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0. Introduction. The purpose of this paper is to give the index
theorem for G-equivariant Real elliptic families. Our main result is Theo-
rem 9.1. (See also Definition 2.1, Definition 3.3 and Definition 5.16.)

Let X be a closed (i.e. compact, without boundary) smooth manifold
and let TX denote its tangent bundle. Let X be embedded in R™ and let
N denote the normal bundle of X in R™. Then, the tangent bundle TN
has a complex vector bundle structure over TX and the periodicity map
K(TX)— K(TN) is defined. The topological index is defined to be the
composition K(TX) — K(TN)— K(TR") = K(R*) = K~?(point) =
K (point) where K(TN) — K(T R")is the extension homomorphism of the
open inclusion TN — TR"™. On the other hand, any element of K'(TX) is
expressed by a principal symbol of an elliptic pseudo-differential operator
on X and the analytical index K(TX) — Z = K(point) is defined to be
the Fredholm index of this operator. The Atiyah-Singer index theorem
asserts that the topological index coincides with the analytical index.

The index theorem is generalized in [4] to the case of fiber bundles
Z — Y. Namely, let Y be a compact Hausdorfl space and Z a fiber bundle
over Y with fiber X and structure group Diff(X') where Diff(X') denotes the
topological group of diffeomorphisms of X endowed with the C*°-topology.
Let TrZ denote the tangent bundle along the fibers of Z. (Namely, TrZ is
a fiber bundle over Y with fiber T7X.) Then, the analytical index and the
topological index are defined to be the homomorphisms K(TrZ) — K(Y')
where the analytical index is defined by families of elliptic operators with
parameter space Y.

So, taking refinements of i’, one may introduce the following types of
the index theorem. (G denotes a compact Lie group.)

I. K(TX) — K (point)

II. KR(TX) — KR(point)
III. Kg(TX) — Kg(point)
IV. KRg(TX) — K Rg(point)

145



146 K. TSUBOI

V. K(TrZ) — K(Y)

VI. KR(TrZ) —s KR(Y)
VIL. Kg(TpZ) — Eg(Y)
VIII. KRg(TrZ)— K Rg(Y)

The index theorem of type III is given in [3]. Since the forgetting map
K Rg(point) — Kg(point) is injective, the index theorem of type IV gives
no more information than that of type III. The index theorem of type V
is given in [4] and the index theorem of type VI is given in [5]. So, it
remains to give index theorems of type VII and type VIII. In this paper,
our purpose is to give the index theorem of type VIII. Then, the index
theorem of type VII is given by forgetting all involutions.

The contents of sections are as follows.

In section 1, we recall the notion of the K" Rg-theory, show that TN
(where N denotes the normal bundle of a Real G-embedding of X) has a
Real G-vector bundle structure over TX and define the !-homomorphism.

In section 2, under the definition of the families in [4], we introduce the
notion of Real G-families. A Real G-family is a Real G-fiber bundle over
the parameter space Y such that the bundle itself, the actions of G and the
involution are “smooth along the fibers”. Here we assume that Z satisfies
certain smoothness conditions (cf. Definition 2.1) which are satisfied if Z
itself is smooth. Then, G-equivariant Real elliptic families are defined to
be Real G-sections of the bundle of elliptic operators over Y. For the
detailed constructions of various bundles, [4] §1 should be refered to.

In section 3, we first construct an equivariant fiber-wise embedding of
Z into a (finite dimensional) trivial vector bundle over Y. Once this is
done, we can define the topological index K Rg(TrZ) — KRg(Y) in the
same way as in [3], [4] and it, of course, becomes the natural refinement of
the topological index in [3], [4].

In section 4, we give the definition of the index of G-equivariant Real el-
liptic families which is the natural refinement of those in 3], [4] (cf. Propo-
sition 4.1).

In section 5, using the result in section 4, we define the analytical index
and show that the definition is well-defined. Here we use the homotopy
invariance of the analytical index, which is dealt with systematically by
considering the families.

The process to prove the index Theorem 9.1 is essentially the same as
in [3], [4] and owes to the commutativities of certain diagrams (cf. §9). In
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section 6, 7 and 8, we show the commutativities of those diagrams. These
procedure depend upon the calculations of analytical indices defined in
section 5.

In section 6, considering the construction of extension homomor-
phisms, we show that the analytical index satisfies the excision axiom,
namely, commutes with the extension homomorphism.

In section 7, we show that the analytical index satisfies the normaliza-
tion axiom, namely, gives the inverse of the Bott periodicity map. Here,
using a simple property of the analytical index and the result in [3], we
can avoid troublesome calculations.

In section 8, considering the construction of multiplications, we show
that the analytical index satisfies the multiplicative axiom, namely, com-
mutes with the Thom homomorphism.

In section 9, using results in sections 6, 7 and 8, we give the proof of
the index theorem which asserts that the topological index coincides with
the analytical index.

In this paper throughout, we will use, without proof, the results of
Atiyah-Singer which are explicitly written in [3], [4] and [5]. So, if neces-
sary, they (in particular, [4]) should be referred to.

1. !-homomorphisms in K Rg-theory. Let G be a compact Lie
group with an involution 7 and let Gr be the semidirect product G xr Z,.
Namely, Gr = {ga| g € G,a € Z;} and (g7)(¢9'a) = gr(g’')Ta for the
generator 7 of Z;, g.g' € G and a € Z,. Note that Gg is a compact Lie
group.

Definition 1.1 Let F be a complex vector bundle over X. F is
called a Real G-vector bundle if it satisfies the following conditions:

(1.1.1) E and X are GRr-spaces and the projection E — X is a Gr-map,

(1.1.2) ¢: E — E is a complex linear bundle map for any g € G C GR,

(1.1.3) 7: E — E is an antilinear bundle map for the generator 7 of
Z, C GRp.

Throughout this paper, T denotes the generator of Z; C Ggr or the
involutive action of this generator. A Real G-vector bundle has to be
distinguished from a Gg-vector bundle and a real G-vector bundle.

Definition 1.2. If X is a compact Gr-space, K Rg(X) denotes as
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usual the Grothendieck group of the category of Real G-vector bundles
over X. If X is a locally compact Ggr-space, K Rg(X) denotes the kernel
of the restriction K Rg(X™*) — K Rg(+) where X+ = XU{+} denotes the
one point compactification of X. K Rg(X) is a commutative ring with the
Whitney sum and the tensor product. It is not difficult to see that, if the
involutions on X and G are trivial, K Rg(X) is isomorphic to KOg(X).

Example 1.3. Let X be a smooth Ggr-manifold and let T7X be the
tangent bundle of X. Then, TX is a Ggr-manifold with the involution
T(z,v) = (7, —7.v) for z € X and v € T X. If we give X a Gpr-invariant
riemannian metric, X can be identified with the cotangent bundle 7" X
which is a Ggr-manifold with the involution 7(z,w) = (rz,—-7*w)forz € X
and w € T; X. TX is always regarded as a Gr-space with this involution.
This convention is essential in the following arguments. Note that, even
if the involution on X is trivial, the involution on T X is not trivial. Note
moreover that, though the exponential map with respect to a Gpr-invariant
metric commutes with 7, it does not commute with the above involution
on TX.

Let E be a Real G-vector bundle over a locally compact Gg-space X.
Then, by tensoring the exterior complex A(E), the Thom homomorphism
KRg(X) — KRg(E) is defined as usual. In [2], Atiyah gives the Bott
periodicity theorem in i Rg-theory.

Theorem 1.4 ([2] Theorem (5.1)). Let X be a compact Gpr-space
and W a Real G-module. (Namely, there ezxists a representation p:Ggr —
GLr(W) such that p|g:G — GLc(W) and p(7) is antilinear.) Then, the
Thom homomorphism K Rg(X) — KRg(X x W) is an isomorphism.

Now, we define the !~homomorphism in K Rg-theory. Let X be a
closed (i.e. compact, without boundary) smooth Gg-manifold, Y a smooth
Gpr-manifold and : X — Y a Ggr-embedding. Let N = {p: N — X} be
the normal bundle of X in Y which is identified with the unit open disk
bundle with respect to a Ggr-invariant riemannian metric on Y. Then,
by the exponential map, N is regarded as an open Gpg-submanifold of Y
(with the involution on Y). Let TX = {¢:TX — X} be the tangent
bundle of X. Then, ¢*(N ® C) is a Real G-vector bundle over TX with
the involution ((z,v),a + v/—=18) = ((tz, —Tyv),Ta —/=178) for z € X,
v € T;X and a,3 € N;. On the other hand, the tangent bundle TN is



THE ATIYAH-SINGER INDEX THEOREM 149

a neighborhood of TX in TY and is isomorphic to ¢*(N¥N ® C) as a Gg-
fiber bundle over TX. In fact, the isomorphism ¢: TN — ¢*(N ® C)is
given by ¢((z,w), €+ 1) = ((z,ps€),w +/—=1n) for z € X, w € N, and
€+ n € T,N where 7 is vertical and £ is horizontal with respect to a
GRr-invariant metric. The Reality of ¢ is proved as follows:

o7((z,w), €+ 1) = ¢((Tz, Tw), — T — Tu7) (cf. Example 1.3)
T preserves the orthogonal
= (1, —pu7i€), 7w — V=177) (decom osition and 7.7y is)
identified with 7.

= (12, —Tupuf), 7w — V=117) (p commutes with 7.)
= 7((2,pu8)sw + V=1n) = 79((z,w), € + 7).

So, TN is Gp-diffeomorphic to ¢g*(¥N®C) and p,: TN — T X has a Real G-
vector bundle structure. Hence, the Thom homomorphism K Rg(TX) —
K Rg(TN) is defined by tensoring the exterior complex A(TN) = Ag*(N®
C). The additive homomorphism #: K Rg(TX) — K Rg(TY) is then de-
fined to be the composition of the Thom homomorphism with the exten-
sion homomorphism k. KRGg(TN) — KRg(TY) of the open inclusion
k:TN - TY.

