0.

The equality ¢(agp,) = 1®ag, —t1 ®ay follows from the fact that a; and
ay, are the duals of Z; and z} and that p!(Z;) = 25 in H*(2K(p); F;). The
last statement follows from d3(Z2) = z3 and dgp41(Z5) = z2p41 in (4.1).

Since H (2K(p); F;) = 0 if t is odd, it follows from the Bockstein
exact sequence that H.(2K(p); Z()) is torsion free and that there are
elements @z, dgp and @249, o of H.(2K(p); Z(p)) such that p(a;) = a;
(i = 2,2p,2p? +2p—2), where p is the mod p reduction map. Then we have
H(2K(p); Z(p)) = Zy) @2, G2p, Gop249p-2]/ (@5 — Kpdy,) for some k € Z(y,).

Since H.(2K(p); Z(y)) is torsion free, it has a structure of Hopf al-
gebra. Let A, denote the diagonal map. We set A.(@y) = 1@ agp +
2?;11 Lidh ® a’;"' + a,, ® 1 for some [; € Z;),. On the other hand, we have
Afah) =3, (};) @b ® flg_i for @, is primitive. Applying A, to the both
sides of @) = kpazp, we have I; = (1/kp) (1:) , therefore

~ -~ p_l 1 p ~1 ..,p—i -~
(4.4) Auing) =18+ . —(H)ab @@ +ap @ 1.
i=1 KP \*
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Let us denote by { ): H.(2K (p); F,)®@ H*(2K(p); F,) — F, the canon-
ical pairing and by A2™! the (p — 1)-fold diagonal map
p—2 times
A= (A, 910 - ®1)-- (A, @1 1)(A. ® 1)A,.
Then, (A2 (az,), %2 @ - ® F2) = (ay,, Z5) = 1 and by (4.4),
p times

2 Yag) = BT R m

Thus we have & = (p — 1)! = —1 modulo p and we may replace —kay,
by flzp.

Proposition 4.5. H.(RK(p); Zy)) = Zp)lae, azp, dgp242p—2]/(a5 +
pagp) with p(a;) = a; (z =2, 2p, 2p* 4+ 2p — 2), and A.(azp) = 1 ® d2p —
sria/mf)aed +apel.

To determine the homology suspension o, Hi(2K(p); Z(,))—
Hip1(K(p); Zp)), we consider the Serre spectral sequence for Z-
homology associated with the path fibration 2K (p)— PK(p)— K(p);
E?, = H(K(p); Hi(RK(p): Z(p))) = Hspe( PK(p); Zp)). The routine
argument shows that the differentials are given as follows (See (1.12)).

d3(z3) = ag,

d*(2323i(pt1)-1) = a323i(p+1)-1 (1<i<p),
AP 21y pr1)-1) =8 BZpin— (1 <i<p-1),
d*P*(23p41) = dagp.

d2p2+2p_1(1’32p2+2p-1) = lgp242p-1

This implies that pzy,24 4, is transgressible though 25,214, ; is'not.

Proposition 4.6. The homology suspension o,: Hy( 2K (p); Z(,)) —
Hi1(K(p); Zp)) is given by ou(dz) = 23, ou(izp) = 29p41 and
0*(62p2+2p—1) = PZyp242p—1-

Consider the Atiyah-Hirzebruch spectral sequence

E2, = H,(2K (p); BP) = BR1.(2K (p))-
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It collapses for dimensional reason and E* = BR.[a2, @2p, Gop2.42p-2]/ (35 +
pagp). Let dz, agp and dgpe 49, 5 be the elements of BE,(£2K (p)) corre-
sponding to dg, Gzp and dyp2 49,7 in the E%-term. There exists 7 € Z,,
such that @} + pé,, = Tv,d,. By (4.3), we have ¥(dgp) = 1 @ agp — 11 ® a2,
where ¥: BF.(2K(p)) — BE.BP ®@pp, BE.(2K(p)) is the BE. BP-comodule
structure map. Then, ¥(a} + pagy)=1® @b + 1 ® pazp — t1 ® paa. On the
other hand, ¥(7v1a2) = Tv1 ® @2 = 1 @ Tv142 — Tty @ paz. Thus we have
r=1

By the naturality of the Thom map, it follows from (1.18) that the
homology suspension a,: EE(QK(p))—»EEH(I\"(p)) maps ox(az) = zs,
0u(a2p) = V22p41 and Uu(&2p2+gp_2) = 2;,,24.2,,_1 +#1"’f+1 Zop+1 T H2V222p41
for some v, y;, p2 € Z), v = 1 modulo p.

