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ON EXTREMAL SELF-DUAL CODES
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MasaAKl HARADA and Hirosui KIMURA

1. Introduction. A binary [n,k] linear code C is a k-dimensional
vector subspace of GF(2)", where GF(2) is the field of 2 elements. The
elements of C are called codewords and the weight of a codeword is the
number of non-zero coordinates. An [n,k,d] code is an [n,k] code with
minimum (non-zero) weight d. Two codes are equivalent if one can be
obtained from the other by a permutation of coordinates. The dual code
C* of C is defined as C+ = {z € GF(2)*| 2.y =0 forall y€ C}. Cis
self-dual if C = C*. A code is doubly-even if all codewords have weight
divisible by four, and singly-even if all weights are even and there is at
least one codeword of weight = 2 (mod 4). The minimum weight d of a
doubly-even self-dual code of length n satisfies d < 4[n/24]+ 4. A self-dual
code is extremal if it has the largest minimum weight for that length. For
each length, the largest possible minimum weight is listed in Table I in [4].

Conway and Sloane [4] defined the shadows of self-dual codes. The
shadows provide restrictions on the weight enumerators of binary extremal
self-dual codes, and were used to determine new upper bounds for the
minimum weight of binary self-dual codes. A list of possible weight enu-
merators for such codes was given in [4]. However, the existence of some
extremal self-dual codes is still unknown. Recently several papers have
provided constructions for some of these unknown codes (cf., e.g. [1], [2],
(3], [5], [6], [8], [13], [14], [15] and the references given therem) In particu-
lar, Gulliver and the first author [5] have constructed extremal singly-even
(60,30,12] codes with a weight enumerator which was not listed in [4] and
have determined the possible weight enumerators for extremal singly-even
codes of length 60, correcting the results given in [4].

In this paper, we investigate the existence of new extremal self-dual
codes. In order to construct such codes, we present general methods for
constructing self-dual codes in Section 2. In Section 3, we construct ex-
tremal self-dual codes having weight enumerators for which extremal codes
were not previously known to exist, using some matrices. These matrices
are given in Section 6. Our methods can be applied to doubly-even codes
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as well. We give examples of extremal doubly-even self-dual codes in Sec-
tion 4. In Section 5, we construct a new extremal doubly-even self-dual
(88,44, 16] code by the construction in [11]. Our notation and terminology
for coding theory follows that in [12].

2. Constructions of self-dual codes. In this section, we give two
constructions of self-dual codes, starting from a self-dual code.

First we give a new construction of self-dual codes. Let A and B be n
by n (1,0)-matrices with A-AT = I,, over GF(2), where I, is the identity
matrix of order n. It is easy to see that the matrix G = [ A, B] generates
a self-dual code of length 2n if and only if B-BT = I,. Let S, be the
symmetric group of degree n and let o be an element of 5,,. Let S, act on
the set of all rows of the matrix B. Let B” = [bd—l(])T, .. ',bo.—l(n)T]T be a
matrix obtained from B by a permutation o where b; is the i-th row of B.

Proposition 2.1. Let the notations be as above and assume that
A-AT = B-BT = I,,. Then the following matriz

G° =[A, B?],
generates a self-dual code of length 2n.

Proof. 1t is trivial.

Remark 2.2. Any self-dual code of length 2n is equivalent to a self-
dual code with generator matrix of the form [A,X-B], where X-XT =
I,. B¢ is nothing but P-B, where P is the permutation matrix obtained
from o. This construction can easily be applied to self-dual codes over
a Galois field GF(p) where p is prime (cf. [9]). For the case p = 3, we
constructed new extremal ternary self-dual codes using weighing matrices
in [9].