2. The families. Let X be a closed smooth manifold and let Diff(X)
denote the topological group of diffeomorphisms of X endowed with the
C*-topology. Let Y be a compact Hausdorff Gr-space.

Definition 2.1. Let Z = {m:Z — Y} be a Gp-fiber bundle with
fiber X and structure group Diff(X) (so that Z is a Ggr-space and 7 is a
Gpr-map). We call Z an X-family over Y if the Gr-action on Z satisfies
the following conditions:

(2.1.1) 9: Z, (= 7~ Yy))— Z,4y is a (smooth) diffeomorphism for any ¢ €
Gr and any y € Y,

(2.1.2) Let B — Y be the principal Diff(X)-bundle associated to Z.
Namely, for any y € Y, B, consists of admissible maps X — Z,.
Then, Ggr acts continuously on B on the left by gu = g-u: X —
Zy — Zgy for any g € Gr and any u € B,,.

Remark 2.2. Let Y =point and Z = X. Then, the condition
(2.1.1) says that, while X is a continuous Gr-space, the image of the ho-
momorphism Gr — Homeo(X) (where Homeo(X') denotes the topological
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group of homeomorphisms of X endowed with the compact-open topology)
is contained in Diff(X'), and the condition (2.1.2) says that Gr — Diff(X)
is continuous with respect to the C*°-topology.

Remark 2.3. LetY be asmooth Ggr-manifold (possibly with bound-
ary) and let Z be a smooth Gg-fiber bundle over Y with fiber X. Then,
it is clear that Z is an X-family. It is also clear that the restriction of a
smooth GRr-fiber bundle to any closed Gr-subset of Y is a family.

Remark 2.4. According to [9] (or [7]), we recall the notion of the
(I',a,GRr)-bundle. Let I' be a compact Lie group and let a: Gp — Aut(I')
be a homomorphism. We assume that the adjoint of @« &:Grx I’ - I’
is smooth. Let I' X, Gr denote the semidirect product. A principal
I'-bundle P — Y is called a principal (I, @, Ggr)-bundle if P is a left Gg-
space, the projection is a Ggr-map and the action of Gg and I' are related
as g-(zv) = (g2 )a(g)(y) forany z € P,any g € Ggrandany y € I'. Let X
be a closed smooth I' X, G gr-manifold. Then, regarding X as a I'-space, we
can associate to P a fiber bundle Z = P xp X with fiber X, which is called
a (I',a,GR)-bundle. It is obvious that the diagonal action of I X, Gg on
P x X induces a Gp-action on Z and Z becomes a G g-fiber bundle over
Y. Then, it is easy to see that Z satisfies the conditions (2.1.1), (2.1.2)
and Z is an X-family.

For the sake of the following arguments, we note a simple remark.

Remark 2.5. Let f:Z — R be any function on an X -family Z such
that the restriction f, = f|z,:Z, — R is smooth for any y € Y and
all Z,-derivatives of f, are continuous in the y-direction. Then, the Gg-
averaging of f has the same properties. Namely, when we set f(g,y,a:) =
f(g-(y,z)) where g € Gr,y € Y and z € Z,, it follows from the conditions
of Definition 2.1 that z-derivatives of f are continuous in ¢ and y. Hence,
when we set f/'(y,z) = fGRf(g,y,z)dg where dg denotes the normalized
Haar measure on Gr (so that fGRdg = 1), f'(y,z) is smooth in z and
z-derivatives are continuous in y.

From Remark 2.5, it follows the following lemma.

Lemma 2.6. Let f:Z — M be a continuous Ggr-map from an X-
family Z to a compact Gp-manifold M. Then, f can be approrimated by



THE ATTYAH-SINGER INDEX THEOREM 151

a Gr-map f':Z — M such that the restriction fy = f'lz, is smooth for
any y €Y and all Z,-derivatives of fz’/ are continuous in the y-direction.

Proof. Let U be any topological space and let fo(y,z):l/ X R® - R
be any continuous function of compact support. Let ¢(z): R® — R be a
smooth function such that ¢(z) > 0, supp(¢) is compact and [pn é(z)dz =
1, and we set ¢ (z) = e "d(e~z) for € > 0. Then, f(y,z) = [gn Ge(z —
v) fo(y, v) dv is smooth in z, z-derivatives of f>° are continuous in y and f&°
converges to f uniformly as € — 0. Since Z is locally of the form U’ x R",
by using the partitions of unity on X and Y, this result is extended to
the case of Z. Namely, let M be GRg-equivariantly embedded in a finite
dimensional real Gg-module V (cf. [6]) and let § be any positive real valued
function on V. Then, there exists f*°:Z — V such that the restriction
[ = ]z, is smooth for any y € Y, Z,-derivatives of fi° are continuous
in the y-direction and f* is a §-approximation to f. Let p: N — M be
a smooth Gg-tubular neighborhood of M in V. We may assume that the
image of f*° is contained in N. Then, by Remark 2.5, the composition of
p with the Gr-averaging of f*° is the required one.

Now, let £ — X be a smooth complex vector bundle and let Diff(X, F)
denote the topological group of diffeomorphisms of £ which map fibers to
fibers linearly endowed with the C*-topology (cf. [4], §1).

Definition 2.7. Let £ = {p:E — Z} be a Real G-vector bundle
over Z. We call E an E-family over Y if it satisfies the following conditions:

(2.7.1) mp: E — Y is a fiber bundle with fiber E and structure group
Diff(X, E),

(2.7.2) g: Ey — Egy is a smooth isomorphism for anv ¢ € Ggr and any
y € Y where E, = (m-p)"}(y) = E’Izy,

(2.7.3) The left Gr-action on the associated principal Diff(X, F)-bundle
over Y is continuous (cf. (2.1.2)).

Let p: Ey — Z be any (continuous) Real G-vector bundle.

Remark 2.8. Note that 7-p: By — Y always has a local triviality
in the topological sense. In fact, let yo be any point in Y and let U
be an open neighborhood of yo such that #=1(U) ~ U x 7~ !(yo). Then,
(m-p)~Y(U) = Eo|r-1(u is isomorphic to U x (7-p) " Hwo) = U X (Eo|x-1(yy))
on 7 1(yg). Since both X (~ 7~ !(y)) and Y are compact Hausdorff,
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this isomorphism can be extended to an open neighborhood of 7~}(y) in
#~1(U) and there exists an open neighborhood U’ of yo in Y such that
(m-p)~Y(U") is isomorphic to U’ x (7p)~ (yo).

For the smoothness conditions in Definition 2.7, we have to take an
approximation of the classifying map of Ey which satisfies certain smooth-
ness conditions. Let W be a Real G-module and let G,(q, W) denote the
Grassmann manifold of ¢g-dimensional subspaces of W. G,(q, W) is a com-
pact Gr-manifold which is a finite approximation to the classifying space
of Real G-vector bundles. Let f:Z — G,(q,W) be the classifving map
of Eg. By Lemma 2.6, there exists a Gg-map f:Z — G,(¢,W) which
is Gr-homotopic to f, smooth in the Z,-direction for any y € Y and all
Zy-derivatives are continuous in the y-direction. Then, the pull back E
of the canonical smooth Real G-vector bundle & over G,(q,W) by f'is a
family which is isomorphic to Ep (cf. [4], p.123, Remark 2). Then, in fact,
the local triviality of E is given as follows. Let yo be any point in Y and
let U be an open neighborhood of y such that 77 1(U) ~ U x 7 !(yo).
Then, an isomorphism

¥i By = (Flamyw) € — U X (Elr-1340) = U X (Fla-1(v))"€

is given by ¥((y.z).v) = (y,(z,c(v))) where (y,z) € 7= (U) ~ U x
Y yo), v € Ef1(yy and e €pi(y o) — Ep1(z) denotes the parallel translation
along the unique geodesic (we assume that U is sufficiently small) from
f'(y,z) to f'(x) with respect to a smooth riemannian metric on G,(g, W)
and a smooth connection on £. Namely, the following proposition holds.

Proposition 2.9. For any Real G-vector bundle Ey over Z, there
ezxists a family E over Y which is isomorphic to Eg.

Note that, if Fp is a smooth Real G-vector bundle over a smooth
Gg-fiber bundle Z, then Ej itself is a family.

Let E and F be smooth complex vector bundles over X. Let E (resp.
F) be an E (resp. F)-family over Y. According to (4], 81, we recall the
notion of families of sections and operators. Let C*°(X,FE) denote the
Fréchet space of smooth sections s: X — E and let H (X, E) denote the
Sobolev space of distributional sections whose k-th derivatives are L2
measurable for any k < s (cf. [8]). Let C*®(Z, E) (resp. Hy(Z, E)) denote
the (infinite dimensional) vector bundle over Y with fiber C*°(X, E) (resp.
Hy(X, E)) which is associated to E. Namely, C®(X, E) = B(E)XDM(X,E)
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C>®(X,E) where B(E) is the associated principal Diff( X, E)-bundle of
E. Let P*(X;E,F) denote the space of pseudo-differential operators
C®(X,E) — C*(X,F) of order m and P™(X;E,F) its completion
in the Fréchet space [[, Op™(X; E, F) where Op™(X; E, F) denotes the
Banach space of continuous operators H (X,E) — H,_,(X,F) en-
dowed with the operator norm. Let EI™(X;E, F) denote the subspace
of P*(X; E,F) which consists of elliptic operators of order m (cf. Re-
mark 5.2). Let P™(Z;E, F) (resp. PT"(Z; E,F), EN™(Z; E, F)) denote
the fiber bundle over Y with fiber P™(X;E,F) (resp. P/ X:E,F),
EIl™(X; E, F)) which is associated to £ and F. (For details, see [4], §1.)
Now, the Gr-action on the associated principal Diff(X, E)-bundle of E
defines Real G-vector bundle structures on C*®(Z, E) and H(Z,E) by
C*(Z,E)gy = C(Zyy, Egy) 3 g2 = g-9-g™" for any g € Gp, y €Y and
4 € C®(Z,E), (cf. (2.7.3)). Then, the Ggr-action on P™(Z; E,F) is de-
fined by Pén(Z,:E-.F)gy 39Q =g-Qg":

Coo(ZeE)gy - C°°(Z,E)y i CW(Z,F)y - Cw[ZeE-)gy

for any g € Gp,y € Y and @ € P;”(Z;E‘,F)y. Moreover, P™(Z; E, F)
and EII™(Z; E, F) become G g-subspaces of P™*(Z; E, F).

