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THE UNIT GROUP OF THE MODULAR SMALL
GROUP ALGEBRA

MounaMED A. M. SALIM and RoBERT SANDLING

The unit group of the small group algebra of a finite p-group in char-
acteristic p has a structure which mimics that of the original group. The
normalised unit group is also a p-group. As such its structure is dependent
on the behaviour of commutators and p-th powers. In the case studied here
this behaviour is particularly favourable. Its upper and lower central series
are described. Attractive commutator formulae, both for elements and for
certain subgroups, are presented. Facts concerning p-th power structure
are given. These results are of value in the study of the isomorphism prob-
lem. New invariants of a group determined by its modular group algebra
are derived, some involving centralisers of sections of the group, others
amplifying those stated in [7].

Let p be a fixed prime and let G be a finite p-group. F'G will denote its
modular group algebra over the field F' of p elements. The augmentation
ideal of F'G will be denoted as I = I(G) = I(FG). As I(FG) is nilpotent,
the subset V = V(FG) = 1+ I(FG) is a group, the group of normalised
units of the unit group U(FG).

The quotient FG/I(G)I(G3), where G5 denotes the commutator sub-
group of G, is called the small group algebra of G over F. Often we will
abbreviate I(G2) to I;. The quotient V/(1 + II3) may be identified with
the group of normalised units of the unit group of the small group algebra.
This is the group which is the object of study here; it will be denoted by
S = S(FG). Note that § is the Sylow p-subgroup of U(FG/I15).

As GN 1+ 11; = ®(G,) = G4GY, studies of the small group algebra
give information only about the group G/G4G%. Unless stated otherwise
we will assume throughout that the subgroup G,G%5 = 1, that is, that
the commutator subgroup of G is elementary abelian. As justified by this
assumption we will view G as embedded in the small group algebra and
in S.

Recall from [6] that the group algebra FG determines |G| and
|G2: ®(G2)|. -1t follows that any group basis of FG has an elementary
abelian commutator subgroup and also embeds in the unit group of the
small group algebra. There it supplements the image of the canonical
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subgroup 1 + I?. Our second section studies subgroups with this latter
property, showing them to share many features with G and with S. The
results here establish various aspects of G as group algebra invariants. Our
third section adds to this list of invariants, focussing on centralisers in G
of certain canonical sections. Some of the results are valid for the general
p-group.

The n-th term of the lower central series of a group X will be denoted
either by X, or by v,(X), of the lower central series of a Lie algebra L by
n(L), of the upper central series of X by (,(X) and of the upper central
series of L by (n(L). The convention followed here has X; = X. The
n-th modular dimension subgroup will be denoted by D, = D,(X). For
Y,Z C X, the subgroup generated by all commutators [y,2],y € Y,z € Z,
will be denoted [Y, Z].

The following observations are used repeatedly in the paper without
comment. Recall that, if N is a normal subgroup of a p-group X, then
XN14+I(X)I(N)=®(N). If N is elementary abelian so that N may be
interpreted as a right F'X-module, then its submodule ¥I(X) is the sub-

group [N, X]. Thus, for m > 1, N-I(X)™ = [N, X,...,X]. In particular,
if X} is elementary abelian, then X, I(X)™ = Xp4pm, forallm > 1, n > k.

Group ring elements will be denoted by Greek letters, e.g., a. 3, ... ;
units will be denoted by Roman letters, e.g., , v, .... Group commutators
will be denoted by square brackets and Lie commutators by round ones,
viz., for e, 3 € I, (a,8) = aff — Ba while [1 +a,1+ 8] = (1 + )" }(1 +
B3) Y14+ a)(1+8). Longer commutator expressions are left-normed. Note
that (FG,FG) = FGI; so that V! < 1+ FGI,.

The symbol = will denote congruence of elements of G modulo 11,
or of units in ¥V modulo 1+ Il;. Note that, for u,v € V, u = v in FG
is the same as u = v in V. Also the bar notation will be used to denote
equivalence classes modulo Il; or 1 4 II; as appropriate to the context
(e.g.. 14+ I7).