If A is the identity matrix I,, then G and G° generate equivalent
self-dual codes for any permutation o. But if A is different from the iden-
tity matrix, starting from matrices satisfying the assumptions in Proposi-
tion 2.1 one can transform it into n! different generator matrices which may
generate inequivalent self-dual codes. Since any generator matrix is trans-
formed into a standard form, we can easily get matrices A and B. Thus
we can construct many new self-dual codes from old ones. By this method,
we shall construct extremal singly-even codes and extremal doubly-even
codes in Sections 3 and 4, respectively.
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Now we describe another general method to construct self-dual codes
from a self-dual code. Let [ I, ,M ] be a generator matrix which generates
a self-dual code of length 2n with n even. Let T be a set consisting of
2a columns of the matrix M where 0 < o < n/2. For every i-th column
contained in T, we interchange 0 with 1 in the ¢-th column in M. Then
we have a matrix Mr from M and I'. We assume that a new matrix Mr’
is obtained from I' and Mr as follows. Let m; = (m;1,--+,mjn) be the
j-th row of Mr. This method is divided into the following two cases. In
the first case, for each row m; (1 < j < n), if the number of £ € T with
m;i = 1 is odd then interchange 0 with 1 in this row m; and if the number
of k € T with mj; = 1 is even, then put m; as the j-th row of Mp’. Then
we have a new matrix Mr’ from the matrix M. In the second case, if the
number of £ € T with m;r = 1 is even then interchange 0 with 1 in this
row and if the number of & € T’ with mj; = 1 is odd, then put m; as the
j-th row of Mr’. Then we have a new matrix M’ from M and T.

Theorem 2.3. We assume that n is an even number. Let M, ' and
My’ be as above in the both cases. For every set I', the following matriz

[ 1., Mr'],

generates a self-dual code of length 2n.

This method was established in [11] and [8] in order to construct ex-
tremal self-dual codes.

3. New extremal singly-even codes by Proposition 2.1. The
aim of this section is to construct extremal singly-even codes whose weight
enumerators were not previously known to exist.

3.1. [34,17,6] codes. Any extremal self-dual [34,17,6] code has
weight enumerator of the form

W= 14 (34— 43)y° + (255 + 43)y® + (1921 + 208)y° + .-+ or (1)
W=1+6y°+4119% + 1165y +-- -, (2)

where 3 is an undetermined parameter. Extremal codes corresponding to
3 =0,...,7 in (1), and (2) exist (cf. [4]). Since the coefficients of the
weight enumerators of any self-dual code and its shadow code must be
nonnegative integers, it holds that 0 < 3 < 8 for (1).
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Let M3471 and M342 be the right halves of the generator matrices of
the [34,17,6] codes D2 and R1 in [4], respectively. By Proposition 2.1, we
have found an extremal [34,17,6] code with generator matrix of the form
[M34,1 ,11/[34,20 ] where

o =(1,2,9,6)(3,4)(5,15,10,17,8,16, 13, 7)(11, 14)(12).

Needless to say, (1) = 2, 0(2) = 9, 0(9) = 6, 6(6) = 1 and so on.
This code has the weight enumerator (1) with 3 = 8. Thus we have the
following proposition.

Proposition 3.1. There exist extremal singly-even self-dual (34,17,
6] codes for all possible extremal weight enumerators.

3.2. [38,19,8] codes. A cyclic 2-(19,9,4) design D is listed in
Hall [7]. Let Msg be the circulant incidence matrix with first row
(1001111010100001100) of the design D. We have found an extremal
singly-even [38,19,8] code Csg from M3g by Proposition 2.1. The gen-
erator matrix of Cag is [ Mas , M35% | where

o =(1,2,8,9,10,5,17,19, 15,4, 16, 18)(3, 12,13, 14)(6)(7)(11).

Now we consider the weight enumerator of the code Czg. There are
two possibilities for the weight enumerator of an extremal singly-even
(38,19, 8] code:

W =1+171y% + 1862y'° + 10374y'% + 36765y + - -+ or (3)
W = 1 +203y® + 1702 + 1059832 + 36925y + - - .. (4)

The above code C3g has the weight enumerator (4). It is mentioned in [4]
that the codes with the both weight enumerators (3) and (4) exist. But we
checked that both codes D4 and R3 in [4] have the weight enumerator (3).
Thus it seems that the code with the weight enumerator (4) is constructed
for the first time.