Definition 2.10. A continuous Gpg-section P = {P,},ey:Y —
EN™(Z;E,F) is called a G-equivariant Real elliptic family of order m
and, throughout this paper, is denoted by G.R.E.F..

Now, let TrZ denote the tangent bundle along the fibers of Z. Namely,
TrZ is a fiber bundle over Y with fiber TX. A metric on Z is by definition
a continuous euclidean metric p on TpZ which is smooth along the fibers,
namely, such that the restriction p, of p to (TrZ), = T(Z,) is a smooth
riemannian metric on Z, for any y and that all Z,-derivatives of p, are
continuous in the y-direction. A metric on an E-family E is by definition
a positive definite continuous hermitian metric 2 on E which is smooth
along the fibers. By averaging p over G, we obtain a G r-invariant metric
on Z (cf. Remark 2.3). By averaging h over GG, we obtain a hermitian
metric A’ and, by setting ho = (h’ 4+ 7=h’)/2, we obtain a hermitian metric
ho such that the norm defined by hg is Gg-invariant. In this paper, metrics
on Z and E are assumed to be smooth along the fibers and Gg-invariant
in the above sense. Then, the unit sphere bundle SgZ, SE are Gr-subsets
of TrZ, E, respectively, and TrZ may be identified with the cotangent
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bundle along the fibers TZ. Note moreover that, if P:Y — PI*(Z; E,F)
is a GRr-section, then the adjoint P*:Y — PM(Z:F,E) with respect to
metrics is also a GR-section.

Example 2.11. Let Z be an X-family over Y with a metric. Let
E = ®,A?PTEZ ® C, F= ®,A?P*'TrZ ® C, and let dy be the exterior
derivative on Z, and dj its adjoint. Then, the derivatives of the symbol of
d, + d;:C*(Z,E)y — C*(Z,F), are continuous in y (cf. [4], p.123~124)
and {d, + d}},er definea G.R.E.F.. Y — EN(Z,E,F).

3. The topological index. Let Z = {r:Z — Y} be an X-family
over Y.

Proposition 3.1. There ezist a (finite dimensional) real Gr-module
V and a Gg-map i:Z — Y x V such that the composition of ¢ with the
projection Y X V. — Y coincides with m and i is an embedding along the
fibers, namely, the restriction of i to Z, is a smooth embedding Z, —
{y} XV foranyyeY.

Proof. Let yo be any point in Y and let A be the isotropy subgroup
of Gp at yo. Let S be a slice at yp and let T'= G x g S be the tube. We
may assume that Z is trivial over § and Z|s ~ S x X. Since {go} x X is a
closed H-manifold, there exist a real H-module W and an H-embedding
J=J(@):{v} x X — W (cf. [6]). We define k = k(s,2):Sx X — W to be
the composition of the projection S x X — {yo} x X with j. Moreover, we
define an H-map I = I(s,z2): S X X — W by I(s,z) = [y h-k(h™'-(s,z))dh
where dh denotes the normalized Haar measure on H. Then, I(yp,z) =
j(z) and it follows from the same argument as in Remark 2.5 that the z-
derivatives of I(s, ) are continuous in s. Hence, there exists a slice §' C §
at yo such that [(s,z): {s} x X — W is an embedding for any s € §’. Now,
it is known [6] that there exists a real Gg-module V such that V contains
W as an H-submodule. Then, we may regard ! as an H-map Z|gs — V.
Let T' = Ggr xy S’ be the tube. Since Z|r» = Gr:(Z|s/), we can define
a Ggp-map ip:Z|pp — V by ip(gz) = g(z) for any ¢ € Gr and any
z € Z|sr. Since l is an H-map, it is easy to see that i7s is well-defined and
it is clear that the restriction of i7s to Zy is an embedding for any y € T".
Now, since Y is compact, Y is covered by finitely many 7’’s. Namely,
there exist tubes Ty,...,Ty and Ggr-maps ip: Z|1,, — Vi, such that the
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restriction of ¢, to Z, is an embedding for any y € T}, (1 < m < ). Let
{fm}N_, be a Gg-partition of unity subordinate to {Tn}Y_,. Then, the
Grmap i:Z =Y x (V1 8---@ Vy) given by

i(z) = (7(2), fi(w(2))ir(2) @ -+ & fv(m(2))in(2))

is the required one.

Remark 3.2. When Z is smooth, there exists a Gr-embedding
¢:Z — V into a real Ggr-module V and the Gg-map i:Z — Y x V given
by i(z) = (w(z),9(z)) is clearly an embedding along the fibers.

Now, let N be the normal bundle along the fibers of Z in Y x V,
namely, N = Uyey Ny, where Ny is the normal bundle of Z, in {y} x V.
It is easy to see that N becomes a Gpg-fiber bundle over Y. More-
over, by taking a Gg-invariant metric on (the trivial V-family) Y x V
and the exponential map in the fiber direction, N is regarded as in
81 as an open Gpg-subset of Y x V. Namely, there exists an open
Gpg-embedding along the fibers ¥ — Y xV and N can be regarded
as an open manifold family over Y. Let ¢:TpZ — Z be the projec-
tion. Then, the tangent bundle along the fibers TgN is isomorphic
as in §1 to ¢*(N¥N ® C) and the Thom homomorphism KRg(TrZ) —
K Rg(TrpN) is defined by tensoring the exterior complex A(TFN). More-
over, Tp N is an open Ggr-subset of Y x TV = Tr(Y x V) and the exten-
sion homomorphism k.: KRG(TrN) - KRg(Y x TV') is defined. Then,
it KRg(TrZ) — K Rg(Y x TV) is defined to be the composition of the
Thom homomorphism with &,.

Let 5:Y =Y X {0} — Y x V be the canonical Gg-embedding where
o denotes the origin of V. It is easy to see that TV (~ V ® C) is a Real
G-module (cf. Example 1.3) and

jit KRG(Tr(Y % {0})) = KRg(Y) — KRg(Y x TV)

coincides with the Thom homomorphism. Hence, it follows from Theo-
rem 1.4 that j; is an isomorphism.

Definition 3.3. The topological index t-ind: K Rg(TrZ)— K Rg(Y)
is defined to be the composition of i1 with j!_l.

Remark 3.4. From the same argument as in [3], p.498, it can be
proved that ¢-ind is independent of the choices of i and V.
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4. The index of G-equivariant Real elliptic families. Let E
(resp. F) be the E (resp. F)-family over Y and P = {P,},ey:Y —
Ell™(Z;E,F)a G.R.E.F..

Proposition 4.1. (1) There ezist a finite dimensional Real G-vector
bundle L over Y and a continuous Real G-uvector bundle homomorphism
T:L — C®(Z,F) such that the map Q,:C>®(Z,E), ® L, —» C®(Z,F),
given by Qy(u,v) = Py(u) + T(v) is surjective for any y € Y.

(2) KerQ = Uyeykernel(Q,) is a finite dimensional Real G-vector
subbundle of C*(Z,E) & L overY.

(3) KRg(Y) 3 [KerQ] — [L] is independent of the choices of L and T.

Proof. (1) It is obvious that (1) follows from the following lemma.

Lemma 4.2. There ezist a finite dimensional Real G-module W and
a continuous Real G-vector bundle homomorphism T:Y x W — C>(Z, F)
such that the map Q,:C®(Z,E), & W — C>(Z,F), given by Q,(u,v) =
Py(u)+ T(y,v) is surjective for any y € Y.

Proof of Lemma 4.2. Let h (resp. p) be a metric on F (resp. Z)
(cf. §2). Let D:C=(Z,, F,) — C*(Z,, F, ® T*(Z,)) denote the covariant
differentiation and let A = 14 D*D. Then, C®(Z,F), = C™(Z,,F,) is
a Fréchet space with the following seminorms {p¥ }°_,;

pa(w) = { [ hy(amuta),v(@)) ey}

for w € C*®(Z,,F,). Let I' denote the set of continuous sections
2Y — C®(Z,F). Then, I' is a Fréchet space with seminorms p,,(s) =
sup,ey Py (2(y)) for s € I'. Moreover, I' is a (infinite dimensional) Real
G-module with the continuous Gg-action (gs)(y) = g-#(g~'-y) for g € Gr.
Let I, denote the union of the finite dimensional G g-invariant subspaces of
I'. Then, it can be proved by the Peter-Weyl theorem that I, is dense in I.
In fact, if M is a finite dimensional G-invariant subspaceof I', MG TM is a
finite dimensional G g-invariant subspace of I'. Hence, the denseness of I,
in I' follows from Theorem (2.5) in [10]. Now, for any y € Y, P, is elliptic
and there exist finite elements 53, . - ,J}’(y) € I such that 5{(y),..., le(y)(y)
span cokernel(P,) where C*(Z,, F,) = image(P,) & cokernel(P,). Since
P, is continuous in y, it follows from the standard argument (cf. [1],
Appendix) that there exists an open neighborhood U, of y such that
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Ay ),...,le(y](y’) span cokernel(P,r) for any y' € U,. Moreover, since
I, is dense in I" and the evaluation map I' — C*(Z,, Fy) is continuous,
we may assume that 47,... ,Jf’(y) € I,. Suppose Y = UY U, and let W be

the finite dimensional Real G-submodule of I generated by {{Jf‘}g(i’,) }N .
-~ =1

Then, T:Y x W — C*(Z,F) given by T(y,4) = 4(y) is the required

homomorphism. This completes the proof of Lemma 4.2.

