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PRIME IDEALS IN POLYNOMIAL RINGS OVER
TAME ORDERS AND HEREDITARY PI-RINGS

HipeTosH1 MARUBAYASHI, YanNGg LEE and JAE KeEoL PARK

For a given hereditary prime PI-ring A and a central polynomial f(z)
in A[z] with f(z)A[z] a prime ideal in A[z], it was proved in [8] and [13]
that the prime factor ring A[z]/ f(z)A[z] is hereditary if and only if f(z)
is not contained in the square of any maximal ideal of A[z], which is a
generalization of a main result in [7].

From this result together with the fact that hereditary prime PI-rings
can be tame orders by [17], first in Section 1, we investigate, in Theorem A,
a condition of prime factor rings of the polynomial ring A[z] to be tame
orders whenever A is a tame order. As applications, when D is a Krull
domain we give a criterion for a certain class of prime factor. rings of D[z]
to be a Krull domain.

Furthermore, in Section 2, when A is a hereditary PI-ring, in Theo-
rem B, we give a criterion for prime factor rings of A[z] to be hereditary,
which is a nontrivial extension of the main result in [13, Theorem] and [14,
Proposition 1], thereby we can provide an answer to a question of Armen-
dariz [1], i.e., “a characterization of prime ideals P of the polynomial ring
Alz] over a hereditary PI-ring A such that A[z]/P is hereditary”, which
was raised from a result in [2]: every prime factor ring of a hereditary
Pl-ring is hereditary.

1. Prime ideals in polynomial rings over tame orders. Let A
be an order in a simple Artinian ring . For a A-ideal A in @, we will use
the notation;

Oe(A) ={g€QlqAC A},
0,(A) ={q€ Q| AqC A},
(A:A) ={g€Q|gAC A}
(A:A), ={qe Q| AgC A},
Ay =(A:(A:A)), and ,A4=(A:(A:A)).
Clearly A, and ,A are again A-ideals containing A. We say that A4
is a v-ideal if ;LA = A = A,. A v-ideal A is v-invertible if (A(A:A),), =
65
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A =,((A:A)pA). As it is well known, a A-ideal A is projective as left and
right A-modules if and only if A(A:A); = Oy(A) and (A: A), A = O.(A).

The following is a Krull type generalization of projectivities:

(K): 4(A(A:A)g) = Oy(A) for any A-ideal A such that A = LA, that
is, A is reflexive as a left A-module, and (A:A),A), = O.(A) for any
A-ideal A such that A = A,,.

An order A is said to be v-hereditary (simply, a VH-order) if A satisfies
the condition (K).

For a right A-module X, we denote by E4(X) (simply, E(X)) the
injective hull of X. Let C = C(A) be the right Gabriel topology corre-
sponding to the torsion theory cogenerated by E(Q/A). Then C = {C: a
right ideal of A| (A:771C); = A for any r € A} by Proposition 5.5 of [18,
p.147], where 771C = {\ € A| rA € C}. Similarly, we can define the left
Gabriel topology C’ on A. Let I be any right A-ideal (or a right ideal of
A). We e put IT={qe Q| gC C I for some C € C}. I is said to be C-closed
if I = I. If I is a right ideal of A, then we note that T = {A e A | AC C I
for some C € C}. Also left C'-closed ideals can be defined similarly.

In [3], Chamarie has considered the following condition to get the
classical localization A4 of A at a v-ideal A in case A is a maximal order.

(C): A satisfies the mazimum condition on right C-closed ideals of A
and left C'-closed ideals of A.

Following [9], A is called a VHC-order if it is a VH-order and satisfies
the condition (C).

Through this section, we assume from now on that D is a Krull do-
main which is not a field; K is the field of fractions of D. Let A be a tame
D-order in a central simple K-algebra ¢ with finite dimension over K
(see [4]). We denote by D(A) the set of all v-invertible ideals in @ and
by P(A) the subset of D(A) consisting of all principal A-ideals.

Now we summarize some properties of tame orders which will be nec-
essarv.

