DUAL-BIMODULES AND FINITELY COGENERATED MODULES

In memory of Professor Hisao Tominaga

YOSHIKI KURATA and KAZUTOSHI KOIKE

Let R and S be rings with identity and RQ_S an (R, S)-bimodule. We shall call Q a left dual-bimodule provided that $\ell_R r_Q(A) = A$ for every left ideal A of R and $r_Q \ell_R(Q') = Q'$ for every S-submodule Q' of Q (see [5]).

In this note, first we shall show that a left dual-bimodule $_RQ_S$ defines a duality between the finitely generated left ideals of R and the finitely cogenerated factor modules of Q_S . Then, as an application of this duality, we shall give necessary and sufficient conditions for R to be left semihereditary or left coherent.

For notations and definitions we shall follow [1] and [5].

1. Let R and S be rings with identity and RQ_S an (R,S)-bimodule. Suppose that Q_S is quasi-injective and the natural homomorphism $\lambda \colon R \to \operatorname{End}(Q_S)$ is an isomorphism. Then by [7, Theorem 2.1], for each S-module N_S , there is a bijection between the finitely generated submodules of the Q-dual RN^* of N and the finitely closed submodules of N_S given by

$$L \longrightarrow r_N(L)$$

with the inverse $K \to \ell_{N^*}(K)$. Here, a submodule K of N_S is said to be finitely closed (with respect to Q_S) if there exists an integer m > 0 such that

$$0 \longrightarrow N/K \longrightarrow Q^m$$

is exact, or equivalently, there exist f_1, f_2, \ldots, f_m in N^* such that

$$\bigcap_{j=1}^m \operatorname{Ker} f_j = K.$$

In case Q_S is finitely cogenerated, K finitely closed means that N/K is finitely cogenerated Q-torsionless.

Using this theorem, Miller and Turnidge pointed out that, under the same assumption as above, R is left Noetherian (right perfect) if and only if Q_S has DCC (ACC) on finitely closed submodules.

If, in particular, RQ_S is a left dual-bimodule with Q_S quasi-injective and λ surjective, then the bijection yields one between the finitely generated left ideals of R and the finitely closed submodules of Q_S given by

$$A \longrightarrow r_O(A)$$

with the inverse $Q' \to \ell_R(Q')$. Hence, in this case, R is left Noetherian (right perfect) if and only if Q_S has DCC (ACC) on the submodules $r_Q(A)$ of Q_S with A a finitely generated left ideal of R and R is regular if and only if every submodule of Q_S of the above form is a direct summand of Q_S (cf. [4, Proposition 4.2 and Theorem 4.3]). On the other hand, since the mapping $Ra \to r_Q(a)$ is a bijection between the principal left ideals of R and the submodules $r_Q(a)$ of Q_S with a in R, it follows that R is right perfect if and only if Q_S has ACC on the submodules $r_Q(a)$ of Q_S with a in R and that R is regular if and only if every submodule of Q_S of the last form is a direct summand of Q_S (cf. [4, Theorem 3.1 and Proposition 4.1]).

2. For an (R, S)-bimodule RQ_S , as was shown in [5, Theorem 3.3], if Q_S is quasi-injective and λ is surjective, then the pair (H', H'') of functors

$$H' = \operatorname{Hom}_{R}(-,Q) : {}_{R}\underline{\mathbf{M}} \longrightarrow \underline{\mathbf{N}}_{S},$$

 $H'' = \operatorname{Hom}_{S}(-,Q) : \underline{\mathbf{N}}_{S} \longrightarrow {}_{R}\underline{\mathbf{M}}$

defines a duality between the full subcategory RM of R-mod of finitely generated Q-torsionless R-modules and the full subcategory NS of mod-S whose objects are all the S-modules NS such that

$$0 \longrightarrow N \longrightarrow Q^n \longrightarrow Q^I$$

is exact for some integer n > 0 and a set I. Assume further that Q_S is finitely cogenerated, then by [5, Proposition 3.4]

$$R\underline{M} = \{RM \mid M \text{ is finitely generated and } Q\text{-reflexive}\}$$

and

$$\underline{N}_S = \{N_S \mid N \text{ is finitely cogenerated and } Q\text{-reflexive}\}.$$

If, in addition, Q_S is a self-cogenerator, then by [6, Proposition 4]

$$\underline{\mathbf{N}}_S = \{ N_S \mid 0 \to N \to Q^n \text{ is exact for some } n > 0 \}.$$

Using the bijection in Section 1, we shall now show that (H', H'') defines a duality between more restricted subcategories of RM and NS.