(2) It follows from [4], Proposition (2.2) (or [1], Appendix) that
kernel(Q,) is finite dimensional for any y € Y and the dimension of
kernel(Qy) is (locally) constant in y. Note that [4] does not assert that
kernel(Q,) form a subbundle of C*(Z, E) & L. We show that kernel(Qy)
form a subbundle Ker@) of C°°(Z,E) @ L. Then, since it is obvious that
Ker@ is a Gr-subset of C>(Z, EY®L, KerQ becomes a Real G-vector sub-
bundle of C®(Z, E) ® L with the restricted Gr-action. Now, for any fixed
sand any y € Y, let P): H(Z, E)y — H,_n(Z, F’)y denote the canonical
extension of P and let Q;:HS(Z,E)y ® L, — Hs_m(Z,F), be given by
Q3 (u.v) = Pj(u)+T(v). Since Py is elliptic, it follows from the regularity
(cf. [4], Lemma (2.1)) that kernel(@Q;) = kernel(Q,). For any fixed yy € Y,
let U be an open neighborhood of yy and suppose that

H(Z,E)|ly ~ U x Hy(X,E),
Hs—'m(Zap)'U ~ U x Hs—m()(aF) and
LIU ~ U x CI.

Weset H=H(X,E)$C?and H' = H,_,,(X, F). Let L(H,H') denote
the Banach space of continuous operators H — H’ endowed with the
operator norm. Then, by the assumption, the map U — L(H, H') given
by y — Q3 is continuous, Q3: H — H' is surjective and Q3 : H' — H
is injective for any y. Since, @ is a Fredholm operator, Q;'(H’) is a
closed subspace of H and H = kernel(Qj) ® @;*(H'). Hence it follows
that Q;Q;':H’ — H' is bijective. Therefore it follows from the closed
graph theorem that there exists (Q5Q3*)™' € L(H',H'). Moreover, the
map U — L(H',H’) given by y — (QQ3*)~! is continuous. We set
qQy = I- Q;‘(QZQ;‘)—IQZ Thena ‘Iy:H - kernel(Q;), qylkemel(Qj) =1
and the map U — L(H,H) given by y — ¢, is continuous. Let ¢,: H =
kernel(Qj, ) & so(H') — H be given by ¢,(u,v) = ¢y(u) + v. Then, the
map U/ — L(H, H) given by y — ¢, is continuous and it is obvious that ¢,
is an isomorphism. Hence, by the standard argument, there exists an open
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neighborhood U’ of yo in U such that ¢, is an isomorphism for any y € U’.
Therefore, g,: kernel(Q? ) — kernel(Q;) is injective for any y € U’. Since,
kernel(Q?) is constant dimensional, g,:kernel(Q7 ) — kernel(Qy) is an
isomorphism for any y € U’. Let #:U’ x H — U’ x H be an isomorphism

given by &(y,u) = (y, dy(z)). Then,
¢|U'xkemel(Q;O) : U’ x kernel(Q3,) — Uyeu kernel(Qy)

gives the required local triviality of KerQ). From the arguments above, it
follows that KerQ is a subbundle of H,(Z,E) @ L for any s. Hence, the
inclusion KerQ — C*®(Z,E) @ L is continuous and Ker@ is a subbundle
of C*(Z,E)® L.

(3) Let L’ be another finite dimensional Real G-vector bundle over
Y and T: L' — C*(Z,F) another homomorphism such that the map
Q,:C=(Z,E), & L!, » C®(Z,F), given by Q' (u,v') = Py(u) +T(v") is
surjective forany y € Y. Forany t € I = [0,1], let R(, :C*®(Z,E),® Ly
L, — C*=(Z, F), be given by R, »(u,v,v") = Py(u)+(1—t)T(v)+tT"(2").
Then, R, is surjective for any (y,t) € ¥ x I and it follows from (2)
that Ker R = Uy 1)ey xrkernel(R(, 1)) is a finite dimensional Real G-vector
bundle over Y x I where Gg acts on [ trivially. Let ji:Y — Y x I be
given by jr:Y =Y x {k} - Y x I for k = 0,1. Then, it is obvious that jp
is Gr-homotopic to j; and hence that, j§ = j7: KRg(Y x I) - KRg(Y).
Hence, it follows that

[KerQ® L'] - [L& L' = jy([KerR] - [I x (L& L")])
= ji([KerR] - [I x (L & L")])
= [KerQ' & L) — [L & L'].

Therefore, it follows that [Ker@] — [L] = [KerQ’] — [L’]. This completes
the proof.

Definition 4.3. We deﬁne the index of a G.R.E.F. P by
index(P) = [KerQ] — [L] € K Rg(Y).
Remark 4.4. It is easy to see that the definition above of a G.R.E.F.
is a refinement of that of an elliptic operator in [3] and that of an el-

liptic family in [4]. In fact, when ¥ = point and P:C®(X,F) —
C*®(X,F) is an single elliptic operator, we can set L = cokernel(P)
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and T = inclusion. Then, it is clear that Ker@) = kernel(P) $ 0 and
[Ker@Q] — [L] = [kernel(P)] — [cokernel (P)].

5. The analytical index. Let Z be an X-family over Y. Let E
and F be smooth complex vector bundles over X and E (resp. F) the
E (resp. F)-family over Y. Let ¢:TpZ — Z denote the projection and,
by an abuse of the notation, we also denote by ¢ the restriction of ¢ to
TrZ—-Z where Z is regarded as the zero-section of TrZ. Using a met-
ric, we identify TZ with the cotangent bundle along the fibers T5Z.
Let gx:TX~X — X denote the projection and let ¥:g%x E — g% F be
a homomorphism. 1 is called homogeneous of degree m if ¥(z,A{)(v) =
Am(z,€)(v) forany A >0,z € X,0# € € T, X and v € E;. Note that a
homogeneous homomorphism is determined by its restriction to the unit
sphere bundle of TX. Let Symb™(X; E. F) (resp. Symb*(X; E, F)) denote
the space of smooth (resp. continuous) homomorphisms ¥:¢x E — ¢} F
which are homogeneous of degree m. Let Is™(X;E, F) denote the set
of all ¥ € SymbT(X;E,F) for which ¥(z,€):E; — F; are isomor-
phisms for any z € X and any 0 # £ € T, X. As in §2, Symb”‘(Z;E,I:"),
Symb™(Z; E,F) and Is™(Z; E, F) are defined to be fiber bundles over Y
with fiber Symb™(X; E, F), Symb7(X; E,F) and Is™(X;E, F), respec-
tively (cf. [4], §1). Namely, for any y € Y,

Symb™(Z; E, F), (resp. Symb™(Z; E, F),)
= {¢: q;E'y — q;F'y; v is smooth (resp. continuous) homomorphism
which is homogeneous of degree m}
and
Is™(Z; E, F),
={yve SymbT(Z;E,F)y: t,b(a;,f):Ez — F, is an isomorphism
for any z € Z, and any 0 # € € T:(Z,)}.

On the other hand, the G g-actions on ¢*E and ¢* F make Symbdb™(Z; E, F),
Symb™(Z; E,F) and Is™(Z; E,F) Gp-fiber bundles over Y.

Let gs:SFZ — Z denote the projection of the unit sphere bundle of
TrZ and let | |z denote a norm on F (cf. §2). For any y € Y and any
Y € Symb™(Z; E, F),, we set Iz{)| = sup{|¥(e)|z;e € (¢s)y SE,} where
SE, is the unit sphere bundle of E, over Z,. Moreover, for any continuous
section ¢:Y — Symb™(Z;E,F) we set ||¢|| = sup,ey |#yl. Note that
Is™(Z; E, }3’) is an open G g-subset of Symb7*(Z; E, F) and it is not difficult
to see that the following proposition holds.
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Proposition 5.1.  For any continuous section ¢:Y — Is™(Z; E, F),
there ezxists € > 0 such that, if a continuous section ¢".Y — SymbT(Z;
E,F) satisfies ||¢ — ¢'|| < €, then the image of ¢ is contained in
Is™(Z;E, F).

_ Forany y € Y and any Q € P™(Z: E,F),, let a(Q) € Symb™(Z;
E,F), denote the principal symbol of . Namely, for any z € Z,, 0 #
£ €Ty(Z,) and v € E,,

e—\/-_lAfo(e\/—_lAf.J)(I)
/\‘m

Fz 3 0(Q)(2,€)(v) = Jlim

where f is a smooth function on Z; such that (df), = £ and s is an
element of C°°(Zy,E'y) such that s(z) = v. Then, a continuous fiber-
preserving map a: P™(Z; E, F) — Symb™(Z; E, F) is defined and is canon-
ically extended to a continuous fiber-preserving map o:P™(Z;E, F) —
Symb™(Z; E, F). By the convention in Example 1.3, it is not difficult to
see that o is a Ggr-map.

Remark 5.2. Let Q:C*(X,E) — C*>(X,F) be a pseudo-
differential operator of order m. @ is elliptic if and only if o(Q) €
Is"(X;E,F). In particular, a continuous section P = {P,}yey:Y —
Pr(Z; E, F) defines an elliptic family if and only if o(P) = {o(Py)}yey is
a continuous section Y — Is™(Z; E, F).