(i) A is a VHC-order with enough v-invertible ideals in the sense
of [10] (see [9, Proposition 3.1] and [12, Proposition 1.1]).

(ii) D(A) is a free abelian group generated by maximal v-invertible
ideals (see [9, Theorem 1.13]).

(iii) A[z] is a tame D[z]-order (see [4, Theorem 1.11]).
(iv) D(A)/P(A) is naturally group isomorphic to D(A[z])/P(A[z])
(see [10, Theorem 2.19)).
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(v) The set of all maximal v-invertible ideals of Afz] is {B[z],A| B
is a maximal v-invertible ideal of A and A = A’ N Afz] for some maximal
ideal A’ of Q[z]} (see [9, Theorem 3.9]).

Also throughout this section P is always a non-zero prime ideal of A[z]
with PN A = 0. Then in this case we have the following:

(vi) PQ[z] N A[z] = P and PQ|x] is also a prime ideal.

(vil) P is a v-ideal.
(viii) P is a minimal non-zero prime ideal of A[z].

The proof of (vi) is straightforward. Since Q[z] is a principal ideal
ring [16], any ideal of Q[z] is a ©-ideal. So (vii) follows from [9, Lemma 2.3]
and (vi). (viii) follows from (vi), because any non-zero prime ideal of Q[z]
is maximal.

We begin with local case.

Lemma 1. Assume that D is a discrete rank one valuation domain
and that A is hereditary. Let P be a non-zero prime ideal of A[z] with
PNA=0. Then there exists f(z) € D[z] such that P = f(z)A[z].

Proof. Let p = PN Dlz], a minimal non-zero prime ideal of the Krull
domain D[z]. Then, by Nagata’s theorem, there exists f(z) € D[z] such
that p = f(z)D[z] (see (iv)). Now it is clear that f(z)K[z] is a prime
ideal with f(z)K[z] N D[z] = p, and K is embedded in K[z]/f(z)K]z],
which is a field. So it follows from [15, Theorem 7.6] that Q[z]/f(z)Q[z]
(= Q @k K[z]/f(z)K|[z]) is a simple Artinian ring. Hence f(z)Q[z] is
a maximal ideal contained in P’ = PQ[z] and so P’ = f(z)Q[z]. Since
f(z)A[z] is invertible and f(z)A[z] C P, we have

f(z)A[z) = PP - PP*-J™ 2],

where P; is a prime ideal such that P; = P/ N A[z] for some maximal ideal
P! of Q[z], and J = J(A), the Jacobson radical of A. Note that J is the
unique maximal invertible ideal of A, because D is a discrete rank one
valuation domain. Then it follows that

r_ m my my
P = PP PR

and so we have k = 0 and n = 1. Now to prove that m = 0, assume to the
contrary that m > 1, then f(z) € J[z]|ND[z] = J(D)[z]. In this case J(D)
is the unique maximal ideal of D. Thus we have f(z)D[z] C J(D)[z], a
minimal non-zero prime ideal of D[z]. So f(2)D[z] = J(D)[z] and this
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implies that f(x)K'[z] = K[z]. This is a contradiction and so m = 0, that
is, P = f(z)A[z]. This completes the proof.

Let p be a minimal non-zero prime ideal of D. Then A, is hereditary
over the discrete rank one valuation domain D,. So by Lemma 1, there
exists f(z) € Dp[x] such that @, = fp(z)Dplz] and P, = fp(z)Ap[z].

Lemma 2. Let M be a prime ideal of A[z] such that MN(D\p) =0
for some minimal non-zero prime ideal p of D. Then rank(M) < 2 and
rank(M NA) < 1.

Proof. rank(M) < 2 follows from the fact that the classical Krull
dimension of Ay[z] equals to 2. To prove that rank(M N A) < 1, let

M = M N A and suppose that M is not a minimal non-zero prime ideal.
Then M = M|z], because

0 ¢ Mfz] g Mlz] C M,

where M; is a non-zero prime ideal strictly contained in M. However,
since M ¢ p, we have M, = My[z] = A,[z] and so M N(D\p) #0,a
contradiction. Hence rank(M) < 1.