3.3. [40, 20, 8] codes. Any extremal singly-even [40, 20, 8] code has
weight enumerator of the form
W =1+ (125 + 163)y® + (1664 — 643)y*°
+ (10720 4+ 328)y"2 + - --, (5)
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where 3 is an undetermined parameter. Extremal singly-even [40, 20, 8]
codes corresponding to 8 = 0 and 10 were constructed in [4]. Some codes
with 8 = 1, 2 and 5 were also found in [3] and [8]. By Proposition 2.1,
we have constructed three extremal codes corresponding to 5 = 3,4 and 7
from three matrices Myp1. Myo2 and My 3. These matrices are given in
Section 6. For each code, we list in Table 1 the weight enumerator W, the
chosen matrices A, B and the permutation o.

Table 1: New extremal singly-even [40, 20, 8] codes

Codes W A B the permutation o

C.;o_] ﬂ =3 1‘140,1 ."140'2 (1,12,3,]4.5.16,17,8.19,IU)
(2.13,4.15,6,7,18,9,20,11)
Cioz [B=4| Msoz2 | Meo2 | (1,16,11,6)(2.17.12,7)(3. 18, 13,8)(4, 19, 14)
(5,20,15,10,9)
Cio3 1B =T Mso,3 | Mso,3 |(1.17,11,15,9,3,18,12,6,20, 14,8, 2,16, 10,
4,19,13,7)(5)

Thus there exist extremal singly-even [40,20, 8] codes corresponding
to3=0,...,5,7and 10. It follows from Theorem 5 in [4] that 0 < 3 < 10
for (5). Hence it is not known whether there exist extremal codes with
3 =6,8and 9.

3.4. [42,21,8] codes. Weight enumerators for extremal self-dual
[42,21,8] codes are given in [4] as

W =14 (84 4+ 83)y® + (1449 — 243)y'°
+ (10640 — 163)y'* + -+ or (6)
W =1+ 164y + 697y" + 15088y + .- -, ™

where 3 is an undetermined parameter. There are extremal codes corre-
spondingto 3 =0, ..., 7 and 42in (6) (cf. [4]). An extremal self-dual code
with weight enumerator (7) was found in [13]. Recently the existence of
extremal codes corresponding to 3 = 12 and 32 in (6) has been announced
in [2].

The code R4 in [4] is an extremal self-dual [42,21,8] code correspond-
ing to 3 = 0 in (6). Let M4, be the right half of the generator matrix of
the code R4. Using the matrix My, we have found new extremal self-dual
[42,21,8] codes with weight enumerator (6) for 3 = 8, 9, 10 and 11. The
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Table 2: New extremal singly-even [42,21, 8] codes

Codes w A B the permutation o

Ci1 ||B3= 8| Miz| Ms2 (1,5,2,20,17,14,11,8,6,3,2],18,15,19,16,]3,
10,7,4)(9)(12)
Cup |3= 9| Msz | Ma2 (],2,8,17,12,3,5,2],7,16,11,]0,9,18,]4,20,]9)
(4,6,15,]3)
Cipa [|3=10 Myz | Myo (1)(2,20,17,14,]1,8,6,3,21,18,15,12,19,16,
13,]0,7,4‘5)(9)
Cizg || 83=11| Ma2 | Ma2 (1.,13,3,10,9,4,11,5,16,19,21,8,15, 14, 20,12,
6,17)(2.7,18)

results are given in Table 2. It was not known to exist codes with these
weight enumerators.

3.5. [44,22,8] codes. Any extremal singly-even [44,22, 8] code has
weight enumerator of the form

W =1+ (44 + 48)® + (976 — 88)y™°

+ (12289 — 208)y'* 4 - -+ or (8)
W =1+ (44 + 48)y® + (1232 — 88)y"°
+ (10241 - 208)y" + -+, (9)

where 3 is an undetermined parameter. By Proposition 2.1, we have con-
structed 27 extremal singly-even [44, 22, 8] codes with weight enumerators
which were not previously known to be attainable, using matrices Myq,,
My4 2 and Myq3 given in Section 6. The results are listed in Table 3, where
the weight enumerator W, the matrices A and B and the permutation o
are given.

