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ON SOME PRODUCTS OF B-ELEMENTS IN THE
HOMOTOPY OF THE MOORE SPECTRUM II

HiroMi INOUE, Yosuiko OSAKADA and KaTsumi1 SHIMOMURA

1. Introduction. The present paper is a continuation of [26] with
the same title. Throughout this paper, p denotes a prime number greater
than 3.

Consider the sets B’ and B of integers given by

B = {(s,n,j) € Z3|5,7>0,pfsand j < ay, and j<ptifs=1},

B = {(‘5’"'9].92.) € Zi I S?j > 07 pl(s and p1|j < Ay —1,
and j < p*ifs =1},

where Z, denotes the set of all non-negative integers and a, the integer
defined by ap = 1 and a, = p"+p"~!—1if n > 0. Let S® and M denote the
p-localized sphere and the mod p Moore spectrum, respectively. In their
paper [9], Miller, Ravenel and Wilson introduced the 3-elements in the E;-
terms E;(S5°) and EJ"(M) of the Adams-Novikov spectral sequences for
computing the homotopy groups 7.(S°) and 7.(M), respectively. Besides,
they showed implicitly that ,ng,,/j € mu(LaM) (resp. Bypn/ji € 7.(L25°))
if (s,n,7) € B’ (resp. (s,n,j,i) € B). Here L, denotes the Bousfield
localization functor with respect to the v;-telescope vy ! BP of the Brown-
Peterson spectrum BP at p (cf. [25]). The object of these papers is to
seek out non-trivial products of 3-elements in the stable homotopy groups
T.(M). Here note that there is a choice of defining 3-elements since j3-
elements are the generators of the Ey-terms E;™(S°) and E;™(M), and
that ours are slightly different from theirs (see §3). This may be related
to constructing homotopy 3-elements in 7.(S°).

Virtually, we find non-trivial products in the Ep-term EJ™(L2M) of
the Adams-Novikov spectral sequence for computing 7.(L2M ). Note that
the E;-term Eg't(ng\/I) is isomorphic to the homotopy group m;_s(LM).
In fact, the Ey-terms E3™(L2M) of the Adams-Novikov spectral sequence
for Lo M are null if s > 4 and p > 3 (¢f. [18]), and so the spectral sequence
collapses and arises no extension problem because of the sparseness of the
spectral sequence. Thus our non-trivial products in the homotopy groups
T.(M) are obtained by pulling back those in m.(L;M ) under the induced
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map 7,: (M) — m.(La M) of the localization map 7, if the products are
in the image of 7,.

To state our results, consider a map ¢: Z, — Z, sending n to c¢(n)
defined by
p-1
p—1
with pf ¢(n) + 1 for some / > 0. We also use the integer A(m) (cf. (22])
defined by

n = ¢(n)p! -

n

p

A" = (4 NE— 42 if pAH(e+1),

— n+l _ .n E g e 2
=(p+1)(p p+p_1)—|-2 if p2Jt + 1.

As a sequel to Theorem A of Part I [26], we have the following

Theorem AIL. Let (s,n + r,p"an—i,%) be an element of B with n >
i > 0. Then, in w.(LaM),

ﬂtlﬁsp"‘*"/p'an..,',i-l-l # 0

if pft for even v > 2, or if plc and p*fc + p for odd r > 1, where
c=c(t+sp™" —ptl + (pT + 1)/(p+1)).

The following is a sequel to Theorem B of Part I.

Theorem BII. Let (s,n,7) be an element of B'. Then the following
are the relations in m.(LyM).

1) BypiBipny; # 0 if pPlutland p* +p*~ ' —p* <k4j < pr4pnl -
pi +p*+1 for (u,1.k) € B" and eveni with0 < ¢ < n.

2) gépm_spn_‘.pn—l_k(i)ﬂ;'pn/j #0ifpft(t+1) or p?t + 1, and if p" +
prl-pt <G < prpt T —pi+ A(tp™)+1 for (tp™ —sp™+p™ 1 —k(i),0,1) €
B' and even i with 0 < i < n.

3) Bl jkBepm; 0 if 1 >0 and p* +p~ 1 —p < k4 <pr4p! -
p'+ p for (u,r,k) € B' and odd i with0 < i < n.