For a prime ideal M of Alz] we define M(?) as follows:
HfMNA=0,then M® = M2 EMNA#0,thenm=MnNDisa
non-zero prime ideal and

M® = {\(z) € Alz]| Mz)c € M? for some ¢ € D\ m}.
Note that M) = (M,,)? N Alz].

Lemma 3. The following are equivalent:

(1) fo(z) & (M,)? for any prime ideal M of Alz] with M N (D\p) = 0,
where p is @ minimal non-zero prime ideal of D.

(2) P Z M® for any prime ideal M of Alz] with rank(M N A) < 1.

Proof. (1) implies (2). Assume to the contrary that P C M2 for
some prime ideal M of A[z] with rank(M NA) < 1.

Case I. If M = MNA =0, then M = MQ[z] N A[z] and so M is
a prime v-ideal which is v-invertible by [9, Lemma 3.6]. Furthermore, M
is a minimal non-zero prime ideal of A[z]| by [11, Lemma 1.8]. If M = P,
then, since M N (D \ p) = 0 for any minimal non-zero prime ideal p of D,
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we have P, = f,(z)A,[z] = M, C (M®@), = (M,)?, a contradiction. If
M # P, then, of course, we have P ¢ M@ a contradiction.

Case II. If M = M N A is non-zero, then M is a minimal non-zero
prime ideal of A and m = M N D is also a minimal non-zero prime ideal
of D with M N (D\m)=0. So frm(2)Am[2] = Pn C (M®),, = (Mp)?, a
contradiction.

Therefore by Cases I and II, P ¢ M® for any prime ideal M of Alz]
with rank(M N A) < 1.

(2) implies (1). Suppose that fy(z) € (M,)? for some prime ideal M
of A[z] with M n (D \ p) = 0, where p is a minimal non-zero prime ideal
of D. By Lemma 2, rank(M NA) < 1. Let m = MND. Then either m = 0
or m is a minimal non-zero prime ideal. If m = 0, then M is a minimal
non-zero prime ideal. First of all, if P = M, then f,(z)A,[z] = P, C (Pp)?,
a contradiction. If P # M, then P, # M, because P = P, N Afz] and
M = M,n Alz]. Hence f,(z) ¢ M, and so f,(z) & (M,)?, a contradiction.
Now if m is a minimal non-zero prime ideal, then M N (D \ p) = @ implies
that m C p and thus m = p. Since P, = fp(z)Ap[z] C (M,)?, we have
P = P,nAlz] C (M,)? N Alz] = M), a contradiction.

Therefore fy(z) & (M,)? for any prime ideal M of A[z] with M N (D\

p) = @, where p is a minimal non-zero. prime ideal of D.

Lemma 4. Let p be a minimal non-zero prime ideal of D. Then
(Alz]/P)p = Ap[z]/ Py is hereditary if and only if f,(z) ¢ (M,)? for any
prime ideal M of A[z] with M n(D\p)=0.

Proof. There is a one-to-one correspondence between prime ideals M
of Alz] with M N (D \ p) = 0 and prime ideals M’ of A,[z] corresponding
M in Afz] to M’ = M, and M’ in Ap[z] to M’ N Az]. Hence the lemma
follows from [13, Theorem)].

Lemma 5. Alz]/P = N,(Ap[z]/Pp) and Dlzl/p = N,(Dplz)/0p).
where p runs through all minimal non-zero prime ideals of D and p =
PN Dlz].