Proposition 4.7. BE(2K(p)) = BRlay, azp,d9p210,-2)/(a5 +
Plgy — v1d2), Tz(p)(d,-) = a; fori =2, 2p, 2p* + 2p — 2. The image of the
homology suspension o.: Z?E(Qlf(p)) —'»]_’A?EH(I&'(p)) is a BPF,-submodule

of BR.(K(p)) generated by z3, 2,4, and z;p2+2p_l, that is, it coincides
with 3 ;50 BB 11(K(p))-

If X is a topological space with a base point zy and F.(—) is a gener-
alized homology theory, then the set of diagonal primitive elements is de-
fined to be the kernel of the reduced diagonal map A: E,(X) — E.(X x X)
which maps z € E.(X) to A(z) — (#1+(z) + i2+(z)). Here A: X - X x X
denotes the diagonal map and #;,72: X — X X X are the maps given by
t1(z) = (z,20), i2(z) = (zo,x). Note that this definition does not depend
on the choice of the base point if X is path connected.

Let us denote by P;E.(X) the set of diagonal primitive elements
of E.(X). Then, it is known that P;E.(X) contains the image of the
homology suspension oy E,(2X)— E.41(X) and if a map 7: $°— E is
given, PyE.(X) also contains the image of the unstable Hurewicz homo-
morphism AZ: T.(X)— E.(X).

To show that PyBP.(K(p)) = Imo., we consider a homology the-
ory P(2).(—) with coefficient ring BE./(p,v1). (It is also denoted by
BPI3+(—).) There are canonical maps of ring spectra T5: BP — P(2)
and py: P(2)— K(F,) such that T; induces the natural projection BF, —
BP. [(p, 1) of the coefficient rings and composition p,T3 coincides with the
Thom map. It is also known that py-: H.(P(2); F,) — HJ(K(F): F,) =
Ap+ is an injection onto E(sg,s1) ® Fy[t,12,...].
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We apply the Adams spectral sequence (1.4) for E = P(2), X = K(p).

(48)  E3' = Ext}y (B, H(K(p): B)) = P(2)i—s(K (p))

(82,83 0+0)

It follows from (1.9) that every element of H,(K(p);F,) is primitive
as an FE(sp,s3,...)-comodule, thus E; = F,[0;,73,...] ® H (K (p); ).
Therefore this spectral sequence collapses for dimensional reason. Note
that Ty«: BR.(K(p)) — P(2).(X(p)) induces morphism of the spectral se-
quences from (1.6) to (4.8), and that, as in (1.7), the maps between
the E;-terms coincides with the maps induced by the natural projection
E(sp,51,...) = E(s2,83,...). We obtain an analog of (1.18).

Proposition 4.9. P(2).(K(p)) = BE/(p,v1) ® E(bs,bypt1) @
Fylbapsa)/(F4) and Toe: BE(K (p)) — P(2)u(K(p)) is given by

DB (Xi(pi1)42) = babapyabiprs (1< i< p),
T3+ (z23) = bs,

T3+ (z2p+41) = bap41,

B (252 49p-1) =0

Moreover, pze: P(2).(K(p))— H.(K(p); F;) maps b; to b;.

The above result implies that P(2).(K(p)) is a free BE./(p,v1)-
module, thus it has a structure of Hopf algebra. Hence pa+: P(2).(K(p)) —
H.(K(p); F,) is a map of a Hopf algebras, and b; (i = 3, 2p+ 1, 2p + 2)
are primitive. If ¢Xpjp41)42 € L:i N PyBR(K(p)) (¢ € BE/(p,v1),
1 < i < p-1), then Be(eXp(p41)+2) € PaP(2)«(K(p)). On the other
hand, T+ (cXai(pt1)42) = cb3b2p+lb’2;_l,_2, which is not diagonal primitive
unless ¢ = 0.