It is well known that 3] survives to a homotopy element of w.(M)
for each ¢ > 0 (cf. [16]). Besides, Bypn+r/pr+1 , is @ homotopy element of
T«(8?) for each (s,n+ r,p"*1,n) in B according to Lin’s results [3] and [7].
Then setting ¢ = n — 1 in Theorem AII we obtain
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Corollary. In the homotopy groups 7.(M) of the Moore spectrum,
we have the non-trivial elements

BiBspntrjpr1 o #0  if pf st and 7 is even 2 n— 120,
and

BiBspntr i1 n #0 i pf s plt+1, pPf T +1
andrisodd >n—12>0.

Here the case r = 0 follows from [22]. We note that Corollary states
a part of the results obtained from Theorem AII, which means that we
can say more about the product 3{Byn+r Jp+in from Theorem AIl. For
example, it is non-trivial if p}s, p?|t + 2, and p* [t + p* + 2 for odd
r>n—1>0.

2. Notations and facts known. In this paper we virtually compute
in a cobar complex. We prepare some notations and results. Let (4,I") be
a Hopf algebroid with I' A-flat. Then we can do the homological algebra
in the category of I'-comodules (cf. [16]). The Ext-groups are defined
to be the cohomology of an injective resolution. In our computation an
injective resolution is replaced by a relatively injective resolution, and a
typical example of relatively injective resolution is the cobar resolution.
Therefore an Ext-group Extp(A,M) for a comodule M is a homology
group of a cobar complex 21,0, which is given by:

QM =MQ@QsI Q@s---@aT (s factors)
with differential ds: Qp M — Q?HM given by
ds(m@®mM ® - ®7)
=yPp(m)®MN B - ®7s
FREDMON B D7t ® AG) € Y1 8-+ 8,
~(-1m@m® - ®1.8 1

Here v is the structure map of the comodule M.
Consider the Hopf algebroid

(BP.,BP.(BP)) = (Z(p)[vl,v;,, . -],BP*[tl’t% e

associated to the Brown-Peterson ring spectrum BP (cf. [1]). The struc-
ture maps of it are well known (cf. [1],[9],{16]), and we will cite them where
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they are used. We define another Hopf algebroid

(E, E*E) = (Z[p)[vh'v?’v’;l]aE[tl:t2v o ']®BP. E)’

whose structure is induced from that of (B Py, BP.(BP)). Here the action
of BP, on E is given by setting v,-1 = v, if n < 2 and v,,-1 = 0 otherwise
for 1 € E. This Hopf algebroid coincides with the one associated to the
Johnson-Wilson spectrum FE(2) such that

m(E(2)) = E.

Let (A,I') denote one of the above Hopf algebroids. Recall [9]
the I'-comodules V; and MJ‘:, which are defined inductively by N? =
A/(pyv1sr ey tn1), MJ’? = 'Ui—-ple} and the exact sequence

(2.1) 0 — N} — M} — NI — 0.

The comodule structures of them are induced from the right unit map

nr: A — I' and we denote them by the same notation ng. Here note that

this construction works as well for (A,I') = (E, E.E) as (BP., BP.(BP)).

Besides, A/IJ’: =0ifi4+j>2and = N} ift+ 7 =2,for the case I' = E.E.
In this paper we consider them only for i + j < 2 and have

Ng = A4, NY = A/(p), Ng = A/(p™),
N.g = A/(p,v1), Nl1 = A/(p, v3°), Ng = A/(p=,v°) and
M; = v i N},

We end this section with recalling [8] an isomorphism
Exthp, gp)(BPu, My_;) = Extl, p(Ex, M;_; @pp, E-)

under the canonical map A:(BP.,BP.(BP)) — (FE,E.FE), for the
BP,(BP)-comodule M;_. with 0 <7< 2.

Hereafter, we use the abbreviation H*— = Ext}(A,-) for (A, T) =
(BP.,BP.(BP)) or = (E,E.FE). It is convenient for defining $-elements
in both Ext-groups, though it may be confusing.