Proposition 5.3. For any continuous Gp-section ¢:Y — Symbl
(Z; E, F) and any € > 0, there ezists a continuous Gg-section P:Y — P™
(Z;E, F) such that ||¢ — o(P)|| < e.

Proof. 1t follows from [4], Proposition (1.6) that there exists a con-
tinuous section Q:Y — P™(Z; E, F) such that ||¢p — o(Q)|| < €. Now,
let dg denote the normalized Haar measure on Ggr and we define a Gg-
section P:Y — PM(Z;E,F) by P, = fGR(gQ)y dg for any y € Y where
(9Q)y = 9-Qg4-1.y. Then, since (g¢), = ¢, for any y € Y and any g € Gk,
it follows that

60 =Bl = | [ (98)da ~ [ olo@),d]
= |, (st6 ~a(@n) do| < [ |(s(s - o(@D), |ds
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= Gy-1.y, — O -.d</ed:
LRIgly (Q)gly| g Ga g =€

forany y €Y.

Definition 5.4. Let ¢°,¢":Y — Is™(Z:E,F) be continuous G-
sections. Then, ¢° ~ ¢! iff there exists a continuous G g-section ¢: Y x I —
Is™(Z x IE x I,F x I) such that él)’x{k} = ¢* for k = 0,1 where the
G r-action on [ is trivial.

Remark 5.5. Let ¢:Y — Is™(Z:E,F) be any continuous Gpg-
section. Then, by Proposition 5.1, Proposition 5.3 and Remark 5.2,
there exists a G.R.E.F. P:Y — EI™(Z;E,F) such that the image of
(1 —t)¢ + ta(P) is contained in Is™(Z; E, F) for any t € I, in particular,
¢ ~ o(P).

Definition 5.6. Let ¢:Y — Ism(Z;E,F') be a continuous Gg-
section. We define the index of ¢ by index(¢) = index(P) € KRg(Y)
where P:Y — Ell™(Z;E, F)is a G.R.E.F. such that ¢ ~ o(P).

Proposition 5.7. The definition of index(d) is well-defined.

Proof. Let P":Y — EN™(Z;E,F) be another G.R.E.F. such that
@ ~ o(P’). Then, it is obvious that o(P) ~ o(P’), namely, there exists
a continuous Gg-section ¢:Y x I — Is™(Z x IE x I, F x I) such that
d;ly,({o} = ¢(P) and é|yX{1} = o(P’). On the other hand, it follows from
Proposition 5.1 that there exists € > 0 such that, if a continuous G g-section
¢:Y — Symb™(Z; E, F) satisfies |o(P) — ¢/|| < € or ||o(P') — &|| < e,
then the image of ¢’ is contained in Is™(Z; E, F). Moreover, it follows
from Proposition 5.3 that there exists a G.R.E.F. Q:Y x I — Ell™(Z x
I;Ex I,Fx1I)such that [|¢—o(Q)]| < €. Since it is obvious that ||o(P)—
o(Qly x )l < € and [|o(P) = (Qlyx 1))l < € (1=1)P +#(Qly x{0y) and
(1-1)(Qlyx(1}) + 1P define G.R.EF.’sY xI — EN™(ZxI; ExI,FxI).
Hence, by connecting these G.R.E.F.'s, we obtain a G.R.E.F. R:Y x I —
EN™(Z x I; E x I, F x I) such that R|,x(oy = P and R|,x(;y = P'. Now,
let ji:Y =Y x {k} = Y x I be the inclusion for k = 0, 1. Since j; is G-
homotopic to j;, index(P) = ji(index(R)) = j;(index(R)) = index(P’).

Definition 5.8. Let ¢:TrZ-Z — Z be the projection and let
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¥:¢*E — ¢*F be a Real G-vector bundle homomorphism which gives an
isomorphism outside the unit disk bundle B%Z of TrZ, namely, outside
a compact set which is contained in the interior of BpZ. For any m, we
define a Gg-section ¥y™:Y — Is™(Z; E, F) by Pz, €) = [E[y(, /1€
where y € Y,z € Z, and 0 # € € T;(Z,).

Definition 5.9. Let ¥ be as above. We define index(y) =
index(y™) € K Rg(Y').

Proposition 5.10. The definition of index(%) is independent of the
choice of m.

Proof. Let Q:Y — EN™(Z;E,F) be a G.R.E.F. such that ¢(Q) ~
¥™ and let R:Y — EII*(Z; E,F) be a G.R.E.F. such that o(R) ~ ¥*. If
k = m, it follows from Proposition 5.7 that index(Q) = index(R) So, we
assume that k > m. By substituting ¢(&) |€]*~™(r(z,y)? );i(dvp(yy/dz)™ !
for Kjj(z,€,y) in the proof of [4], Proposition (2.4), we can construct
a continuous section P:Y — Ellk'"‘(Z;E‘,E‘) which has the following
properties:

(5.10.1) P’ is positive definite,
(5.10.2) o(P’) is self-adjoint and positive definite outside the zero-section
Z of TpZ.

Let P:Y — 'Pf‘m(Z;E,E’) denote a continuous Gg-section given by
P = fGR(gP')dg. Then, by the Gr-invariance of metrics, it is not difficult
to see that P also has the properties (5.10.1) and (5.10.2), in particular,
Pis a G.R.E.F.. Now, let ¢:Y — Is*"™(Z; E,E) be a continuous Gg-
section given by ¢,(z,€) = |€[F~™ g :E, > E foranyy €Y,z € Z, and
0# & € T(Z,). Then, since the elgenvalues of ¢y(z,£) and o(P)y(z.§)
are positive real and ¢,(z,£) is a scalar matrix, it is obvious that (1 —
)o(P)y(z,€) + tdy(z,€) gives an isomorphism for any t € I, hence, ¢ ~
o(P). On the other hand, since it is obvious that ¥* = ¥™.¢, o(R) ~
a(Q)¢ ~ o(Q)o(P) = o(QP). Therefore, it follows from PropOSJtlon 5.7
that index(R) = index(QP). So, it remains to show that index(QP) =
index(Q).

Lemma 5.11. P:C®(Z,E) — C®(Z,E) gives a bijective Real G-
vector bundle homomorphism.
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Proof of Lemma 5.11. For any y €Y, since P, is positive definite,
kernel(P,) = 0. So, we show that P, is surjective. Since P,: Hk_m(Z,E)y
— L*(Z,E), is elliptic, image(P,) is a closed subspace of L*¥Z,E), and
L*(Z,E), = image(P,) ® kernel(P;). Since P, is positive definite, it
follows that kernel(P;) = 0 and, for any v € C*(Z,E),, there exists
u € Hk_m(Z,E)y such that Py(u) = v. Then, it follows from the regu-
larity of the elliptic equation (cf. [4], Lemma (2.1)) that u € C°°(Z,E)y.
This completes the proof of Lemma 5.11.

Let L be a finite dimensional Real G-vector bundle over Y and let
T:L — C®(Z,F) be a Real G-vector bundle homomorphism such that the
map Wy:CW(Z,E)yéﬁLy — C'°°(Z,F')y given by ¥, (u,v) = Q,(u)+T(v)is
surjective for any y € Y. Then, it follows from Lemma 5.11 that the map
¢,:C®(Z,E)y® Ly — C*(Z,F), given by ®y(u,v) = QyPy(u)+ T(v)
is surjective for any y € Y. Hence, index(QP) = [Ker®] — [L]. On the
other hand, the restriction of P & l:C'°°(Z,E) @ L C®Z, E) & L gives
an isomorphism Ker® ~ Ker¥. Hence, index(QP) = [Ker?¥] — [L] =
index(Q). Proposition 5.10 has been proved.

Now, we define the analytical index. The well-definedness of the ana-
lytical index owes to the following lemmas.

Lemma 5.12. Let ¢:TprZ — Z be the projection. Let F (resp. F')
be a continuous Real G-vector bundle over TrZ (resp. TrZ x I). Then,

there exists a family E such that ¢"E (resp. ¢"E x I) is isomorphic to F
(resp. F').

Proof. Let i:Z — TrZ be the zero-section. Then, i-¢ is Gr-homo-
topic to the identity and F is isomorphic to ¢*(¢*F). On the other hand,
by Proposition 2.9, there exists a family E which is isomorphic to i*F,
and ¢qF is isomorphic to F. The result for F’ follows from the fact that
TrZ x {0} is a Gr-deformation retract of TpZ x 1.

Lemma 5.13. Let E and F' be families and let ¥:q* ExT — ¢*F x I
be a Real G-vector bundle homomorphism over TpZ x I which gives an
isomorphism outside Bg.Z x I. Then, ¥y = UlTpr{k} ¢ E — ¢*F gives
an isomorphism outside By Z for k = 0,1. Then, index(vg) = index(%1).

Proof. 1t is obvious that T.Z’m|Tpr{k} = ¥ for k& = 0,1, hence,
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Lemma 5.14. Let ¥:¢*E — ¢*F be a Real G-vector bundle isomor-
phism over TpZ. Then, index(¢) = 0.

Proof. By Proposition 5.10, index(%) = index(¥°) where ¥3(z,£) =
Yy(z,&/|€]) for any y € Y, 2 € Z, and 0# £ € To(Z,). Let Y x I
— Symb%(Z x I;E x I,F x I) be a continuous Gp-section given by
w(yt)(m €) = Py(z,t€/|€]) for t € I. Then, by the assumption, the image
of v is contained in 7s°. Hence, '1,u|y,<{0} ~ vly,({l} = 9% and index(¢°) =
1nde*<(1/)]yX{0}) We set "‘f’|Yx{D} = Y. Then, ¥,(z,£) = ¥y(z,0). So, let
f:E — F denote the 1somorphlsm given by the restriction of ¥ to the
zero-section Z, and let f': E — F be an approximation of f such that
the restriction f; = f| B, is smooth for any y and all Z,-derivatives are
continuous in the y-direction (cf. Lemma 2.6). Then, f’ naturally de-
fines f:C*(Z,E) — C°°(Z,F‘) which is a G g-section of P(Z; E, F) and
o(fl) ~ ¥, hence index(#) = index(f.). On the other hand, since there
exists the inverse f'~1, f! is clearly an isomorphism and index(f.) = 0.

