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In [1], [2], [3] and [4], some generalizations of Jacobson’s theorem which
states that a ring R in which for every a € R there exists an integer
n(a) > 1, depending on a, such that a™®) = q, is necessarily commutative
have been studied in various directions. In this note, these results will
be partially generalized to a wider class of rings, namely generalized n-
potent rings.

Throughout, R denotes an associative ring, N the set of nilpotent
elements of R, C the center of R, J the Jacobson radical of R, C(R) the
commutator ideal of R, and Z the ring of rational integers. For z, y in R,
[z,y] = 2y — yz denotes the commutator.

We now introduce the following definitions.

Definition 1. Let n be a fixed integer, n > 1. A ring R is called a
generalized n-potent ring if

(%) " —zeNNC forall ze€ R\(NuC().

Definition 2. If the set E of all idempotents of R is contained in C
then R will be called a ring with all idempotents central. If N is contained
in C then R will be called a ring with all nilpotents central.

Our main result is the following: A generalized n-potent ring R with
all idempotents central is commutative if it satisfies two conditions:

(i) For all a,b € N, [a,b] = [a,b]? for some integer ¢ > 1.

(ii) (n — 1)[a,z] = 0 implies [a,z] =0 foralla € N, z € R.
It is further shown that all of the hypotheses of this theorem are essential.

We also prove a following structure theorem for generalized n-potent
rings: If R is a generalized n-potent ring with all idempotents central
which satisfies the above condition (ii), then R = C or R = N.

Remark. A ring R is a generalized n-potent ring if and only if one
of the following conditions holds:
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(1) R=NUC.

(2) R # NUC and (*) is satisfied.

Now, we take a closer look at case (1). In this case, for any a,b € N
with a — b € C, we have ab = ba, and so a — b € N. Moreover, for any
a € N and ¢ € R with az € C, an easy induction shows that (az)¥ = a*2*
for all positive integers k, and so az € N. Similarly, za € N. Hence, if
R = NUC, then N is an ideal of R, whence R = N or R = C. Next, for
any elements a,b € R with

[@.b] = [a,b]? for some integer ¢ > 1

we have

[a,8] = ([a,8]%)? = [a,8)7" = [a,b)7"

for all positive integer k. Hence, if R = N and R satisfies (i) above, then
R = N = C. Therefore, it follows that, if R = N U C and R satisfies (i)
also, then R = C.

We have thus shown the following:

(a fR=NUC,then R=Nor R=C.

(b) If R = N UC and R satisfies (i) above, then R = C.

We now prove the following two lemmas.

Lemma 1. If R is a generalized n-potent ring, then J C N U C.

Proof. Suppose not, and let z € J, z ¢ N, z ¢ C. Then, since R is
generalized n-potent, 2® —z € NNC. So (z" —z)™ = 0 for some m € Z*,
and thus

z™ = 2™(xg(z)), for some g(A) in Z[A].
From this equation we readily obtain the relation z™ = z™(zg(z))™; so
we see that e = (zg(z))™ = 2™g(z)™ is idempotent. Thus, e = (zg(z))™
is an idempotent element of J (since z € J). Therefore e = 0. This implies
that 2™ = 0, which contradicts * € N. This proves the lemma.

Lemma 2. Let R be a generalized n-potent ring with all idempotents
central. Then,
(i) az € N foralla € N and x € R:
(ii) N is an ideal of R;
(iii) C(R)CNCJCNUC.
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Proof. Suppose that (i) is false and let @ € N and z € R, with
ax ¢ N. As seen in above Remark, we note that if az € C, then az € N,
a contradiction. This shows that az ¢ C. Thus, az ¢ N UC. So, because
R is generalized n-potent, we have (az)® — az € N. Then, as in the proof
of Lemma 1, (az)™ = (azx)™e, where e = ((az)g(az))™ is idempotent, and
g(}) in Z[A).

By hypothesis, € is central so e = ee = e((az)g(az))™ = eat = aet,
for some t € R. Thus, e = aet, and as we noted in above Remark, since
aet € C, e = €9 = (aet)? = a¥(et)? = a%t?, for all positive integers ¢.
But since @ € N, for some ¢, a? = 0; so e = 0. Hence, (az)™ = 0, a
contradiction, since ax ¢ N. This proves part (i).

For (ii), let @ € N and z € R. Then, from (i), az € N, and hence
az is right quasiregular for all ¢ € R. Thus a € J, and hence ¥ C J.
Combining this with Lemma 1 we see that N C J C N UC. Now suppose
that a,b € N. Then botheaand b€ J,soa—-be J C NUC. Thus,
a—be Nora-beC. Butifa—-b € C, then ab = ba and, therefore,
a—be N, for all a,b € N in any case. Next suppose that a € N and
r € R. Then, from part (i), ar € N, say (ar)? = 0. Hence, (ra)?*t! = 0
and so ra € N. Thus, N is an ideal of R.

Finally for (iii), since N is an ideal, the factor ring R/N exists. Since
generalized n-potency is inherited by homomorphic images of R, R/N is
also generalized n-potent and we readily obtain that for every y € R/N,
y™ — y is in the center of R/N. Therefore, by Herstein’s Theorem [1], R/N
is commutative, and thus C(R) C N [C(R) is the commutator ideal of R.]
Combining this result with &N C J C N UC, we have part (iii).

We next prove the following theorems.

Theorem 1. A generalized n-potent ring with all nilpotents central
s commutative.

Proof. Since the set N of nilpotent elements of the ring R is contained
in the center C' of R, this implies at once that 2™ — z € C for all z € R.
Hence, by Herstein’s Theorem [1], R is commutative.