For (8), it holds that 10 < 3 < 122. We summarize the existence of
extremal codes with these weight enumerators in Table 4. In the table,
for each 3 the case that the code is found in this paper gives the code
Cla4,i, the case that the existence of the corresponding codes was known
gives the reference and a blank expresses the case that existence of the
corresponding codes is still unknown. Similarly we summarize the the
existence of [44,22,8] codes with weight enumerator (9) in Table 5. We
note that 0 < 5 < 154 for (9).

3.6. [54,27,10] codes. There are two possibilities for the weight



ON EXTREMAL SELF-DUAL CODES

Table 3: New extremal singly-even [44,22, 8] codes

Codes w A B the permutation o
Ciss | B=21 (8) | Maso | Masa | (1,9.12,15,3, 6,13, 16, 19.22,4. 7. 10, 18,
21,2,5,8,11,14,17,20)
Cuz || 8=23 (8) | Masz | Mas | (1.15,6.4,19,10)(2. 17,8, 21,12, 3.16,7.
20,11)(5, 18 22, 13,14)
044,3 83 =24 (8) 11’144‘2 11144.1 (1,6,13,16.4,7,10,19 22, 3, 9,1 15,]8,
21,2 5,8,11,14,17,2[))
Cq.;'q 3 =25 (8) A'l'fql;,] J‘f.‘[g.;x] (16 1[], 14, 18,2,8, ].2 2“ 9 13,]7‘
21,3,7,11, 15. 19)(4, 22)
Ciss | B=126(8) | Masa | Masn | (1,7.11,15,19)(2.6.10,14)(3, 18,22, 5, 9,
13,17,21)(4, 8, 12, 16, 20)
Cuss |[B=28(8) | Masz | Mass | (1,8,10,17,19,21)(2. 4,6,12, 14, 16, 18, 20
3,5,7,9.11,13,15, 22)
C“,, B =29 (8) 1‘144,2 11144,1 (1 5,7,9,11,13,15,17,1 l)(2,4,6,]2,
14 ]6 3 8,10,13.20,22)
Ciss | B=30(8) | Myt | Maa,y | (1,7,11,15,19)(2.6, 10,14, 18.22, 4.8, 17,
21,3.12,16,5 13,20)
Ciso || B=31(8) | Musp | Maes | (1.5.9,13.17. 21,6, 10, 14,18, 22,4,8,12)
(2,7,11, 15 19 3, 186, 20)
Ciono | =33 (8) | Muss | Maes | (1,16,22,6,12.18.2. 8, 14,90, .13.19. 4,
10)(3,9. 15,215, 11, 17)
Ciani || B =34 (8) | Musy | Mass | (1)(2,21.18,15,19, 16,13, 12,9, 6,3, 22, 20,
17.14,11.8,5)(4,10,7)
Ceanta | B=135 (8) | Mus,1 | Masa | (1,4,17.20)(2,7,10,13,16,19)(3. 6,9, 12,
15,18,21,5,8,11, 14, 22)
Casra || B =136 (8) | Mass | Maea | (1,8,13,22,5,10.15,20. 3, 18)(2,7. 12, 17)
(4.9,14,19,6,11.16,21)
Cusa | B =39 (8) | Masy | Miss (1,4,16.19,2,7,10,13 22 3,6,9.12.15, 18,
1,5,8,11, 14,17, 20)
Ceas | B= 2(9) | Masn | Mass | (1,14,4.17,7,19,9.21, 11)(2, 16, 6. 18, 13, 3,
la 5, 8 U 10, 72 12)
Cisie | B =16 (9) | Maayr | Maay | (1,16,8.22,14.6.20,12.4, 18,102, 17, 9)
(3,21,15,7,13.5,19,11)
Canr || 8=17(9) | Mas1 | Masn | (1,7,12,17,22,5,10,15, 20 3 71 6,11,16,
i 4914 19 2,8 13,18)
Ciais || 8=18(9) | Maan | Mass | (1,17,10,3,20.13,6,21.16,9, 2, 18, 11, 4,
1912 5,14.7,22.15. 8)
044'19 _8= 21 (9) AJ.;.;] 3444,1 (1,1812.6,2,19 )(’; 22 16 10, 4 )0
14 817,11.5,21,15,9)
Cyg20 | 3 =23(9)| Maa,1 | Mas1|(1,6,10,14,18,4,22,5,9,13,17,21,3,7,11.
15,9) 2.8,12,]6,20)
Caapr | 8=26(9) | Maay | Masa | (1,6,10,14.18.3, 711,15, 19)(2,8,12. 16,
20)(4,22)(5.9,13,17, 21)
C“,gg ,3=27 (9) 54'44_;) ﬂ'f“_l (1,6,1(],14,18,3 7,22.4, 8 12 16 20,2,11,
15,19)(5,9,13,17, 21)
Cuas || B=28 (9) | Masa | Mass | (1,8,13,18,3,22,5,10. 15,20, 6, 11. 16, 21,
491419”7]717)
Cisps || 8=31(9) | Maaz | Mass | (1.8,11,14,17.20.2,5,13, 16, 19. 22, 3.6, 9,
12,15,18,21,4,7, ](l)
C44,25 8 =232 (9) 1'1444') 1‘5’44'1 (1,6,10, 14,18,3,7,11,15, 19)( ,l 16,
20)(4,22)(5. 9,13, 17, 21)
Ciaps | 8=35(9) | Maan | Masa | (1,21.17,13.9.5)(2.20, 16,12, 19,15, 11, &,
4,2), 18,14,10.6, 7 3)
Cuazr || B=38 (9) | Maays | Masa | (1)(2,21,18,15,12. 11,8, 5)(3, 22,20, 17, 14,
19,16,13.10,7,4,9, 6)
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codes with (8)