3. Computation of B-elements. Let §° and M be the p-local
sphere spectrum and the mod p Moore spectrum, respectively, and L,
the v, ! BP-localization functor (¢f. [25]). Then the Ext-groups H*NY
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and H*NQ for BP.(BP) (resp. E.E) are the Ej-terms of the Adams-
Novikov spectral sequence computing the homotopy groups T.(M) and
(S0 (resp. m.(L2 M) and m.(L25°)), respectively (cf. [25]). The E3-term
HN? for m.(LoM) is trivial if ¢ > 4. In fact, H'M? = 0if t > 1 by [9],
H'M}! =0if ¢t > 3 by [18], and HYIMO — HEYM) — HIND —» H'MY
is exact by (2.1). Therefore the sparseness of the spectral sequence yields
an isomorphism
H*N? = H*A/(p) & mu(L2M).

By this, an element of the E;-term can be identified with a homotopy
element for the case A = E.
In order to define the 3-elements, consider the boundary homomor-
phisms
6, HIN} — H2NS,
(3.1) §o: H°NZ — H'N} and
6y: H°N] — H'N?
associated to the short exact sequences of (2.1).

The map A: BP, — E is extended to the one /\:vz_lBP,. — F and
we will use the same notation z for both the elements z € 'vngP, and
A(z) € E.

In [9], Miller, Ravenel and Wilson introduced elements z,, € v; ' BP.
defined by

Tg = Vg2,
T = 1;’2’ - 'va{lvg

(3.2) P p?—1_p*-p+1 vf2+p—1v§2—2pv
-1

r2 =17 — 1 vy - 3

n

T, =zh_; - '2'vf"_pv§n_p 1 for n > 3,
where a, = p* + p*~! — 1, and showed that
n_n-1 . _
(3.3) do(zn) = €,05"05 7P t; in Q}ﬂvz YA/(p,vite)

forn > 0 and £, = min{n,2}. Consider subsets of B’ and B in Introduction
given by

B'(i) = {(s,n,j) € 23| 5,5 >0,p) s and j < play_;,
and j<ptifs=1},
BU) = {(s,n+rj.i)€ Z{|sj>0,pfsand p|j < pran_i,
and j < p™*tTifs =1}.
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Then,
B'= U B'(i) and B= | B™.

120 r>0
Note that z; belongs to 2%.4/(p, ) (resp. Q%A/(pi,'vf)) if (s,n,7) €
B’ (resp. (s,n,7,7) € B) (¢f. [9]), and that there is a monomorphism
A/(p,v]) — N (resp. A/(p’,v]) — N2) sending z to z/v] (resp. z/pivi).
These with (3.3) imply that
x;/v{ € H°N} for (s,n,j) € B, and
xi/pi+lv{ € H°NZ  for (s,n,j,1) € B,
and further that
2 fvi € HON}  for (s,n,j) € B/(i), and
P Pt el € HONE  for (s,n + 1,5,1) € B,
Using these elements, we define the $-elements by
Bl s = 64(zF /v]) € H'A[(p)
for (s,n,j) € B'(i) — B'(i + 1), and
spt ]
Boprtr fjit1 = 8180(zr; [P 1v]) € H?A
for (s,n +r,4,i) € B") — gr+1)

(3.4)

in the E>-terms of Adams-Novikov spectral sequences computing 7.(M)
and 7,(S°), respectively, for A = BP,, and 7.(LyM) and 7,(L3S°) for
A = E. Here we notice that 3-elements in [9] are defined by using z,
instead of a:f:_i as is done here. The subscripts of 3-elements are given as
follows:
Bajb.e = 160((v5 + v12)/p°0y)
for some & € BP, such that (v§ + v2)/p°v® € HONZ. Thus our §’s are
good to be considered. We abbreviate Syn ;1 t0 Bspny/js Bspnj1 to Bspn and
4pn/1 10 Bepn as is our custom.

From here on, in this section, we set (A,I') = (E, E.F).

In this paper, we use the same notation for both a homology class and
its representing cycle.

Define an integer k(n) for each positive integer n by

_ -y

=
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Note that k(2n + 1) = pk(fn.) + 1. We have vgt’l’2 = vht; mod (p,v1) in
I', where nr(vi) = 1 ® v;:1 = 0 for ¢« > 2 by the action of BP, on E.
Therefore, inductively we obtain

‘vg(i)tl mod (p,v;) for even ¢,

(3.5) # = {

.Us{i)_lt}f mod (p, 'Ul) for odd l‘

in E.E.