Theorem 2. Suppose that R is a generalized n-potent ring with iden-
tity. Suppose further that for alla € N, x € R,

(%) (n—1]a,z] =0 implies [a,z]=0.
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Then R is commutative.

Proof. We claim that in this case N C C. Suppose, not, and let
a € N,a¢ C. Suppose that

(1) [a°,z] =0, forall o > 0p, 0o minimal, z € R arbitrary.
We claim that oo = 1. Suppose not. Then, 1+ a®~1 ¢ NUC, and hence,
(2) (I+a - (14+a° ) =beC.

Combining (1) and (2), we see that (n — 1)[a’®~1,z] = [b,z] = 0 for all
z € R, and thus by (*#), [a°°~1,z] = 0, for all z € R. This, however,
contradicts the minimality of og in equation (1), so g = 1. Therefore,
by (1), [a,z] = O for all z € R, which contradicts @ ¢ C. This contradiction
proves N C (), and the theorem now follows from Theorem 1.

Theorem 3. Suppose that R is a generalized n-potent ring with all
idempotents central. Suppose further that for alla € N, 2 € R,

(n—1a,z] =0 implies [a,z]=0.

Then R=C or R=N.

Proof. By Lemma 2, N is an ideal of R. Suppose B 2 CUN, and let
z be an arbitrary element of R\(C U N). Then, by (*), z* —z € C'N N.
Hence, as in the proof of Lemma 1, 2™ = z™e for some positive integer m
and some idempotent e of R. By hypothesis, we have e € C. Since z ¢ N,
e is nonzero. Now, we consider the Peirce decomposition

R=Re & A,

where A = {a — ae; a € R} = {a € R; ae = 0}, which will be denoted by
R(1 — e). Obviously

C=Ce®pC(l—e)y, N=Ned N(l—e)

and, Ce (resp. Ne) coincides with the set of all central (resp. nilpotent)
elements of Re. Further

CNN=(CenNe)&(C(1 —e)NN(1-¢)),
R\(C UN) D Re\(CeU Ne).
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From this, an easy computation enables us to see that Re is a generalized
n-potent ring with the identity e. Moreover, for all @ € N, b € R, we have
ae € N, and hence by hypothesis,

(n —1)[ae,be] = 0 implies [ae,be] = 0.

Now by Theorem 2, we see that Re is a commutative ring, whence Re C .
We write z = re+(z —ze). Then 2™ = z™e+(z —ze)™. Since 2™ = z™e,
we have (r —ze)™ = 0. Hence z —ze € N.

We set a = ¢ — ze. Since z ¢ C and ze € C (since Re C C), we have
a ¢ C. Suppose that

a’° € C forall ¢ > 0p, 0o minimal.
Then g > 1, a’°"! ¢ C, and e +a°~! ¢ NUC. Hence
(e+a” H —(e4+a ) eC.
Since ea®~! € eR C C and (a?°~1)™ € C for all m > 2, we have,
(e+a®® )" e C, andso e+a™"!eC.

This implies a’~! € C, which is a contradiction. Therefore, it follows
that R =.C' U N. Thus, we obtain that R = C or R = N (see above
Remark (a)).

We are now in a position to prove our main result.

Main Theorem. Suppose that R is a generalized n-potent ring with
all idempotents central. Suppose further that

(i) for alla,b e N, [a,b] = [a,b]? for some integer ¢ > 1; and

(ii) (n — 1)[a,z] = O implies [a,z] =0, foralla € N, z € R.
Then R is commutative (and conversely).

Proof. Let a,b € N. By Lemma 2(iii), the commutator [a,b] € N,
and thus for some positive integer r, [a,b]” = 0. Moreover, by hypothe-
sis (i), [a,b] = [a,b]? for some integer ¢ > 1. Hence, as is seen in above
Remark, we have [e,b] = 0 and, therefore, N is commutative. By Theo-
rem 3, R = C or R = N, and the theorem thus follows.

Jacobson’s Theorem for fixed n, is an immediate corollary of our main
theorem, since in that case N = {0}. So all idempotents e in R are central.
This follows because (ex —eze)? = 0 = (ze — eze)?. We state this result as
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Corollary 1. Suppose that R is a ring such that for all x € R,
2™ =z, n > 1 a fired integer. Then R is commutative.

We also have the following additional corollary:
Corollary 2. Suppose R is a generalized n-potent ring with all idem-

potents central and with commuting nilpotents. Suppose further that the
set N of nilpotents is (n — 1)-torsion-free. Then R is commutative,

Proof. By Lemma 2(ii), N is an ideal of R, and so [a,z] € N, for
all @ € N and z € R. Therefore, hypothesis (ii) of the main theorem is
satisfied (since N is n — 1-torsion-free), and the corollary follows.

We conclude with the following examples which show that our main
theorem need not be true if any one of the hypotheses is deleted.

Example 1. Let

R={(0)-© 1) (1 o) 1) 0recF@}:

and let n = 2.

This example shows that the hypothesis that all of the idempotents
are central cannot be deleted from the main theorem.

Example 2. Let
=l

This example shows that the hypothesis that the ground ring R is
generalized n-potent cannot be deleted from the main theorem.

ab
0 a%0] : a,byec € GF(4)p;
00

Q o6

and let n = 2.

Example 3. The ring of all strictly upper triangular 3 x 3 matrices
over GF(3), with n = 3, shows that hypothesis (i) of the main theorem
cannot be deleted.

Example 4. The ring in Example 2, but now with n = 7, shows
that hypothesis (ii) of the main theorem cannot be deleted.
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