Lemma 5.15. Let ¥4:q*Ey — q*Fx be a Real G-vector bundle
homomorphism which gives an isomorphism outside ByZ (k = 1, 2).
Then, a homomorphism v & 'z,'ﬁg:q*(E.H D E’z) — q"‘(Fl e Fg) is natu-
rally defined and v B 12 also gives an isomorphism outside BgZ. Then,
index (1 @ 1) = index(t1) + index(¢2).

Proof. Let Pi:Y — ENl™(Z; Ey, Fy) be a G.R.E.F. such that O'(Pk) ~
’l,bk (k— 1, 2) Then, a G.R.E.F. P, d Ps: Y—»Ell’"(Z E1$E2 F]@FQ)
is naturally defined and o(P; & P2) ~ (¥ & ¥2)™, and it is easy to see
that index(P; & P2) = index(P;) + index(Pz).

Now, let a be any element of K Rg(TFZ). Then, o can be expressed
by a triple as in (1], §2.6 and [10], §3. Namely, by Lemma 5.12, there exist
families E, F' and a Real G-vector bundle homomorphism :¢*E — g “F
which gives an isomorphism outside a compact Gg-subset K of TrZ such
that {v: q*E‘ — q"F"} represents . We may assume that A is contained
in B%Z.

Definition 5.16. The analytical index a-ind: KRg(TrZ)— KRg(Y)
is defined by a-ind(«a) = index(#).
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Remark 5.17. By Lemma 5.15, it is easy to see that a-ind is an
additive homomorphism.

We show that the definition of a-ind is well-defined. Suppose that
{¢':q"E’ — q*F'} also represents a where ¢ gives an isomorphism outside
a compact G p-subset of TrZ which is contained in the unit disk bundle
of TrZ. Note that the choice of a metric on Z may be changed and the
former unit disk bundle need not coincide with the latter. Then, by the
definition of the equivalence relation of triples and Lemma 5.12, there exist
triples {¢y:¢*Ey — q =}, {¢2: q *Ey — ¢*F3}, and a triple over TpZ x I
(=Tr(Zx1)) {¥:q* EsxI — q*F3xI} which have the following properties:

(1) ¢ and ¢, give isomorphisms over TrZ,

(2) ¥ gives an isomorphism outside a compact Gg-subset of TrZ x [
which is contained in the unit disk bundle of TrZ x I with respect
to a metric on Z x I which connects the metric on Z x {0} with
the metric on Z x {1},

(3) There exist isomorphisms f; and f2 such that the following dia-
gram is commutative,

. Pl zx (0} i
ks ———  ¢F
fll le
TEeqrE ek
(4) There exist isomorphisms f3 and f4 such that the following dia-
gram is commutative.

"z'lTFZx{l}
_—

q*E; g Fs

5| W

TE $qE, _v8d ¢ F & ¢ F
Then, it follows from Lemma 5.13 that index(¥@ ¢;) = index(¥'® ¢7).
Moreover, it follows from Lemma 5.14 and Lemma 5.15 that index(y &
#1) = index(®) and index(¥’ @ ¢2) = index(¥’), and the proof of the
well-definedness of a-ind is completed.

6. The excision axiom. Let X! and X? be closed smooth manifolds
and let Z! (resp. Z?) bean X! (resp. X?)-family over Y. Let N be the open
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manifold family over Y defined in §3. We assume that there exist open G-
embeddings along the fibers N — Z* which commute with the projection
onto Y for k = 1,2, namely, N, is embedded as an open submanifold of
Z’c for any y. Then, Te N is an open Gg-subset of TrZ* and the extension
homomorphlsms % KRg(TrN) — K Rg(TrZF) are defined for k = 1,2.

Proposition 6.1. The following diagram is commutative.

KRg(TrZ 1 )
i \g-ind
KRg(TrN) KRg(Y)
32 a-ind
KRg(TrZ 2 )

Proof. Let a be any element of K Rg(TrN). Let {¢:¢*E — ¢ F)
be a triple which represents o where q: Tr N — N is the projection. Then,
by the definition of K" Rg-group of locally compact spaces, we may assume
that there exists a compact G r-subset K of Tr N which has the following
properties:

(6.1.1) ¥ gives an isomorphism outside K,
(6.1.2) There exists a Real G-module V' such that

T E|lren_K % ¢ Flrpn_x — (TFN — K) x V (trivial).

Let A be a compact GRr-subset of N such that A° (= the interior
of A) contains K = g(K). Let : N — [0,1] be a GR-invariant continuous
function such that n|xy_4o = 1 and |z = 0. Let Piq*Ex T — q “FxIbea
Real G-vector bundle homomorphism over TrN x I given by v, y(z.£) =
Py(z, (1=n(y. 2)+in(y,z))€) for any (y,1) € Y X I, (y,z) € N (i.e.z € Ny)
and £ € Tz(Ny). Then, 1 gives an isomorphism outside K x I. In fact,
if gﬁ(y’t)(x,f) is not an isomorphism, (y,z,(1 — n(y,z) + tn(y,z))§) € K.
Hence, it follows that (y,z) € K, n(y.z) = 0 and (y,z,€) € K. Since
it is obvious that 'J)ITF]VX{I} = 9, a can be represented by {x:¢"E —

q*F} where x = vlTFNx{Q} It is obvious that x,(z,£) coincides with the
isomorphism ¥y (z,0): E(y z) = F(y z) for any (y,z) € N — A° (cf. (6.1.1)).
Let B be a compact Gr-subset of N such that B° contains A. It follows
from (6.1.2) that there exists an isomorphism p: F|g_40 — (B — A°) x V.
Weset v = p-f: E|g_40 — (B—A°)xV where f denotes the restriction of x
(or ¢) to N—A°. Then, by the clutching construction using u and v, we can



THE ATIYAH-SINGER INDEX THEOREM 167

construct an extension E* (resp. F¥) of E (resp. F) to Z* — B (k=1,2).
Moreover, there exists an isomorphism f*: E¥|zi_ 4o — FF|zx_ 4. such
that f¥|g_40 = f. Note that we may assume that E¥ and F* are families,
f* is smooth in the Z,-direction for any y and all Z,-derivatives of f*
ate continuous in the y-direction. Let f¥:C>®(Z* — A° E¥) - C>(ZF -
A° F¥) denote the Gg-section of PO(Z* — A°, E*, F*) which is naturally
defined by f* (k = 1,2). Then, since xy(z,€) = f*(y.z) for any £ and
(y,2) € B — A°, o(f¥) coincides with y on ¢ (B — A°). Hence, we
can construct a homomorphism x*:¢**E¥ — ¢k F* over TpZ*F (where
¢*:TrZ* — Z* is the projection) which has the following properties (k =
1,2):

(6.1.3) x* (or (x¥)°) coincides with o(f¥) on TrZ* — ¢=1(4°),
(6.1.4) Y* coincides with x on ¢~!(B),
(6.1.5) \* gives an isomorphism outside the unit disk bundle of TrZ*.

Then, j¥(a) is represented by the triple {y*:¢** EF — ¥+ F¥},

Now, let P*:Y — EI]O(Zk;E-k,F'k) be a G.R.E.F. of order 0 such
that |[o(P*) — (x*)°|| < € for sufficiently small € > 0 (k = 1,2). Let
v: Z¥ — [0,1] be a Gg-invariant function such that 7 is smooth in the Z,-
direction for any y, all Z,-derivatives of y are continuous in the y-direction,
v|la =1 and y|zx_go = 0. Let R*:Y — PY(ZF; E*, F¥) be a Gp-section
given by R’;(u) = (f5),((1 = v»)u) + v(P! + P?)y(yu)/2 for any y and
u € C®(Z*, E*),. Then, o(R*) = o(f£)(1-7%)+o( P )y /2+0(P?)y? /2.
Hence, it follows that

lo(R*) = ()l = llo(RF) = (x*)°(1 = +%) = ()%
< l(o(£) ~ (41~ 72
+ 5 I0(PY) = P12 + 5 1o (P) ~ (P

for & = 1,2. Since, supp(y?) C B, it follows from (6.1.4) that (x!)°42 =
(x*)%4%. Hence, it follows that ||(e(P?) — (x*)°)¥?|| < € for i,k = 1,2.
Moreover, it follows from (6.1.3) that o( f¥)(1-92) = (x¥)°(1—~?). Hence,
it follows that [lo(R¥) — (x*¥)°]] < e. Therefore, we may assume that
the image of o(R¥) is contained in Is° and R* is a G.R.E.F., moreover,
a-ind(j¥(a)) = index(R*) for k = 1,2.

Let C{(E) (resp. CF(F)) denote the Fréchet subbundle of
C®(Z*, E*) (resp. C°(Z*, F*)) which consists of smooth sections whose
supports are contained in B. Since Rl; gives an isomorphism outside B, it
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is easy to see that cokernel(R¥) (= kernel(R%+)) is contained in CE(F),
for any y. Hence, in the proof of Lemma 4.2, we can set I' to be the
Fréchet space of continuous sections 4:Y — C§(F'). Therefore, it follows
that there exist a finite dimensional Real G-vector bundle L over Y and a
Real G-vector bundle homomorphism T: L — C§(F) such that the map
Qk:C(Z*, E*)y & Ly — C(Z*, FF¥), given by Q¥(u,v) = RE(u) + T(v)
is surjective for any y and k = 1,2. Note that, since cokernel(R}) =
cokernel(Rg) for any y, L and T can be taken independently of £ = 1,2.
Let (u,v) be any element of kernel(Q'y‘). Then, from the definition of R’;, it
follows that — f*((1—9?)u) = (P + P*)(yu)/2+ T(v). Since the support
of the right term is contained in B and f* gives an isomorphism outside
A°, it follows that the support of u is contained in B (k = 1,2). Hence,
kernel(Q’yc) is determined by the restriction of Q; to C'?(E) & L and it
follows that kerneI(Q;) = kernel(Qg) for any y. Therefore, it follows that
a-ind(j}(a)) = index(R!) = [Ker Q'] -[L] = [Ker Q?]—[L] = index(R?) =
a-ind (j2(a).