1. Commutators and p-th powers. We begin by stating results
which describe central series in 5. The first augments Proposition 1.2
of [1], which states that G and S have the same nilpotency class. The
second is no more than a special case of Du’s Theorem [3] but is stated
and proved here independently because of the simplicity of doing so in
this case.
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Theorem 1.1. Forn > 2, S, =G, =1+ 7,({/113).

As S is an invariant of the modular group algebra of G, this result
shows that F'G determines the terms of the lower central series of G,
except for the first, up to isomorphism as FFG-modules. As with each of
our results this may be interpreted as a fact about the group algebra of a
general p-group G but with reference to its quotient G/®(Gz), viz., that
FG determines the dimensions of the elementary abelian factor groups

‘Gn®(G2)/®(G2) for n > 2.

Theorem 1.2. Form >0, (n(S) = 1+ (n(I/113).

While the relationship between the upper central series of § and of G
is not so close as was the case with their lower central series, the relation
between the terms of the two may be specified precisely.

Theorem 1.3. For m > 0, (n(G) = G N (n(S). Furthermore, for
n>2andm >0, Go,N{m(G) = SnN(n(S); consequently, the isomorphism
type of G, N (n(G) is determined by the group algebra of G over F'.

We begin the proofs of our results by stating two lemmas which give
formulae setting out the favourable behaviour of group and Lie commuta-
tors in the small group algebra. The more fundamental and simple ones
are stated in the first without proof.

Lemma 1.4. Foru,v,w €V and a,3,v € I, we have
(i) (u,v) = [u,v] — 1; equivalently, [l + o, 1 + 8] =1 + (e, 8);
(ii) afy = av3, or, equivalently, a(f3,v) = 0;
(i) (@,87) = (@,3)7 = (a7, 8);
(iv) (a8)® = a™3™ for n > 0.

Lemma 1.5. Letoy,...,am.B1,....8, €1, m,n > 2. Then

(1) (a1,a2,...,0m) = (01,02...0n);

2 M+a,14az,...,1+an] =1+ (a1,02,...,0,);
3) N+ 141185l = [1+ar, 14+ 81,14 az,..., 1+ am, 1+ 52,
14 8.];

(4) [1 + Zakl'i'z"BJ] = H[1+ aj,l +'5J]

Proof. (1) This is proved by induction using (iii) and the fact that
I{G)(FG,FG) = 11,.
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(2) This generalisation of (i) is also proved by induction, (i) itself
supplyving the induction step.
(3) Using (1) twice, we see that

(Haiﬁnﬁj) = (l_[ ai;ﬁl)ﬂ%---aﬂn)
= _(ﬁlvnaihB?-.'-'aan)
= —(,Bl,al,ag,...,am,,ﬁg,.. 7;671.)

- (al,ﬂlac‘Y?:'--aama,‘gZa"'7}971)-

Now (i) and (2) give the required equivalence.

(4) By (i), 1 + X @i, 1 + 3 85] = 1 + (e, 55). Since IZ = 0, this
is equivalent to J](1 + (@;,8;)). Now (i) shows this to be the required
product.

These lemmas dealt with elements. Our next applies them to give
a result which describes commutators of subsets and subgroups, the first
of several.

Lemma 1.6. Let X C 5. Then [X,S] = [X,G].

Proof. Letz € Xands€S. Ifs=1+3 a;(g;i—1) for some g; € G
and a; € F, then, by (4), [z,s] is equal to [][z,g;]*" (here the elements
of F' as exponents are interpreted as the corresponding integers from the
set {0,1,....,p—1}).

The proofs of our results about central series in S require little of these
preliminaries.

Proof of Theorem 1.1. In the identification of G as a subgroup of S,
G, = Go(1+ 1) = 1+ FGL,. As FG/FGI, = FG/FG(FG,FG) is
commutative, S < G2 and so S3 = G3. The proof proceeds by induction:
for n > 2, Guy1 = [Gn, G| = GRI(G). Note that GoIl; = 1. Any FG-
module M for which MII; = 0 may be interpreted as an FS-module;
moreover, in this case, M I(G) = MI(S). Thus G,I(G) = G,I(S5). Lastly
GoI(S) = S, I(S) = Snq1-

The identification of the terms of the lower central series of [/I]; is
obtained from (2).