Lemma 3.6. Consider integers s, n, j and i such that (s,n,j) €
B'(i). Then in the cobar complez Qp pE/(p),

n n—1
3 =g_f 1P

—p'—j ‘e(s,n;i)t
sp™/3 Y2 1

i
mod(v{'"-ﬂin -p —J-H)

for even ¢ with 0 < i < n and

' _ PP —p =] e(smii)—1,p pr4p" T —p =i +1
spn)j = En—il] Vg t7 mod (v] )

for odd ¢ with 0 < i< n.
Here ¢, = min{2,k} for k > 0 and

e(s,n;i) = sp™ — p" 1 + k(i).

Proof. By the definition of é’, 6’(:1*.“;’:/@{') is obtained by vl_jdo(a:;p_ii).
Noticing that do(z) = nr(2) — z, we obtain that

8PN — op o PlOn—i, spm—p"T1 pt
d[)(.’l?n_t~ = 8&pi Uy tl

mod (p,vfla""'*'pz) by (3.3) and the binomial theorem. Now apply (3.5),
and we have the desired result.

The Ext-group H2E/(p,v1) was computed by Ravenel [15] to be a
Fylv,, v, !]-vector space spanned by the basis {ho® (2, b1 ®(2,90,91}- Here
(2 € ELE, 90,41 € E.EQ@pE E.E are given by

_ — 2
Co = vy e + vy P(th — 8 1P),

_ 2
go=1v"(t20t] +t, ®15) and

—p2— 3 2
n=v" Bt +81).
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In the following, { denotes a cycle that is congruent to (, mod (p, v1).
Such a cycle is known to exist in E,E/J for any ideal J = (p',v]) by the
results [19] on . We introduce an element bg of E,E @ E.E defined by

1 721 k

= tp
p kzo( )

This is denoted by —T in [22] and [18]. Then [22;(3.2.5)] says that

W= {”gk(i)bO mod (p,v;) for even ¢,
o =

vpk(i)_pbp mod (p,v;) for odd .

The dlagonal map A:E,E - E,EQpE.Esendstztotz @1+ 1Qt3+
th® t” + t1 @ t5 — vobl. This gives the homologous relations

_p+1 -
go = v Y0 and gy = v5 %

both mod (p,v;) in the cobar complex 2% pE. Putting these together
gives other homologous relations:

b§(1+1)g1 mod (p,v1) for even i,

- pl
(3.[) bD = { lk(t-{»l)
Uy

Here pk(i) + (—1)' = k(i + 1).

go mod(p,v,) for odd .

Lemma 3.8. Lets,n,r,j and i be integers such thatpf s > 0,r >0,
n>i>0,p'lj, 1 <j<pan_; and r > i. Then we have

Tan_i—J n+rii,r a 1
—sn_;svf an_; Jv;(s +73i )g mod (p, v’ Pran—_i—j+ )
for even r,
/33 n4rfs g = . -
P /Jvl+l T - B b —_ 1
—En_isv} O ng(s'n“”)g mod (p, v] PP on=imItl
for odd r.

Here the integers are defined by:

an=p"+p" ' —1 and e(s,n;i,r)=sp" — A k(r).
Proof. First we compute do(z /;01+1 J) € HlNo Since p|j and
do(m) = pt1, we see that d[)('t)_J SP +') = I_Jdg(a: ) mod (p*t!) in

QE EV] 1E. and moreover we have

sp'+‘ .‘Pﬂn i spn+r 7)n+r—x'—]tpr

do(z,_; ) = €n- isp'h v,
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mod (p't!, v’l’ra”“‘+pr) in QL gE by (3.3) and the binomial theorem.
Therefore the definition of &y shows that

1 pran—i—j s n4r__ n+r—|’—1» T
Fol) = episef 0 P /p+y

sv+:
bo(ay; /p

for some y divisible by a higher power of v; than that shown.
Note that dl(t’l’ ) = —pby, and we see that

' spr'H S+l 9y _ . Pran_i—j spn+r_pn+r—i—-1 pr—l
§1bo(z,_; /P 0]) = —€n-ist Y2 by

mod (p, v, Pran—i= JH) by the definition of the boundary homomorphism.