Theorem 1. Let $_RQ_S$ be a left dual-bimodule with Q_S quasi-injective and λ surjective. Then (H', H'') defines a duality between the finitely generated left ideals of R and the finitely cogenerated factor modules of Q_S .

Proof. Let A be a finitely generated left ideal of R. Then A belongs to RM and A^* is isomorphic to a finitely cogenerated factor module $Q/r_Q(A)$ of Q_S by [5, Lemma 1.13]. On the other hand, for each finitely cogenerated factor module Q/Q' of Q_S , Q' is finitely closed and hence $\ell_R(Q')$ is finitely generated and is Q-reflexive. Again by [5, Lemma 1.13], $Q/Q' \cong \ell_R(Q')^*$. Thus, Q/Q' is in N_S and N_S and N_S is isomorphic to N_S .

Corollary 2. Let $_RQ_S$ be a left dual-bimodule with Q_S quasi-injective and λ surjective. If R is left Noetherian, then (H', H'') defines a duality between the left ideals of R and the factor modules of Q_S .

In contrast with Corollary 2, (H', H'') always defines a duality between the factor modules of RR and the submodules of Q_S under the same assumption of Corollary 2. Indeed, for each left ideal A of R, R/A is Q-reflexive by [5, Theorem 3.2] and $(R/A)^* \cong r_Q(A)$. On the other hand, for each submodule Q' of Q_S , $Q' = r_Q(\ell_R(Q')) \cong (R/\ell_R(Q'))^*$. Hence, Q' is Q-reflexive by [1, Proposition 20.14] and $Q'^* \cong R/\ell_R(Q')$.

If $_RQ_S$ is a dual-bimodule with both $_RQ$ and Q_S injective, then using [1, Exercise 23.7] (H',H'') defines a duality between the left R-modules of finite length and the right S-modules of finite length by [5, Theorem 2.1]. However, we have

Theorem 3. Let $_RQ_S$ be a left dual-bimodule with Q_S quasi-injective and λ surjective. Then (H', H'') defines a duality between the Q-torsionless left R-modules of finite length and the Q-torsionless right S-modules of finite length.

Proof. Let $_RM$ be a Q-torsionless R-module of finite length and let

$$M=M_0>M_1>\cdots>M_n=0$$

be a composition series of M. Then

$$0 = r_{M^{\bullet}}(M_0) < r_{M^{\bullet}}(M_1) < \cdots < r_{M^{\bullet}}(M_n) = M^*$$

is a series of S-submodules of M^* , where $r_{M^*}(M_i) = \{f : M \to Q | M_i \le \text{Ker } f\}$ (see [1, p.281]). For each i, each element of $r_{M^*}(M_{i+1})$ induces an R-homomorphism from M_i/M_{i+1} to Q and hence $r_{M^*}(M_{i+1})/r_{M^*}(M_i)$ can be seen as an S-submodule of $(M_i/M_{i+1})^*$. Since M_i/M_{i+1} is simple, $(M_i/M_{i+1})^*$ is isomorphic to a simple submodule of Q_S , as is seen from the proof of [5, Theorem 2.1]. Hence, $r_{M^*}(M_{i+1})/r_{M^*}(M_i)$ is zero or simple. Thus, M_S^* is a module of finite length and $c(M^*) \le c(M)$, where $c(\cdot)$ denotes the composition length. Furthermore, by [1, Proposition 20.14], M_S^* is Q-torsionless.

Using [1, Exercise 16.18], for a Q-torsionless S-module N_S of finite length, R^N^* is a Q-torsionless R-module of finite length and $c(N^*) \leq c(N)$ holds.

Clearly each Q-torsionless R-module RM of finite length is Q-reflexive and we have $c(M) = c(M^*)$. On the other hand, each Q-torsionless S-module N_S of finite length is finitely cogenerated. Hence it is Q-reflexive. Thus, we have $c(N) = c(N^*)$.

Corollary 4. Let $_RQ_S$ be a left dual-bimodule with Q_S quasi-injective and λ surjective. Then (H',H'') defines a duality between the simple left R-modules and the Q-torsionless simple right S-modules.