7. The normalization axiom. Let V be the real Gr-module in §3.
Let S denote the one point compactification of V. § is a compact Gg-
manifold which is diffeomorphic to the sphere. Let j:Y = Y x{o} — ¥ xV
denote the canonical inclusion and let ji: K Rg(Y) — K Rg(Y XTV) be the
periodicity isomorphism (cf. §3). Let ku: KRg(Y xTV) — KRg(Y xTS)
denote the extension homomorphism of the open inclusion ¥ x TV =
Ter(Y xV)—=Y xTS =Tr(Y x 5).

Proposition 7.1. e-ind(k.ji()) = a for any a € K Rg(Y).

Proof. Let i:{o} — V be the inclusion of the origin and let :V — §
be the open inclusion. Then, it follows from [3], p.501, (A.1) and (A.2) that
Kg(point) 3 a-ind(Li(3)) = a-ind((I-¢):(3)) = 5 for any 3 € K¢(point).
Hence, the following diagram is commutative

KRg(TS)
a-ind/ l ing
KRg(point) Kg(TS) K Rg(point)
Fl a-ind/ Nc’iz lF

K¢(point) K¢g(point)

identity

where vertical arrows denote the forgetting maps. Then, since F' is known
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to be injective, it follows that
(7.1.1) KRg(point) 3 a-ind(l.i(y)) = for any v € K Rg(point).

Let ET:KRg(Y)® KRg(TV) — KRg(Y x TV) denote the exter-
nal tensor product (where @ denotes the tensor product as K Rg(point)-
modules) and let A7y € K Rg(T'V') denote the Thom class of TV — point.
Then, it is easy to see that ET(3 ® Arv) = ji(3) for any 8 € KRs(Y).
Namely, the following diagram is commutative,

KRg(Y)® K Rg(point) 1—2—» KRg(Y)® KRg(TV)
(7.1.2) || ' BT |
KRg(Y) —=  KRg(Y xTV)
n

In particular, £T is also an isomorphism.

Now, let 4 be any element of K’ Rg(T'5). Let E and F be Real G-vector
bundles over S and let Q: C*°(S, E) — C*(S, F) be a G-equivariant Real
elliptic operator of order m such that o(Q) represents 4. Let M be any
Real G-vector bundle over Y. Then, since C*(Y x S, M ® F) is naturally
isomorphic to M ® C>(S, E) as a Fréchet bundle over Y (where ® denotes
the external tensor product). there exists a G.R.E.F. P =1Q Q:Y —
Ell"™(Y xS; MRE, M®F) such that ¢(P) = 1®0(Q) represents ET(M ®7)
where ET denotes the external tensor product K Rg(Y) ® KRg(TS) —
KRa(Y x TS). Since the map

$,: C(Y xS, M RE), (M, ®kernel(Q™))
. C®(Y x S. MR F),

given by &,(u,v) = Py(u) + v is clearly surjective and kernel(®,) =
kernel( P,) = M, ® kernel(Q) for any y, it follows that

Il

a-ind(ET(M ® 7)) = index(P)
M ® (kernel(Q) — kernel(Q*))

M @ a-ind (7).

(7.1.3)

Il

Note that, in particular, a-ind is a K Rg(point)-module homomorphism.
It follows from (7.1.1), (7.1.2) and (7.1.3) that the following diagram
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is commutative.

K Rg(Y xTV)

SET!

K Ra(Y)®K Rg(TV)

ko

8L,/
KRG(YXTS)EL K Rg(Y)®K Ra(TS) 1@ i
1@a-ind\,

K Rg(Y)® K Rg(point)

K Ra(Y)

8. The multiplicative axiom. Let Z, V and N be as in §3. Let
O(N) denote the orthonormal frame bundle of N. O(N) is a right O(n)
(where n is the fiber dimension of N) and left Gr-space. We define a family
DoverY by D = O(N)X0o(n)S™ where S™ is the one point compactification
of R™ with the trivial Ggr-action. Then, there exists a Gr-embedding

1: Z = O(N') X0(n) {0} — N = 0(1\7) X0(n) R"
— D = O(.N) X0(n) s

and i: KRG(TpZ) — KRg(Tr D) is defined just as in §1 and §3.

Proposition 8.1. The following diagram is commutative.

KRa(TrZ) i K Rg(TrD)

a-ind\. ‘/a-ind

I\"RG(Y)

We first recall the expression of iy by the local external product ac-
cording to [3] and [4].

Let Tr(D/Z) denote the Real G-vector bundle over D defined by
Tr(D/Z) = O(N) Xo(n) TS™. Then, TrD decomposes into horizontal
and vertical parts with respect to a Gr-invariant metric on D as TrD =
p*TrZ & Tp(D/Z) where p: D — Z denotes the projection. Let d: TpD =
p*TrZ & Trp(D/Z) — p"TrZ x Tr(D/Z) denote the canonical inclusion,
p:p*TrZ — TpZ the proper Gr-map given by the restriction of p.,
r:O(N) x TS®™ — TS™ the projection and j:{o} — S™ the canonical
embedding. Let 1 denote the unit element of K Rgyxo(n)(point) where the
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involution of O(n) is trivial. Then, r*5(1) (= 7*5(1)/O0(n)) is an element
of KRgyom)(O(N) x TS") = KRG(Tr(D/Z)). Let ¢: KRg(TrZ) —
KRg(TrD) denote the homomorphism given by é(a) = d*(p*a ® r*j(1))
where ® denotes the external tensor product on p*TrZ X Tr(D/Z). Then,
¢ coincides with 7, (cf. [3], §4 and [4], §4).

Lemma 8.2. There exists a Gx O(n)-equivariant Real elliptic opera-
tor of order 1 B:C*(S™, Fp) — C*®(S™, F1) (where Fy and F\ are smooth
Real G x O(n)-vector bundle over S™) such that the following (1) and (2)
are satisfied.

(1) {o(B):q5Fo — q;F1} represents ji(1) where gs:TS™ — S™ de-
notes the projection.

(2) kernel(B*) = 0 and kernel(B) is one dimensional trivial Real G X
O(n)-module.

Proof. It follows from Proposition 7.1 that a-ind(ji(1)) = 1 €
K Rgxo(n)(point). Hence, Lemma 8.2 follows from the same argument
as in (4], Lemma (4.1).

Let F be a Real G x O(n)-vector bundle over S™ and let E be a Real
G-vector bundle over Z. We define a Real G-vector bundle E®; F over D
by ER, F = p*E @ ((F"F)/O(n)) where 7:O(N) x §* — 5" denotes the
projection and we call E®; F the local external tensor product. Note that,
if D is the trivial fiber bundle Z X S™, then the local external tensor product
coincides with the ordinary external tensor product. Note moreover that,
if E is a family and F is smooth, then ER) Fis also a family.

Let gqp:TrD — D denote the projection and let ip: D — TrD and
i5:5™ — TS™ denote zero-sections. Let v:TpD — Tr(D/Z) denote the
vertical projection and let p.:TrD — TpZ be the differential of p. Then,
it follows that

aH(E® F) = qpp E ® ¢p((F*F)/O(n))
= (p)"¢"E ® qp((Fi595F)/0(n))
(8.3) = (p.)"¢"E ® gpipr*((r*q3F)/O(n))
= (p)"¢"E ® v*((r*¢5F)/O(n))
= d*{p*¢* ER ((r*q5F)/O(n))}.

Now, since o(B) in Lemma 8.2 is O(n)-equivariant, a Real G-vector
bundle homomorphism &(B):¢h(E & Fo) — ¢p(E B Fy) is defined by
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a(B) = 1y e ® v*((r*o(B))/O(n)). Note that, if D is trivial, then
&(B) coincides with the natural lift of o(B).

Let o be any element of K Rg(TrZ) which is represented by the
triple {¢:q"Eq — ¢*E;}. Note that ¢ is clearly Gr-homotopic to %!
(cf. Definition 5.8) through homomorphisms which give isomorphisms
outside a compact set. Hence, v is equivalent to ¢! (cf. §5) and we
may assume that 1 is homogeneous of degree 1. Then, it follows from
Lemma 8.2, (1) and the definition of @ that ¢(a) is represented by the
triple {Ll'/:q;)(f?g R Fo ® B & R)— q"‘D(El ®; Fo @ Eq & F1)} where

W=( b -3(B)

} - ) (* denotes the adjoint)
a(B) "

and ¥ = (p.)*® ® 1. Since, ¢ coincides with iy, it suffices for the proof of
Proposition 8.1 to show that index(#) = index(¥).