Proof. Since A =N Ap and D = | Dy, it follows that Alz] = N Ap[z]
and D[z] = () Dp[z]. To prove that P = [ P,, let z € (| P,. Then for any
p there exists ¢, € D\ p with z¢, € P. Set A =Y c,A. Then A, = A,
because, on the contrary, assume that A, C A, then there exists a maximal
v-ideal Py with A, C Py. Then po = Py N D is a minimal non-zero prime
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ideal of D and for this pg, we have ¢,; € PoND = py, a contradiction. Now
zA[z] C P implies that z € zA[z] = 2.4,[z] C (2A4]z]), € P, = P. Hence
P =P, and similarly p = [ p,. Therefore A[z]/P = N(Ap[2]/P,) and
D[z)/p = N(Dplz]/0p)-

Lemma 6. Suppose that one of the conditions in Lemma 3 is satis-
fied. Then we have the following:

(1) D[z]/p is a Krull domain and it is the center of Alz]/P, where
p = Pn Dz].

(2) Alz]/P is a tame D[z]/p-order.

Proof. (1) Let p be a minimal non-zero prime ideal of D. Then
Ap is hereditary with its center D, and P, = f,(z)A,[z]. So it follows
from [14, Claim 4, p.1485] and Lemma 4 that A,[z]/P, is hereditary with
Z(Ap[z)/Pp) = Dplx]/pp. where Z(—) denotes the center of a ring. In
particular, Dp[z]/pp is a Dedekind domain. Thus D[z]/¢ is a Krull domain
by Lemma 5. Furthermore, we have

Z(Alz]/P) = QZ(AP[m]/Pp) = QDp[m]/Pp = D[z]/p

by Lemma 5.
(2) For any minimal non-zero prime ideal p, Ap[z]/P, is hereditary
with Z(Ap[z]/Py) = Dplz]/pp. So it follows that

Apl2]/ Po = N(Ap[2]/ Po) g (s)»

where ¢'(p) ranges over all prime ideals of Dy[z]/p,. There is a one-to-
one correspondence between prime ideals ¢'(p) of Dy[z]/p, and minimal
non-zero prime ideals ¢(p) of D[z]/p with ¢(p) N (D \ p) = @ which is
given by;

¢(p) — a(p) = ¢'(p) N (D[z]/p) and g¢(p) — ¢(P)(Dp[z]/pp)-

Furthermore (A[z]/ P)ypy = (Ap[2]/Po)g(p) 2 (D[z]/9)q(p)- Hence we
have that

Alz]/P =N ﬂ)(:‘\[-’v]/ Plotp)

P glp
and (A[z]/P)y(p) is hereditary. To prove that A[z]/P has the finite char-

acter property, let A(z) be any regular element in Afz] = Afz]/P. Since
A(x)-Alz] is an essential right ideal of A[z], we have A(z)-A[z]NnZ(A[z]) # 0.
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Thus there exists d(z) € D[z] with d(z) € A(z)-A[z]. Since D[z] = D[z]/p
is a Krull domain, there are only finite number of minimal non-zero prime
ideals of D[z], say, q1,---,¢n. (each ¢ = g(p) for some ¢(p)) such that
d(z)-D[z],, ¢ Dlz],,. Hence A[z]/P satisfies the finite character property,

because Afz],(,) 2 Dlz],) for each ¢(p). Hence Alz] is a tame Dlz]-order

by [5, Lemma 1.1] and [9, Proposition 3.1].

The following lemma is implicitly known. However, we could not find
the place in which the proof of the lemma is given. So we give a complete
proof for our convenience. We denote by cl. K.dim A the classical Krull
dimension of A.

Lemma 7. Let A be a Noetherian tame D-order with cl.K.dim
A < 1. Then A is hereditary.

Proof. I cl.K.dimA = 0, then A is a simple Artinian ring and so it
is hereditary. If cl.K.dim A = 1, then any prime ideal M of A is a prime
v-ideal by [11, Lemma 1.8]). Furthermore, A = (N A,, where p runs through
all minimal non-zero prime ideals of D and A, is hereditary. So we have

1€ Ay N Or(M,) = Ay 0 (Ap: Mp)e M, = (AN (A: M), M)A,,
where O,(M,) = {g € Q| Mpq C M,}. Thus

(AN(A: M) M), = N(AN(A: M), M)A, = A,
4

This implies that M ¢ AN (A: M), M and so AN(A: M), M = A, ie.,
1 € (A: M), M. Hence it follows that M is left projective and similarly
right projective. Then the lemma follows from the same method as in [6,
Proposition 1.3].