In case RQ_S is a dual-bimodule, however, (H', H'') defines a duality between the simple left R-modules and the simple right S-modules, as is seen from [5, Theorem 2.1].

3. It is shown by [5, Proposition 1.12] that for a left dual-bimodule RQ_S , R is semisimple if and only if Q_S is semisimple. On the other hand, we have

Theorem 5. Let $_RQ_S$ be a left dual-bimodule with λ surjective. Then R is simple Artinian if and only if $Q_S \cong Q_1^n$ for some integer n > 0 and some simple right S-module Q_1 .

Proof. Suppose that R is simple Artinian. Then Q_S is semisimple and is finitely generated by [5, Proposition 1.8]. Let Q_1 be a simple submodule of Q_S . Then $\ell_R(RQ_1)$ is a proper ideal of R and hence it must be zero by assumption. Therefore, $RQ_1 = r_Q\ell_R(RQ_1) = Q$. However, $RQ_1 = \sum_{a \in R} aQ_1$ and each aQ_1 is either zero or isomorphic to Q_1 . Thus we have $Q \cong Q_1^n$ for some integer n > 0.

Conversely, suppose that $Q_S \cong Q_1^n$ for some integer n > 0 and some simple right S-module Q_1 . Then since $R \cong^{\lambda} \operatorname{End}(Q_S)$, R is isomorphic to the ring of all $n \times n$ matrices over the division ring $\operatorname{End}(Q_1)$. Thus, R is simple Artinian.

Now, using Theorem 1, we shall give a necessary and sufficient condition for R to be left semihereditary (cf. [2, Corollary 2.4] and [8, Proposition 2.1]).

Theorem 6. Let $_RQ_S$ be a left dual-bimodule with Q_S quasi-injective and λ surjective. Then the following conditions are equivalent:

- (1) R is left semihereditary.
- (2) Every finitely cogenerated factor module of Q_S is Q-injective.
- (3) For every finitely generated left ideal A of R, A^* is Q-injective.

Proof. Let A be a finitely generated left ideal of R and let $R^n \to A \to 0$ be exact for some integer n > 0. Then the sequence

$$0 \longrightarrow A^* \longrightarrow Q^n \tag{*}$$

is also exact. Since A is Q-reflexive and $R \cong^{\lambda} \operatorname{End}(Q_S)$, A is projective if and only if (*) is split exact and this is so if and only if A^* is Q-injective. Thus, (1) and (3) are equivalent. By Theorem 1, (2) and (3) are also equivalent.

Theorem 7. For a dual ring R the following conditions are equivalent:

- (1) R is left semihereditary.
- (2) R is semisimple.

Proof. (1) \Longrightarrow (2). Suppose that R is left semihereditary. Since $R/\operatorname{rad}(R)$ is semisimple by [5, Theorem 1.10], $0 \to R/\operatorname{rad}(R) \to \operatorname{soc}(R)^n$ is split exact for some integer n > 0. By [5, Proposition 1.8] $\operatorname{soc}(R)$ is projective. Hence, $R/\operatorname{rad}(R)$ is also projective. Thus, $\operatorname{rad}(R)$ must be a direct summand of R, from which it follows that $\operatorname{rad}(R) = 0$ and R is semisimple. (2) \Longrightarrow (1) is trivial.

As is easily seen, a ring R is left coherent if and only if for every integer n>0 and every R-homomorphism $f\colon {}_RR^n\to {}_RR$ there exist an integer m>0 and an R-homomorphism $g\colon {}_RR^m\to {}_RR^n$ such that

$$R^m \xrightarrow{g} R^n \xrightarrow{f} R$$

is exact. For a left dual-bimodule $_RQ_S$, using Q_S instead of R, a similar characterization for R to be left coherent can be obtained (cf. [2, Theorem 2.6 and Corollary 2.7]).

Theorem 8. For a left dual-bimodule $_RQ_S$ with Q_S quasi-injective and λ surjective, the following conditions are equivalent:

- (1) R is left coherent.
- (2) For every finitely cogenerated factor module Q/Q' of Q_S , there exist integers n, m > 0 such that

$$0 \longrightarrow Q/Q' \longrightarrow Q^n \longrightarrow Q^m$$

is exact.