Proof of Theorem 1.2. Let L denote I/Il;; we want to show that,
fora€l, 14+ a € (n(5)if and only if @ € ((L). Take m > 0. We must
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show that 1+ a € (,,(S) if and only if [1 + @,1 + 3] = 1 mod (—1(5) for
all 3 € I. But since [1+ a,1+ 3] =1+ (a,3) by (i), the above condition
is equivalent to (@&, 3) € (m-1(L) so that the proof follows by induction.

Proof of Theorem 1.3. As the elements of V' are linear combinations
of the elements of G, it is immediate that G N ((V) = ((G). The same is
true for S. The proof proceeds by induction. Take m > 2. It is clear that
G N (n(S) € (u(G). For the converse, let g € (,,(G). From Lemma 1.6,
[9.5] = [¢.G] which is in {,,—1(G); by induction, this is G N (—1(5) so
that g € (,,(5) as required.

The last points follow from the first because of Theorem 1.1.

We continue with further propositions advancing our intention of dis-
playing the attractive behaviour of the powers of the augmentation ideal
in commutator formulae in this context.

Proposition 1.7. For X C § and n > 1, the subgroup [X,1+ I"] =

[X,S,...,5] = [X,G,...,G]. In particular, [G,1+ "] = Gpq; and

[5,1 + In] = G'n+1‘
Proof. By definition [X,1+1I"] = ([z,14+ 3]: 2 € X,8 € I™). An

element 8 in I"™ can be written as a linear combination: 8 = 5 a;3;;8;2 - -+
Bin;s ni 2 n, a; € F, 8;; € I. It follows from formula (4) that, for a € I,
l4+a,l+ 8] =TI1+a,14 8- Bin;]*. Now (3) applies to show that

X, 1+ 1) =([z,1+ 51,.... 1+ Bn):z € X,3; € [,m > n),

that is, [X,1 + I7] is generated by all [z,81,...,8n],2 € X.s5; € §,m > n.
But the subgroup [X,S,...,5] is also generated by these commutators.
Equality with the other expression follows from Lemma 1.6.

The final point of the statement now follows from Theorem 1.1.

Corollary 1.8. Fork,£>1,[1+ I(G)*, 1+ I(G)] = Giye.

Proof. While a direct proof based on (3) and (4) is instructive, we
deduce the statement from the Proposition: [1+ I*,1+ If] = [1 + I*,
G....,G) = [[G,1+ I*¥],G....,G] = [Gi41,G,;-..,G] = Gii.

Proposition 1.9. Assume that G, = 1. Then 1 + I{(G)t < (_4(5)
for £ in the range 1 < £ <n - 1.
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Proof. By Proposition 1.7, [5,1 4+ " 1] = G, = lsothat 1 + /"1 <
¢(S). The proof proceeds by reverse induction on £: for € > 1, [S,1 + I¢] =
Ge+1 = S[+] S C(n—l)—f(s) whence 1 + It < C’n—f(s)'

We finish this section with results on the p-th power structure of §.
They have found application in the modular group algebra problem [5].

Lemma 1.10. Let m,n > L and n; > n for1 < i < m. Take
elements x;; € G for 1 < i< m, 1< j < ni. Then, for a > 0, there is an
element g € Gppa such that

a

(TT(L + (i1 — 1) (xiz — 1)+ -+ (zin; — 1)))P
= g1 + (2% — 1)zl — 1)---(ah,, — 1))-

Proof. By the Hall-Petrescu formula [4, I11.9.4] and the fact that G,
is elementary abelian, there is an element g € G,pe such that

(H(l + (551'1 - 1) : '(Iin.' - 1)))p“
= ¢TI0+ (za = 1)+ (2in; — 1)

Using (iv) and the fact that the characteristic is p, we see that the lat-
ter is equivalent to g [T(1 + (z;1 — 1)P* -+ (2in, — 1)?") which, in turn, is
equivalent to

gTI(+ (2] = 1)+ (2h, = 1))

Proposition 1.11. Let K be a subgroup of G, n > 1 and a > 0.
Then
Knpa(1 + I(K)" )" = Kupa(1 + I(KP*)").