Now use (3.7) to get the results.

4. Proofs of Theorems in §1. In this section (A, I') denotes again
one of the Hopf algebroids (BP., BP.(BP)) and (E, E.FE). The proofs of
the theorems are based on the structure of H=M{. To state the results, we
prepare some notations. First we consider subsets of the set Z of integers:

A(0) = {s|pfs(s+ 1)}, A@2)={tp* -1|t€ Z} and
Ag = {sp™| n >0,s € A0)U A(2)].

Next we define integers a,, and A(m) for integers n and m by

a, :p"-{-p"_1 —1; and
-1
(DT +2 if s € A(0),

n+l _ _.n pn_l : . Af<
(p+ D[ —p+ S=) +2 ifsea@).

A(sp") =

Furthermore, we denote by F,[vi}{z/v{°}, the F,[v]-module isomorphic
to Fplvy, vy ]/F [v1] generated by z/v]{’s for j > 0 as a F,-vector space.
We also denote by F,[vi](z/v%), the Fp[v1]-module generated by z/v¢ that
is isomorphic to Fy[v1]/(v$).

By [22], we then have

(4.1) H'M{ is the direct sum of Fy[v1]{t1/v{°}, Fp[v1]{¢/v{°} and
Fplv)(vty /o) A(m )) for m € Ag,

Fplo) (o718 /eP™Y) for t € Z, and
Fplvil(z2¢/vim) for n>0,s€ Z - pZ.
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By [18], we have
(4.2) H?M{ is the direct sum of Fp[n1]{t1 ® ¢/v$°} and

Folv](v3 ® C/vf(m)) for m € Ay,
Fylon)(e? 12 @ ¢ /o0y for te Z,
Folv1){(v3g0/v1) for s+ 1€ Z-pZ, and

Fp[vl](.v;pn_(pn—l-1)/(p—1)g]/v‘1‘") for n >0,s+1€Z - pZ.

We denote the notation sp™/j,i or sp™/j (not a fraction) by a capital
letter A, so that 3-elements are denoted by 8y and 8. The (-elements
are, as is seen in the previous section, defined for both BP, and E, and
Bi (resp. 3) for E coincides with the A-image of Bx (resp. B) for
BP,, where A\:(BP.,BP.(BP)) — (E,E.E) is the canonical map of Hopf
algebroids.

Lemma 4.3. Let (s,n,j) and (u,r,k) be elements of B’ and a and
b integers > 0, and put K = sp™/j.
1) Suppose that 3} = tvivdt; mod (v¥*!) in Q}A/(p) for some unit
t. Then,
Bupr Bt # 0 € H2A/(p)
f 0<k—a< A(up” +b) and up™ + b € Ay.
2) Suppose that B} = tviv5t? mod (vit!) in Q}A/(p) for some unit
t. Then,
Bupr 1Bk # 0 € H?A/(p)
if 0<k—a<pandplup” + b+ 1.

Proof. Consider the diagram

H'M? — H'N! 2 H24/(p)

1A
Hl‘Mll,

in which the upper sequence is the exact sequence associated to the short
exact one (2.1). Note that A, is the identity if A = E. Since H*A/(p) acts
on H*N{ and H*M7, we see that

‘BLp"/k:B}{ = 60(:'7:/7’{:)@;{ = 61(:1:;‘,3}\/1){‘)
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The structure of H! WO is given in [15] to be Fp[vy, vy ']{t1}. Thus in our
case §; maps z¥ 3} -/v¥ monomorphically. Therefore it suffices to show that
A(z¥B) o) # 0 Using the hypothesis, we see that

up’+b k—a
% sty Tt /o) for 1),
)‘*(x:ﬂ}\'/'vl) = { up+b

sy Y2 fpk=e for 2).

Compare now the powers of v; and v, with those of (4.1), and we obtain
the lemma.

We define integers ¢(n) and I(n) for each non-negative integer n so that
l(n) _q
n = ¢(n)p™ — ppT’ I(n) >0 and p/c(n)+1.