B {code| B |code | 3 | code || B |code|| 8 |code| B |code|| 8 {code

10| [1] [[20] [8] [[30 | Csss |[ 40 50 60 70

11 [8] 21 044’1 31 044'9 41 51 61 H

12| [8] |22 2] |32 (2] 42| [2] |52 (2] [162] [2] :

13| [8] [[23 | Cuaz || 33 | Cas,10 [ 43 53 63 81

14| [4] || 24 | Cuapa || 34 [ Caa,11 [ 44 54 64 82 | [2]

15| [8] || 25| Caa,a || 35| Cas12 |[45 55 65 83

16 [8] 26 C44,5 36 044113 46 56 66 H

17 [4] [27] [2] 37| [2] 47 57 67 :

18| [8] [| 28| Cas |38 [6] 48 58 68 121

19| [8] || 29| Cuaz || 39| Caa,1a [[49 59 69 1221 (2]
Table 5: Existence of extremal [44, 22, 8] codes with (9)

8| code || 3| code || B | code || B | code || 8 |code|| 8 |code || B |code

0| [10] [10] [4] 20 (2] 30| [2] 40 50 91

1 11 [4] 21 044,19 31 044.24 41 . :

2 044,]5 12 [4] 22 [10] 32 044_25 42 : H

3 [8] 13| [4] 23| Cua20 || 33 43 73 103

4| [4] |[14] [4] [24] [2] |[[34] [2] [ 44| [10] 74| [2] [[104] [2]

5 [4] 115| [4] 25( [2] 35 Cas,26 || 45 75 105

6 [4] 16 C44 16 26 C“'z] 36 46 M M

7 [4] 17 044’17 27 044'22 37 47 H :

8 (4] 18 | Cha,18 || 28 | Caa2a || 38 | Caa,27 || 48 89 153

9 [4] 19( [2] 29( [2) 39 49 90 [2] |[154] [15]

enumerator of an extremal singly-even [54,27,10] code:

W =1+ (351 — 88)y'° + (5031 + 2483)y"?

+ (48492 + 328)yM + - --

W =14 (351 — 88)y'° 4 (5543 + 243)y"?