Lemma 4.10.
LiNnP;BE.(K(p))=0 if1<i<p-1.

Consider the canonical map BE(K(p))— BF.(K(p)) ® Q instead of
B+. Since Xppeyop42 = P~ 232505, , in BE(K(p)) ® Q ((1.19)) and

both 23 and z;pz +2p—1 aTe primitive, the similar argument shows

Lemma 4.11.
L, N PBR(K (p)) = 0.
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Suppose that there exists a non-zero element x of P;BF.(K(p)) of even
degree, say 2n. Then z = 377, ¢i Xp;(p41)42 for some ¢; € BBy _2i(p+1)-2
and it follows from (4.10) and (4.11) that ¢; # 0 for at least two i’s. If
c;#Oand g Z0(1 <j<k<p)2n-2j(p+1)-2=2lp—1)and
2n — 2k(p+ 1) = 2 = 2m(p — 1) for some integers [, m. Hence we have
(k=7)(p+1) = ({—m)(p—1) and this implies that j = 1 and ¥ = p. Thus
T = c1Xop4a + ¢pXop242pt2. Since Xppp4 is a p-torsion element, we have
pr = pepXopp2 4 9pt2 € LpN PyBE.(K (p)), hence pep Xap2 40542 = 0 by (4.11).
But X;,24,,42 is torsion free, this contradicts ¢, # 0. Therefore we have
shown P;BE.(K(p)) Ny ;>0 BR:i(K(p)) = 0 and by (4.7), this implies the
following result. -

Proposition 4.12.

PyBR(K(p)) = Im{aw: BR(RK (p)) — BP.y1(K(p))}-

By (3.14) and (4.7), we have PyBE.(K (p))N PBR.(K(p)) = Z,{23,(}.
The left hand side contains the Hurewicz image and we already showed
that the Hurewicz image contains the right hand side. This implies
Im {hBP: r.(K(p))— BR(K(p))} = Z(p){23,(}. Finally we obtain

Theorem 4.13.  The BP-Hurewicz homomorphism hBF: m;( K (p))—
BP;(K (p)) is an isomorphism if i = 3, a split monomorphism onto the set
of primitive elements if i = 2p? 4+ 2p — 1 and otherwise a zero map.

Remark 4.14. If we apply T« to the both sides of a relation

’

23252 100 1 = PXop2qopp2 + Y2 Xop4a ((1.19)), it follows that v = 0
m?dulo . .Since X'?p+4 is a p-torsion element, we have z3z;p2 topo1 =
PXop242p42 in BR.(K(p)).

REFERENCES

[1] J. HARPER: H-spaces with torsion, Memoirs of AMS 223 (1979).

[2] J. W. MiLNor: The Steenrod algebra and its dual, Ann. of Math. 67 (1958),
150-171,

[3] H. R. MiLER. D. C. RAvENEL and W. S. WiLsoN: Periodic phenomena in the
Adams-Novikov spectral sequence, Ann. of Math. 106 (1977), 469-516.

[4] G. MoreNo: Spherical classes in the bordism of the torsion molecule. Bol. Soc.
Mat. Mexicana 37 (1992), 417-429.



136 A. YAMAGUCHI

[5] D. C. RaveneL: The structure of BR.BP modulo an invariant prime ideal.
Topology 15 (1976), 149-153.

(6] D. C. RAVENEL: Complex Cobordism and Stable Homotopy Groups of Spheres,
Academic Press, 1986.

[7] H. Topa: On spectra realizing exterior parts of the Steenrod algebra, Topology
10 (1971), 53-65.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF OSAKA PREFECTURE
Sakal, OsakaA 593, JAPAN

(Received November 29, 1995)

CURRENT ADDRESS:
DEPARTMENT OF MATHEMATICS AND INFORMATION SCIENCES
OsAKA PREFECTURE UNIVERSITY
SAKAlL OsaKa 593, JAPAN