Proof. As I(G) is nilpotent, each element of 1 + I(K)™ can be ex-
pressed as a product of units 1 + (z;1 — 1)(2;2 — 1)+ (24, — 1) as in the
Lemma with z;; € K. The Lemma shows that the p®-th power of the image
- of such a product is in Kpya(1 4 J(KP")*). The other containment follows
in the same way upon noting that the z's used above may be restricted to
n

a generating set, i.e., each element of 1 + I(AP*)™ can be expressed as a
product of factors 1 + (2% — 1)(ef, —1)---(2h,, = 1), 25, € K, ny 2 n.

We conclude with two corollaries which demonstrate how this propo-
sition may be applied.
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Corollary 1.12. Let K be a subgroup of G and n > 2. Then

c+1ﬂ}

n

log, exp(1 + I(K)") < max{log, exp(K G2/G2), [log,(

where ¢ denotes the nilpotency class of K.

Proof. Let a denote the expression on the right so that (1 4+ I(K)»)P*
<1+4I2=1as Kppa = 1.

Corollary 1.13. G N (14 I?)*? < G2,%(®(G)).

Proof. By the Proposition, GN (1 + I?)? < GNG2p(1l + I(GP)?) and
this is contained in G N Gop(1 + T1(®(G)). As G2 < ®(G), the latter
subgroup is the same as the subgroup G2p(G N (1 + I1(®(G)))) which is
G2, ®(2(G)).

2. Covering subgroups. In this section we examine subgroups of §
which cover §/1 + I2. Recall that U is such a subgroup if § = U(1 + I?).
Many features of S and G are shared by these subgroups. Aside from G
and S itself, the most significant examples of such subgroups are group
bases of F'G. This follows from the fact that § and 1 4 /2 are canonical.
Our first results characterise group bases among covering subgroups.

Lemma 2.1. Let J be a nilpotent ideal of an algebra A over a field F.
Suppose that H is a subgroup of the unit group U(A) which covers (1 +
J)/(14 J?). Then F-H, the linear subspace of A spanned by H, is F+ J.

Proof. Let I(H) denote the image of the augmentation ideal of the
group ring F'H under the algebra homomorphism FH — A defined by
the inclusion of H in U(A). It is enough to show that J = I(H). As J
is nilpotent, an induction argument shows that it suffices to prove that
J® = I(H)* + J™*! for all n > 1. We prove this by induction. The case
n = 1 follows from the hypothesisas 1 +J = H(1+ J%) = 1+ I(H)+ J2.
The induction step is straightforward.

Corollary 2.2. Let H be a subgroup of V of minimal order such
that H covers V/(1 + I?) or H covers §/1 + I%. Then H is a group basis
of FG.

Proof. In both cases H covers V/(1 4+ I?). The Lemma then shows
that F-H is F+ I = FG. Thus |H| > |G|. As G itself covers V/(1 + I?),
|H| < |G| so that |H| = |G| and the result follows.
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Proposition 2.3. Let U be a subgroup of S which covers S/1.4+ I2.
Then U, = S, = G, for n > 2. Consequently, U 0 S, and U and G have
the same nilpotency class.

Proof. This may be proved by induction using Proposition 1.7, or by
appeal to [2, 1.3] with the use of the Proposition to show that 14 I? <
Cs(5/853).

Proposition 2.4. Let G be of nilpotency class ¢ > 2. Then
Ce—1(S) = (-1 (G)1 4+ I?). Moreover, if U covers S/1+ I?, then
Ce-1(8) = (-1 (U)(1 + I?).