+ (43884 + 328)y™ + -

where [ is an undetermined parameter.
[54,27,10] code corresponding to 3 = 0 in (10) was constructed in [4]. A
singly-even code with weight enumerator (11) is known to exist for = 12
(cf. [14]).

By Proposition 2.1, we have constructed extremal codes corresponding
to B = 1, 2, 3, 4and 5in (10] from 1M54'1 N AM54’2’ ‘M54,3, 1‘/[54!4, 1"/154:5, A’IS4,67
Msy 7 and Msag given in Section 6. For each code, we list in Table 6 the

or (10)

T (11)

An extremal singly-even
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weight enumerator W, the chosen matrices A, B and the permutation o.
It was not known to exist codes with weight enumerator (10) for 3 =1, 2,
3, 4 and 5.

Table 6: New extremal singly-even [54,27,10] codes

Codes 114 A B the permutation o

Ceag [|B=10110)| Msgq | Mss2 [ (1)(2)(3)----- (25)(26)(27)

Cs4,2 ﬁ =2 (10) .".‘[54,3 1\'!54_4 (l)(?)(:‘l) ----- (25)(26)(27)

Csas || B =3(10) | Msas | Msays |(1,12,23,7,18,2,21,5,16,27,11,22.6,17)
(3,14,25,9,20,4,15,26,10,13,24,8,19)

C54'4 ,3 =4 (10) 1"[54,5 1”54,1 (1)(2)(3) """ (25](26)(27)

Csss || B=05(10) | Mss,8 | Msa4 |(1.8,10,18,17,16,3.13,2,21,4,14,27,7,
12,11,25,19,22.5,24, 9,15, 26, 6,20, 23)

3.7. [58,29,10] codes. Any extremal singly-even [58,29,10] code
has weight enumerator of the form

W =1+ (165 — 27)y"® + (5078 + 27)y*? + --- or (12)
W =1+ (319~ 248 — 29)y"® + (3132 + 1528 + 29)y'2 + ---, (13)

where 3 is an undetermined parameter. Two extremal singly-even
[58,29,10] codes corresponding to 5 =4 =0 and 8 =0, = 58 in (13)
were constructed in [4]. A singly-even code with ¥ = 55 in (12) was also
found in [13].

New extremal self-dual codes with weight enumerator (13) and 8 =0
are constructed using matrices Msg; and Msg 2 by Proposition 2.1. The
results are listed in Table 7. Since the values of 3 in the weight enumera-
tor (13) of all our codes in the table are 0, we list only the value of v with
A, B and o in the table.

3.8. Other lengths. We have constructed extremal singly-even seli-
dual codes of lengths 36, 38, 46 and 48 by Proposition 2.1. For such lengths,
however, the existence of extremal self-dual codes is known for all possible
extremal weight enumerators. Therefore we do not present extremal codes
for such lengths.

4. Extremal doubly-even codes by Proposition 2.1. In this
section, we give examples of extremal doubly-even self-dual codes con-
structed by Proposition 2.1.
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Table 7: New extremal singly-even [58,29,10] codes

Codes w A | B the permutation o

Cest || v=52|Msa, | Mss,1 | (1,25,18,23,16,9,11,4,2,24,17,10, 3,26, 19,
12,5,27,20,13,6,28,21,14,7,29,22,15,8)
Ces2 ||v=60|Msaz | Msa,y | (1.13,24,6,21,3,17,28,10,12,23,5,16,27,9,
20,2,14,25,7,18,29,11,22,4,15,26,8,19)
Css || Yy =62 Msa2 | Mes,1 | (1,10,18,26,5,13,21,29,8,16,24,3,17,25,4,
12,20,28,7,15,23,2,11,9,19,27,6,14, 22)
Cssa |7 =064 | Mssz2 | Mss, | (1,25,19,13,7)(2,26,20,14,8)(3,28,22,16, 10,
4,27,21,15,9)(5,6,29,23,17,11)(12, 24, 18)
Csss || v=66]| Mss,1 | Mss,1 | (1,5,8,11,14,17,20,23,26,29,3,7,10,13,4,16,
19,22,25,28,2,6,9,12,15,18,21, 24,27)
Csss || v =068 Msaz | Msa,n | (1.13,24, 6 17, 28 10,21, 3, 16,27,9,20, 2, 14, 25,