Now, let {U}} be a finite open covering of Y and let {(Jj(} be a
finite open covering of X. We may assume that Z is trivial over each
U{ and D is trivial over each U = U}, x Ug( C Z. Let {u?} be a
smooth partition of unity subordinate to {Ug(} and let {v;} be a continuous
partition of unity subordinate to {Uj }. Let A:Y — EllY(Z; Ey, E1) be a
G.R.E.F. such that o(A’) ~ 3. We set A;j = vi(y)(pjAypj). Since D D
p~ Y (U¥) = U9 x S™, (ER F)|,-1 isy = (Elyss)B F and the lifted operator
AiJ € PH(D; Eo®y Fy, E1 & Fy)y is defined (cf. [3], (5.4)). We define a Gg-
section A:){ — PYD; Eo & Fo, By 8 Fo) by Ay = [g,9(X:;AY)dg.
Note that A is not in general an elliptic family. We define a Gg-section
A:Y — PUZ; Eo, Er) by Ay = [, 9(T;; A¥)dg. Then,

o) = [ g(Soah)dg= [ o(Sunle(4)) dg
Gr ‘i Gr ‘i
=/ g-o(A)dg = o(4A").
Gr
Hence, A is a G.R.E.F. and o(A) ~ ¥. Moreover,
o(A :f g-( S 0(A)) dg
()= (M ))

:/ o(T5(4%)) dg (cf. [3], (5.4))

Gr 1ij

B (/ 7 (5ot dg) = 5(4) = (p)"o(4) ® L.

Gr 1i,j
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Since, B is O(n)-equivariant, by restricting the lifted operator of B on
O(I\') x S™, an operator B, over O(N), Xo(m) S™ = Dy is defined. Then,
B, is the lifted operator of B on p_l(U’J)ﬂD and O'(B) = 6(B). Now, we
deﬁne a Gr-section P:Y — PY(D; EoR Fo® By R Fy, B\ R Fo ® Eo®) Fy)
by

Lemma 8.4. (1) P isa G.R.E.F..
(2) o(P) ~ ¥. In particular, index(¥) = index(P).

Proof. (1) Let (£,n) be any element of T'(Dy) = pT(Z,)®T(Dy [ Zy)
and (u,v) € ¢p(Eo & Fo @ Ey & Fl)(m). We assume that

a(PYEn)(ud v)

= (6(A)(&)(n) — a(B)(n) () ® (6(B)(n)(u) + 6(A)(£)(v))
= 0.

Then, since d(A) commutes with &(B), it follows that

5(A)(€)-a(A)(€)"(v) + a(B)(n)-6(B)(n)"(v) = 0.

Hence, it follows that v = 0 or both of 6(A)(£)* and 6(B)(n)" are degen-
erate, namely, both of o(A)(£) and o(B)(7n) are degenerate. Therefore, it
follows that » = 0 or £ = 1 = 0, since A and B are elliptic. Moreover,
it follows from the same argument that ¥ = 0 or £ = = 0. Hence, it
follows that o(P)(€,n) is non-degenerate outside the zero-section and P is
elliptic.

(2) Since o(A) ~ 1, there exists a Gr-section x:Y x I — Is}(Z x I;
Eq x I,Ey x I) such that xo (= Xlyx{o))= 0(A) and x1 = %. Then, it
follows from the same argument as in (1) that

(3O e
a(B)(n) x+(€)”

is non-degenerate for any (£,7) # 0 and any t € I. Since, &y = o(P) and
&, = ¥, it follows that o(P) ~ ¥

Since index(®) = index(A), it suffices for the proof of Proposition 8.1
to show that index(A) = index(P).
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Now, let 3 be a generator of kernel(B) which is the one dimensional
trivial Real G x O(n)-module (cf. Lemma 8.2, (2)) and we define a homo-
morphism f:C®(Z, E) — C®(D, E® Fy) by f,(u)(z,8) = u(z)®3(8) for
u € C®(Z,E), and (z,6) € Z, x S™ where Z, x S™ is identified with D,
locally. Since 8 € C*®(S", Fp) is Gr x O(n)-equivariant, it is easy to see
that fis a well-defined injective Real G-vector bundle homomorphism and
A(f(w)) = f(A(n)) (i.e. A(u® B) = A(u) ® 3). Let L be a finite dimen-
sional Real G-vector bundle over Y and let T: L — C*(Z, E;) be a Real
G-vector bundle homomorphism such that the map Q,: C®(Z, Eq),®L, —
C=(Z, Ey), given by Q,(u,v) = Ay(u) + T(v) is surjective for any y.

Lemma 8.5. (1) The map Ry:Cm(D,E'o &, Fod By R, Ry,eL,—
C®(D,E,® Fy & Eo R, Fy), given by Ry(u,v) = P,(u) + (f-T(v) B 0) is
surjective for any y.

(2) Let h:C®(Z,Eq)® L — C®(D, EyR Fo® Ey R Fy)® L be a Real
G -vector bundle homomorphism given by h(u,v) = (f(u) & 0,v). Then,
the restriction of h gives an isomorphism Ker@ ~ KerR.

It follows from Lemma 8.5 that index(A) = index(P) and the proof of
Proposition 8.1 is completed. In order to prove Lemma 8.5, we need the
following simple lemma.

Lemma 8.6. (1) kernel(B;) =0 for any y.
(2) For any i € kernel(B,), there exists an element u € C®(Z, E),
such that @ = u ® 8, namely, @ = f,(u).

Proof. (1) Let & = 3, u'i(z,0)e;(z) ® f;(8) be any element of
kernel(B;) where {e;:Z, — E,}; are local basis of E, and {f;: 5" —
F1}; are local basis of Fy. Then, it follows that B;(ﬂ) = Y {ei(z) ®
B*(¥; u¥(z,0)f;(8))} = 0. Since kernel(B*) = 0 (cf. Lemma 8.2), it
follows that . u*(z,8)f;(#) = 0 and u™(z,f) = 0 for any ¢,j.

(2) Let @t = 3>; ; u¥(z,8)ei(z) ® f;(#) be any element of kernel(B,).
Then, it follows that By (@) = ¥_;{ei(z)® B(¥; u"(z,8)f;(6))} = 0. Since
kernel( B) is generated by g, it follows that there exists a smooth function
w'(z) such that > u(z,0)f;(8) = wi(z)B(0). Hence, it follows that
i = {5, vi(2)ei(2)} © B(8).

Proof of Lemma 8.5. (1) We first recall the construction of A. Ttis
clear that A¥ commutes with B. Moreover, since B is Gr-equivariant, B
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commutes with the averaging over Gg. Hence, it follows that A commutes
with B. Therefore, it follows that

cokernel(P,) = kernel(P;) = kernel( P, Py)
AA* + BB 0
:kernel(yy+ vuy L. ,-)
0 B, B + AjA,
= (kernel(A3)) N (kernel(B,)) & (kernel(B;)) N (kernel(4,)).
Hence, it follows from Lemma 8.6 that, for any element @ of cokernel (Fy),
there exists u € C*(Z, Ey)y such that @ = u® 3&0. Now, it follows from

the assumption that there exist ' € C*(Z, Ep), and v € L, such that
u = Ay(u') + T(v). Hence, it follows that

@ = (A(e) @B+ T(x)®8) B0 = (4,(v'®B) + fT(2) B0
=P @B8H0)+ (fT(»)$0)=Ry(v' @ B8 0,v).
Therefore, it follows that R, is surjective.
(2) Let (u,v) be any element of kernel(Q,). Then, it follows that
Ry(h(u,v)) = P(u® 88 0)+T(»)®830
= (Ay(u ® B) 8 0) + (T(v) ® 3 & 0)
= (Ay() +T(x)) ® &0 = 0.
Hence, it follows that h(Ker@) is contained in KerR. On the other hand,
let (u; & ug,v) be any element of kernel(R,). Then, it follows that
Py(w1 @ uz) + (f-T(v) 3 0)
= (Ay(ul) - B;(’u,z) + T(U) ® 13) 1] (By(ul) + A;(UQ)) =0.
Hence, it follows that
Ay(B,(w1) + Aj(u2)) — B,(A,(w1) — Bj(u2) + T(v) ® B)
= A, A (uz) + B,Bj(u2) = 0

and, hence, B;(ug) = 0. Therefore, it follows from Lemma 8.6 that u; = 0.
Moreover, it follows that

A (A (u1) = By(u2) + T(v)® B) + By(B,(w1) + A} (u2))
= AZA (w) + B} B,(v1) + A3(T(v) ® B) = 0.
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Hence,

B;B(A3A,(w1)+ By B,(w) + A3(T(v) ® 8))
= ByA A, B (u1) + ByB, B B, (u1) = 0

and, hence, B;By(ul) = 0. Therefore, it follows that By(ul) = 0 and
there exists an element u of C*(Z, Ey), such that u; = u ® 3. Moreover,
it follows that

(Ay(w) + T(v)) ® B = A (w1) - Bj(uz) + T(v) ® 8 = 0.
Hence, it follows that (u,v) € kernel(@,) and h:KerQ — KerR is surjec-
tive. Since, f is injective, it follows that h gives an isomorphism.
9. The proof of the index theorem.
Theorem 9.1. a-ind = t-ind: KRg(TrZ) — KRg(Y).

Proof. We consider the following diagram where the notation is as
in §6, §7 and §8.

KR(TrZ) ("1!) y KRG(Y xTV)

K RG(TFJV ) ke

S N

K Rg(TrD) KRa(YXTS)
@ (5)

a-ind a-ind  a-ind

KRg(Y)

The commutativities of (1), (2) and (3) are obvious. The commu-
tativities of (4), (5) and (6) follow from Proposition 6.1, Proposition 7.1
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and Proposition 8.1, respectively. Hence, it follows that ¢-ind = jl_l-i! =
a-ind: KRG(TrZ) — K Rg(Y). This completes the proof.

I would like to thank the late professor Masahisa Adachi for giving
me the opportunity to study the Atiyah-Singer theory, professor Atsumi
Hamasaki for showing me Remark 2.8, professor Takao Matsumoto for
giving me the important advice for the proof of Proposition 3.1, professor
Goro Nishida for suggesting me the problem of this paper, and especially
professor Akira Kono for suggesting me the problem of this paper and
giving me many valuable instructions.
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