Proof. It suffices to prove the last statement. That {.—;(5) = (U N
(.-1(9))(1 + I?) follows from Proposition 1.9. We show that U'N{.-1(5) =
(.—1(U), for which it need only be shown that, if u € (,—1(U), then u €
Ce1(S). Let 5;, 1 < i < ¢—1, be elements of § so that s; = u;(T + ;) for
elements u; of U and a; of I2. Because S. is central and so a ¢-fold commu-
tator is multiplicative in each variable, [u,$1,...,8.~1] = [, u1,..., %c—1]
by Corollary 1.8. But the latter element is the identity by hypothesis.

Two corollaries of this Proposition follow from the fact that ®(G) =
G N1+ I%. The second is immediate; note that the statement concerning
G is satisfied if d(G) = 2.

Corollary 2.5. Let G be of nilpotency class c. Then the indez of
(c-1(G) N ®(G) in (—1(G) is determined by FG.

Proof. By Theorem 1.1, ¢ is a group algebra invariant for a group G
in which ®(G3) = 1; the result follows readily.

Corollary 2.6. Let G be of nilpotency class ¢ > 2. Then (.—1(5) =
1+ I? if and only if (.-1(G) < ®(G).

Remark 2.7. Results such as those of the Propositions 2.3 and 2.4
and of the next section can be used to show that F'G determines relation-
ships between subgroups containing ®(G). For example, suppose that a
subgroup L is canonical in the sense that FGI(L) is determined by FG
(we have in mind subgroups such as Q;(G mod G3) = (z € G: 27 € G2)
[6, Note on 6.20]). Then the subgroup 1+ I(L)+ I? is also determined. It
may be expressed as (1+1(L))(1+I?)or L(1+41?%) so that, in §, L(1 + I?)
is determined. Under the isomorphism S/1 + I2 =~ G/®(G), this subgroup
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is identified with L®(G)/®(G). It follows that FFG determines whether or
not L®(G) is equal to (—1(G)®(G), or to Cg(G,/Grt2) for some n > 1
(see below).

3. Centralisers. In this section we show that the orders of several
centralisers are group algebra invariants. Some of these centralisers are
used in the analysis of the modular group algebra problem for p-groups of
order p° [5]. While we will relax at the end our assumption that G has
an elementary abelian commutator subgroup, we begin with results which
continue the theme of the previous section.

Proposition 3.1. Forn > 1, Cs(S,/Sn+2)=Cq(Grn/Grs2)(1 + I?).
Moreover, if U covers S/1+ I?, then Cs(Sn/Snt+2) = Cu(Un/Unt2)
(14 1?) forn > 1.

Proof. 1t suffices to prove the last statement. By Propositions 1.7
and 2.3 the subgroup 14 I? is contained in Cs(Uy,/Uyt2) since Upya =
Snt+2. Thus Cs(Upn/Unt2) = Cu(Un/Uns2)(1 + 1?). For n > 2 it is also
the case that U, = §, and the result follows. For n = 1, Cs(U/Us) =
Cs(S/S3) because § = U(1+ I?) and [1+ 1%, 5] < 83 = Us.

Lemma 3.2. Forn > 1, ®(G) < Ca(Gr/Gry2)-

Proof. We need only show that [G,,GP] < G,43. Letz € G,y € G.

Then, by the Hall-Petrescu formula, [z,y?] = [z, y]”u..(zg)ugg)- --u, for some
uj € (97" 9) = vi({[z.9],9)), 2 < j < p. As Gy is of exponent p,
(2,57] = tp € Gy,

Corollary 3.3. Forn > 1, the order of Cg(G,/Gnt2) is determined
by FG.

Proof. Because of the Lemma, the result follows from the Proposition
since #(G) =G N1+ 12

In our last items we drop the assumption that the commutator sub-
group of G is elementary abelian. We interpret V' as acting on sections
of FG and of V by conjugation. Centralisers in I are with respect to the
adjoint action as in [1]; thus, by definition, C;((FGI(N)+I*)/I*) = {a €
I: (o, FGI(N)) C I'}.
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Proposition 3.4. Let N be a normal subgroup of G such that Dy <
N < ®(G). Then

Cv((1+ FGI(N)+ I /(1 + I'))
= Cy((FGI(N) + I*)/T%)
=14 Ci((FGI(N)+ IY)/ 1Y)
= Cg(N/Dy)(1 + I?).