7,18,29,11,12,23,5,22,4,15,26,8,19)
Cssr | v=70(Mss | Msan | (1,21, 11)(2 26.16,6,25,15,10,29,19,9, 28,18,
8,27,17,7, 5,24,14,4,23,13,3,22, 12)(20)
Cssp || 7=72| Mssz | Mess | (1,11,25,5,1 z 3,20,29,9,18,27,7,16, 10,

19,28.8,17,26,6!15,24,4,13,22,-,12,21)
Ceso || v=74| Mss 1 | Mss1 | (1,20,9,4,22,11,29,18,7, 25,14, 3,21, 10,28,
17,6,27,16,5,23,12)(2, 24,13)(8, 26,15, 19)
Csso0 || ¥ =76 Mss1 | Mss,1 | (1,18,5,27,14)(2,20,7,23,10,26,13,29, 16,3,
19,6,22,9,23,12,28,15)(4,21,8,24,11,17)
Csgan || 7= 78| Mss,n | Mss,1 | (1,5,8,11,4,14,17,20, 23,26,29,3,7,10,13,16,
19,22,25,28,2,6,9,12,15,18,21,24,27)
Csaa | v =80 Mssz2 | Mssa | (1,26,21,16,11,6)(2,27,22,17,12,7)(3. 29, 24,
19,14,9,4,28,23,18,13, 8)(5, 15, 10)(20, 25)
C53 13|y = 82 1’”53,1 1M58 1 (1.26,20,]4,8 '2 25,]9, 13,24 18 2 6 2J 23
17,11,5.4,27,21,15,9, 3, 8 22,16,10,7)
053,14 ‘y=84 41’.[53,1 M,sa,] (1,25,19,]3 )(2 8 22 16 10 4 27 21 10,24
18,12,6,29,23,17,11,5 8)(3,26,20,14_9)

Let Ay and By be the right halves of the generator matrices of the
codes D5 and D6 in [4], respectively. We have found an extremal doubly-
even [40,20, 8] code with generator matrix of the form [ A4, Bso” | where

o=(1,3,5,2,4,6,7,8,...,18,19, 20).

In [8] at least 1000 inequivalent extremal doubly-even codes of length 40
were constructed by Theorem 2.3. Thus we do not check the equivalence of
our code and the codes in [8]. Similarly we have found an extremal doubly-
even [64,32,12] code constructed by Proposition 2.1. Let Agq and Bgq be
the right halves of the generator matrices of the code No. 1 in [11] and the
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code D15 in [4], respectively. We put

o =(1,10,18,26,2,11,19,27,3,12,20, 28,4, 16,24,32,8,9,17,25)
(5,13,21,29)(6, 14,22, 30)(7, 15,23, 31).

By Proposition 2.1, the matrix [ Agq , Bps® | generates an extremal doubly-
even [64,32,12] code. It was shown in [11] that there are at least 3270
inequivalent extremal doubly-even codes of length 64.

5. A new extremal doubly-even code by Theorem 2.3. In
this section, we construct a new extremal doubly-even [88,44, 16] code by
Theorem 2.3.

Let Cgg be a code with generator matrix of the form

where R is a circulant matrix with first row
(0110010100 1110111110 0010111000 0010001101 011).

This code Cgg is given in Fig. 16.7 of [12] and an extremal doubly-even code
of length 88. Only one extremal doubly-even code is known of length 88.
Some codes in Fig. 16.7 of [12] are extremal double circulant self-dual
codes. Recently all extremal double circulant self-dual codes of length up
to 62 have been classified in [10].