Note that ¢(n) and {(n) are uniquely determined for each n. In a similar
fashion to the above lemma, we prove the following

Lemma 4.4. Let (s,n,j,1) and (u,7,k) be elements of B and B,
respectively, and a and b non negative integers. Put K = sp™/j,i+ 1.
1) Suppose B = svivigy mod (p,v{™!) in QL pE. Then,

Bopr kB # 0 € H3A/(p)
ifk=a+1 andp,{'up’+b+1
2) Suppose Bx = svivigr mod (p,v{t!) in Q% pE. Then,
Bl 68K # 0 € H*A/(p)

if 0< k—a< ayq, pleand p*f c+p forl = l(up™ +b) and ¢ = c(up” +b).

Proof. Since H*M?} = 0 by [15], ,: H:N] — H3*A/(p) is 2 monomor-
phism. So we will find a condition that A.(z¥Bx /v¥) = 2¥8K /v¥ # 0in
H?M} for the localization map A.: HZN] — H2M{]. This will give the
lemma, since all Ext-groups here are H*A-modules. The hypothesis shows

up”+b

k—a
u svy go/v for 1),
)\*(;]}Tﬁ}\'/’l){c) = { 'up T4 / )

g1/vi”* for 2).

Now the lemma follows from (4.2).
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Proof of Theorem AIL  First consider the case that A.(8x) = Bk has
a factor go, where K" = sp™*7/j,i + 1. Lemma 3.8 says that r is even > i
and

(45) a=pa,_;—j and b= sp™t" — pritr—i-l 4 k(r)
for a and b in Lemma 4.4. Thus we have conditions:
(46) k=pan_i—j+1 and pftp™ +sp™*" —p"t" =" L k(r)+ 1

for a non-trivial product ,Bép,,. wPOK. Inour case, m = 0, k =1 and j =
P’ an—;, and hence the second condition of (4.6) is now rewritten to be pf t,
since k(r) = —1 mod p for even r.

Consider now an odd integer 7 > 4. Then, Lemma 3.8 also shows (4.5)
for this case, and Lemma 4.4 2) similarly yields the desired condition.

Proof of Theorem BII. Suppose that (u,r,k),(s,n,j) € B and con-
sider an integer ¢ such that 0 < i < n.

First suppose that ¢ is even greater than 0, and so n > ¢ > 2. Then
integers a and b in Lemma 4.3 are

p"+ " —p' — 7 and e(s,n;i) = sp” — p"" ! + k(i),

respectively, by Lemma 3.6. By this, we have the condition

an 0< k—p* —p" '+ p' +5 < Aup” + sp™ — p"! + k(i) and
' up” + sp™ — p" ! + k(4) € Ao,

which certifies the non-trivial product ﬂ;p,/kﬁ;p"/j.

For the case r = 1, suppose u = u/p?—1 for some v’ and p*+p*~1—p' <
E+j<pt4+p" ' —p'4+p?°+1. Then up” 4+ b = up+sp™ —p* '+ k(3) € Ao
and A(up” +b) = p?+ 1. Therefore this case satisfies (4.7) and we have 1).

If r = 0, then put u + sp™ — p"~ ! + k(7) = tp™ with t € A(0) U A(2),
and we have the second.

We turn now to the case that ¢ is odd, which indicates n > 7 > 1.

Then the integers a and b in the hypothesis of Lemma 4.3 are

a=p"+p" ' —p'—j and b=sp™ — p""! + pk(: — 1)

by Lemma 3.6, and the condition is

0<k—p"—p" ' +p +j<pand plup” + sp* — p"~" + pk(i - 1),
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which is valid if p* + p* ' = p < k4+j<p*+p* ' —p' 4+ pand r > 0.
Thus we complete the proof.

We note that the conditions (4.6) and (4.7) do not yield any more
non-trivial relations than we have obtained. In fact, in the proof of The-
orem AlI, if m > 0, then the second condition of (4.6) indicates r = 0,
since k(r) = —1 modp if r is even and > 2. This contradicts to the
condition » > 7 > 0. In the proof of Theorem BII, if » > 2. then
up” + sp® — p"~ ! + k(i) = p — 1 mod p?, since i is even. This contra-
dicts to the condition that it belongs to Ap. In a similar fashion, we see
that the relations for odd r of Theorem AII are also the best results that
we get from Lemma 4.4 2).
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