Now from all lemmas prepared, we have one of our main results of this
note as follows;

Theorem A. Let D be a Krull domain with the field of quotients I
and let A be a tame D-order in a central simple K -algebra Q with finite
dimension over K. Let P be a prime ideal of Alz] with PN A =0. Then
Alz]/P is a tame order if and only if P ¢ M® for any prime ideal M
of Alz] with rank(M N A) < 1. Furthermore, under these conditions, the
center Z(Alz]/P) of Alz]/P is D[z]/p, where p = PN D[z].
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Let M be a prime ideal of Afz] with rank(M NA) < 1and P € M.
Then it is easily checked that P € M(?), Thus we have the following:

Remark. A[z]/P is a tame order if and only if P ¢ M for any
prime ideal M of A[z] satisfying both rank(M NA) <1 and P ¢ M.

Let f(z) be any polynomial in D[z] with deg f(z) > 1. Then
f(z)Alz]NA = 0. So we have the following corollary which extends results
in [7], [8] and [13].

Corollary 1. Let f(z) be any polynomial in D[z] such that P =
f(z)Alz] is a prime ideal of Alz] and deg f(z) > 1. Then Alz]/P is a
tame order if and only if f(z) ¢ M® for any prime ideal M of A[z] with
rank(M NA)< 1.

Noting that Krull domains are tame orders, we have following fact
immediately, which is Krull domains version of a result in [7].

Corollary 2. For a Krull domain D, let f(z) be any polynomial in
D(z] such that P = f(z)D[z] is a prime ideal and deg f(z) > 1. Then
D[z])/ P is a Krull domain if and only if f(z) € M for any prime ideal
M of D[z] with rank(M N D) < 1.

2. Prime ideals in polynomial rings over hereditary PI-rings.
As we mentioned, in this section we consider hereditary prime factor rings
of the polynomial ring A[z] over a hereditary PI-ring A.

Lemma 8. Let A be a prime hereditary Pl-ring and let M be a prime
ideal of Alz] with M = M (VA # 0. Then rank(M) = 1 and M) = M2,

Proof. 1t is clear that rank(M) = 1 and M[z] C M. First assume
that M = M(z] and let A(z) € M), Then there exists an element ¢ € D,
but ¢ ¢ M such that A(z)c € M2 and so A(z) € M. Since M is a maximal
ideal, we have M + cA = A and Az] = M|z} + cA[z] = M + cA[z]. Hence

AMz) € Ax)A[z] = M2)(M + cAlz]) € M2,

Next assume that M[z] ¢ M, then M is a maximal ideal. So we have
M + cA[z] = Afz] and hence A(z) € M2

By Theorem A and Lemma 8, we answer to a question of Armen-
dariz [1], which is a characterization of hereditary prime factor rings of
polynomial rings over a hereditary Pl-ring, in the following:
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Theorem B. Let A be a hereditary Pl-ring and let P be a prime
ideal of Alz]. Let P, = PN A, a prime ideal of A. Then we have the
following:

(1) If P = Py[z], then Alz]/P is hereditary if and only if Py is a
mazimal ideal of A.

(2) If Polz) C P, then A[z]/P is hereditary if and only if P € M* +
Py[z] for any prime ideal M of Alz] with P ¢ M.

Proof. (1) If P = Py[z], then Alz]/P = (A/Po)[z] and A/Fp is a
prime hereditary by [2, Theorem]. Hence (A/Pp)[z] is hereditary if and
only if A/Pp is a simple Artinian ring, that is, Py is a maximal ideal.

(2) Set A = A/P, and consider the natural mapping f from A[z] to
Alz]). We just write f(P) by P. Then P is a non-zero prime ideal with
PN A =0. Hence the result follows from the remark to Theorem A and
Lemma 8.
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