Let Cgs’ be a self-dual code of length 88 constructed from Cgg by The-
orem 2.3 with T’ = {2,3,9,19}. This code Cgs’ is an extremal doubly-even
self-dual code. In order to check the inequivalence of Csg and Cgg’, we com-
pared the maximal and minimal numbers M (2) and m(2) (see [9] or [10] for
definition) in the set of the minimum weight codewords. For the codes Cyg
and Cgs’, the values (M (2), m(2)) are (1081,301) and (1126,541), respec-

tively. Thus the codes Cgg and Cgg’ are inequivalent.

6. Matrices. In this section, we display the matrices which were
used in Section 3 to construct extremal singly-even codes. In order to save
space, these matrices have been written in octal using 0 = (000), 1 = (001),
..., 6=(110) and 7 = (111), together with a = (0) and b = (1).
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Mso,1

Mio,2

Mio,3

Mg

Mya,2

ﬂ444g

Msa 1

Msy2

Msy 2

Msg,q

M. HARADA and H. KIMURA

3TTTTT777740037407607461435703066754103764623474532553125645613
455542574466076235264653246565247447151473151711256354507462717
1132556a

3TTT7T7777740037407607461435652066745213366070735225437131263615
515540776426235435434553261527251552651534631662256326332456237
1075342b

042162556306510734533401520173127074453536025660725040342421614
567106673434542171536702653341724560725707432703615351706211034
5040162a

277322532105327131051255366556441624451454505212312052471526560
144226074653322061262241465675031524320432166404660550063224576
35526403275226074324641366517742000b

263022505066451101651254756555357553252434502426465454531531111
633545403124241717252441464245032232057346671373054227712413201
72451375132552015724735471260176777a

.

500755272111326646126555356555337553251434505211312052531531211
633551403124441717262441412132746252057345671373114227714413216
35326474532551702053136471267741000b

541430656224127532222035237012061074247655770226173051573517254
473656564647030427536004627001043646605505711647203262116225133
046641204123663424135114004631225072174401003133216152044314260
051035021253327102543266667012402724027356430071337770

072214012426114404537002343326523373751025071374375461623704017
524750115222120225476241311363465157774121203547616014701661630
111520450407541010331141020404426610427050571216244237316407603
231572502177474236427347273046423665022075333214102123

207566122107633411407355244720656212710363141740535424072665221
071336114074553442122207566411107633244407355212720656141710363
424740535221072665114071336442074553566122207633411107355244407
656212720363141710535424740665221072336114071553442074

142653611777740000750434644364216322642163226043664562421732270
230542743172127150217222714721071512514261361264621057323044275
646110571132330427075053464436405632210755134504346456055174213
426476105551402137461305705107511346613217043305527421
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Msa,s 477770000606134323603452515526605425100777700532031552325236051
316153064605261646660515254277007700650323431564062334343465032
545503143023341371015524574551054661630646162513306216361310526
334540613352620345054255117062166447031433227146612672

Msa6 426015726213046713145023745312501674541604372624302571161150437
434460257252230167046746446023723223015715115304674621502372314
601571542130237452450157261260467134723416045715243026746125013
671324604374512302572641501457432430267251250137164160

Mss,7 171047452474423624236211712117124744065334423423625170211712474
104745236442362516621171246710474522653004237325422117152631047
047452362032576211415257105606507443303263621541511711260644745
530302363254161171526050475777740000744236250362117124

Msa,a 4TTTTO000277007700100777700606134323603452515526605425660515254
545503143551054661630646162650323431564062334532031552325236051
605261646513306216316153064343465032361310526334540613352620345
054255117062166447031433227046612672023341371015524574

Msg,1 016407360606035016760357030164140720357414072035501674140770301
640730164073607016407360167414072016741407216741407207414072035
203570301564073606030164073603016407360073606035060350167474140
203570301564073606030164073603016407360073606035060350167474140
720367414072036407360603640736060336060350173606035003501674140
3501674140350167414073606035a

Mss 2 155165331731633235273163323523316332353163323526526634664752663
466473316332350715516533715516533147155165333235266342663466473
266346647352663466435266346646346647255633235266653316332235266
266346647352663466435266346646346647255633235266653316332235266
346663526634662352663467235266346555165331646647255474664725547
2352663463235266347323526634b
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