(3) For every finitely generated left ideal A of R, there exist integers n, m > 0 such that

$$0 \longrightarrow A^* \longrightarrow Q^n \longrightarrow Q^m$$

is exact.

(4) For every integer n>0 and every S-homomorphism $f\colon Q\to Q^n$ there exist an integer m>0 and an S-homomorphism $g\colon Q^n\to Q^m$ such that

$$Q \stackrel{f}{\longrightarrow} Q^n \stackrel{g}{\longrightarrow} Q^m$$

is exact.

Proof. It is easy to see that (1), (2) and (3) are equivalent.

 $(1)\Longrightarrow (4).$ Assume (1) and let $f\colon Q\to Q^n$ be an S-homomorphism. Then $0\to Q/K$ \bar{f} Q^n is exact, where $K=\operatorname{Ker} f$ and \bar{f} is the homomorphism induced by f. Hence Q/K is finitely cogenerated Q-reflexive. By Theorem 1, $(Q/K)^*$ is a finitely generated left ideal of R and $R^n\to (Q/K)^*\to 0$ is exact. Since R is left coherent, there exists an integer m>0 such that $R^m\to R^n\to (Q/K)^*\to 0$ is exact. Thus, $0\to Q/K$ \bar{f} Q^n \bar{g} Q^m is exact for some S-homomorphism g, which shows that

$$Q \xrightarrow{f} Q^n \xrightarrow{g} Q^m$$

is exact.

 $(4)\Longrightarrow(2)$. Assume (4) and let Q/Q' be any finitely cogenerated factor module of Q_S . Then Q' is finitely closed and hence there exists an integer n>0 such that $0\to Q/Q'\xrightarrow{f}Q^n$ is exact for some S-homomorphism f. Let $\pi\colon Q\to Q/Q'$ be the canonical epimorphism. Then by (4) there exist

an integer m > 0 and an S-homomorphism g such that $Q \xrightarrow{f\pi} Q^n \xrightarrow{g} Q^m$ is exact and thus so is $0 \to Q/Q' \xrightarrow{f} Q^n \xrightarrow{g} Q^m$.

It is to be noted that if R is a dual ring with R_R injective, then the bimodule $_RR_R$ defines a Morita duality by [1, Exercise 24.10] and [6, Corollary 6]. However, this is not the case for a left dual-bimodule in general. For example, let $R = Q = \mathbb{Z}/(p)$, p a prime number, and $S = \mathbb{Z}$. Then the bimodule $_RQ_S$ is a left dual-bimodule with Q_S quasi-injective and λ surjective, but does not define any Morita duality.

For this left dual-bimodule, R is left Noetherian, right perfect and is also regular. Furthermore, it is left semihereditary and left coherent, too.

REFERENCES

- F. W. Anderson and K. R. Fuller: Rings and Categories of Modules, Springer-Verlag, New York Heidelberg Berlin, 1973.
- [2] J. L. GARCIA HERNANDEZ and J. L. GOMEZ PARDO: Closed submodules of free modules over the endomorphism ring of a quasi-injective module, Comm. Algebra 16 (1988), 115-137.
- [3] C. R. HAJARNAVIS and N. C.NORTON: On dual rings and their modules, J. Algebra 93 (1985), 253-266.
- [4] S. M. KHURI: Modules with regular, perfect, noetherian and artinian endomorphism rings, LN in Math. 1448, Springer-Verlag, New York Heidelberg Berlin, 1990, 7-18.
- [5] Y. KURATA and K. HASHIMOTO: On dual-bimodules, Tsukuba J. Math. 16 (1992), 85-105.
- [6] Y. KURATA and S. TSUBOI: On linearly compact dual-bimodules, Math. J. Okayama Univ. 33 (1991), 149-154.
- [7] R. W. MILLER and D. R. TURNIDGE: Co-Artinian rings and Morita duality, Israel J. Math. 15 (1973), 12-26.
- [8] R. W. MILLER and D. R. TURNIDGE: Factors of cofinitely generated injective modules, Comm. Algebra 4 (1976), 233-243.

Y. Kurata
Department of Information Science
Kanagawa University
Tsuchiya, Hiratsuka-shi 259-12, Japan

K. KOIKE
DEPARTMENT OF COMPUTER SCIENCE
UBE COLLEGE
BUNKYOCHO, UBE-SHI 755, JAPAN

(Received May 20, 1994)