Here V acts on sections of FG and of V by conjugation.

Proof. Let U = Cy((1 + FGI(N) + I*)/(1 + I*)). That U =
Cv((FGI(N) + I*)/I) is immediate. Let C = Ci((FGI(N) + I*)/I%).
Note that C = {a € I: (a,I(N)) C I'} because (I,II(N)) C I* as
N < ®(G) = D,. It is routine to show that, if JK,L C I and L is
an ideal of FG, then [1 4+ J,14+ K| <1+ L if and only if (J,K) C L. It
follows that U =1+ C.

From the assumption that ¥ < &(G) it follows that ®(G) <
Cc(N/D4) and I? C C. But then U = (U N G)(1 + I?).

Lastly we show that UNG = Cg(N/Dy). Put M = Cg(N/Dy). Since
(I(M),I(N)) C FGI([M,N)]) and [M,N] < Dy, (I(M),I(N)) C I*. It
follows that I(M) C C and so M < /. Conversely, if ¢ € U N G, then
(9 —1,I(N)) C I* sothat (g—1,n—1) = (g,n) € [* forall n € N; as
(9,n) = ng([g,n] — 1), [9,n] — 1 € I* whence [g,n] € D4. Consequently,
g € Ce(N/Dy) as required.

Corollary 3.5. Let N be a normal subgroup of G such that Dy <
N < ®(G). If the ideal FGI(N) is canonical in FG, then |Cq(N/D4)| is
determined by FG.

Proof. The hypothesis implies that C' = C((FGI(N) + I*)/I*) is
also canonical in F'G so that |C| is determined. As seen |C| = [M(1+ I?)|
where M = Cg(N/Dy). Thus |C| = |M||1 + I?|/|M n (1 + I?)|. Since
M N (1+ I?) = ®(G) and |®(G)| is determined, so is [M].

Corollary 3.6. |Ce(®(G)/Dy4)| and |Ce(G2D4/Dy4)| are determined
by FG.

Proof. By [6, Note to 6.20], FGI(®(G)) is canonical in FG. For
p > 5, GoDg = ®(G) but, for p = 2,3, G Dy = GQGPZ and the same
reference applies to show that FGI(G2D,) also is canonical in FG.



THE UNIT GROUP OF THE MODULAR SMALL GROUP ALGEBRA 25

Q

Z W2

=

REFERENCES

. BAGmNskI and A. CARANTI: The modular group algebras of p-groups of maxi-

mal class, Canad. J. Math. 40 (1988), 1422-1435.

. BLACKBURN: On a special class of p-groups, Acta Math. 100 (1958), 45-92.

. Du: The centers of a radical ring, Canad. Math. Bull. 35 (1992), 174-179.

. HuPPERT: Endliche Gruppen I, Springer, Berlin, 1967.

. A. M. SaLim: The Isomorphism Problem for the Modular Group Algebras of

Groups of Order p°, Ph.D. thesis, Univ. of Manchester, 1993.

. SANDLING: The isomorphism problem for group rings: a survey, Orders and

their applications (Oberwolfach, 1984), 256-288, Lecture Notes in Mathemat-
ics 1142, Springer, Berlin, 1985.

. SANDLING: The modular group algebra of a central-elementary-by-abelian p-

group, Arch. Math. (Basel) 52 (1989), 22-27.

M. A. M. SaLiM
MATHEMATICS DEPARTMENT
EMIRATES UNIVERSITY, AL-AIN
UNITED ARAB EMIRATES

R. SANDLING
MATHEMATICS DEPARTMENT
THE UNIVERSITY, MANCHESTER M13 9PL
ENGLAND
E-mazil: rsandling@manchester.ac.uk

(Received July 18, 1994)
(Revised February 15, 1996)



