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Dedicated to Professor Yasutoshi Nomura on his 60th birthday

Juno MUKAI

Introduction. The present note may be regarded as a continu-
ation of [13]. The notation and results of [13] are used freely here.
Let g,:CP*"! — §-1 be the S'-transfer map and set B, = Im{g,,:
75 (CP"™ 1) = xJ(8%) for k<2n—1}. Let p be a prime number. We
denote by 7,(X;p) the p-primary components of 74(X). The purpose of
this note is to prove the following

Theorem. i) my5(CP;2) X Zsy @ Z,.
i) 75(CP:2)~ 2,8 2, % 2.
iii) Bag = 275,(S5%) and By = 73,(S°).

The result i) was already obtained by Mosher in [10]. The result iii)
shows that the element & € 73,(5°) given in [6] is not in the image of the
S1-transfer.

The author wishes to thank M. Imaoka, M. Mimura and K. Morisugi
for useful conversations and kind advices.

1. Some homotopy groups of Q,. We denote by 7k € (i,n, k)
a coextension of nk. By making use of (6)n = (6)r.19 of [13] for n = 1,
we have 775 (CP?) = Zugo{(2p} ® Za{7K}, where 27k € —i(n, 7K, 2t) 3 vk
mod 0 and 240(2p € —i{n,2¢,240p) 3 iiz mod 0.

In (6)2, we have y20% = 2ivo? = 0, 726 = 2ivk = 0 and Y2015, = 0.
So we have m35(CP3) = Zgo{il2p} & Za{ink} @& Z3{a18}, where a; €
(t,7y2,a1) is a coextension of a;.

In (6)3 and in the 2-primary components, we have y3( € —i(y2,7,{) D
+iv(2,,m,() 3 0 modi.nf(CP%2)o¢ = {iv¢} = 0 ([11]). For i €
—i{n,v,{) > 0 mod inp = 0. Let Ce (1,73,() be a coextension of (. Then
we have 8¢ € —i(73,(,8t) and 2(73,(,8¢) C (293,(,8t) = (+i(ov,(,8) D
+i(o(v,(,8t) 3 *4ilop ([4]) mod873H(CP3) = {8i(zp}. So we have
(713:¢,8t) 3 2i¢2p mod {4i(2p, ivk}. Applying g4: CP3 — S~ to this rela-
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tion, we have g4(i(2p) = g3lop € T5(5%0p = 0, g4(ivk) = v2k = 4% and
94(73,(,8t) = —{g4,73,() 0 8 C 875,(5°) = 0 ([6]). Therefore we have
(73,{,8t) 3 2i¢yp mod 4i(yp and 8C = +2i(ap.

In the 3-primary components, 8yza} = :l:4icgala;’3 = 0, where af
is a generator of 77,(S%) = Zy ([14]). So, for af € (i,73,a}), we
have 92{; € —i(y3,0%,9). 8(v3,a5,9) C 4(fi(ra1,03,3t) O Fi(eay
mod 373,(CP3;3) = 0 by (13.8) and (13.11) of [14]. Therefore (;f; is of
order 27. We denote by o} and a; generators of 77,(S%:7) = Z7 and
T35(5%:5) = Zs, respectively.

By summarizing the above argument, we have the following

Proposition 1.1. mio(CPY) = leg{C}aBZg{?Cgp:i:4C}éBZ4{nm}€B
Zor{aly} ® Zs{iCaca} B Zr{c!}, where o, € (i,93,}) and 64( =

Hereafter we shall work in the 2-primary components, unless otherwise
stated.

First we determine 73 (Q,) for k¥ = 19 and 20 and n < 5.

Lemma 1.2. i) 735(Q2) = Zo{inx} ® Z2{inp}, where wap = inp.

ii) 135(Q2) = Ze{ivk}® Zo{inn*}® Za{in’ p} & Zo (i}, where wanu =
in’p.

iii) 175(Q3) = Z2{67} & Za{in*}.

iv) T5(Q4) = 75(Q3), where wyn = i6n modin* and Tie(Qs) =
Z & Zy{in*}.

v) 130(Q3) = Z4{7E} & Zo{on*} ® Zo{inm+} @ Za{ifi}, where ME €
{(#,w2,m€) and 2nE = ivk.

vi) 750(Q4) = 13(Q3) and 75y(Qs) = Za{iE} & Za{inm} & Zo{in}-

Proof. Obviously i.:mg(53) — 73(Q2) is an isomorphism for k =
19 and 20. By Lemma 4.2 of [13], we have wap € wy(n,80,2t) C
(W, 80, 20) = (i€, 80,2¢) D i(e,80,2t) 3 inp mod wanms (S9)+2756(Q2) =
0. This leads us toi) and ii). We recall the element & € (i,w2,0) C 7{3(Q@3)
([13]). By Lemmas 4.1 and 4.2 of [13], we have wse = ink. So, i) im-
plies iii). The first half of iv) is trivial. By making use of Proposition 2.4
and Example 2.2 of [7], we have w7 = iom, where wj is w4 followed by
the projection Q4 — Q31 = Q4/Q2. So we have wyn = idn modin*.
This leads us to iv). Since wope = ic? = 0, we have a coextension
M € (i,ws, M) C m5(Q3) of ne. Here 27 € —i'{wo, e, 2t) D ¥'(ie,e,2t) D
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i{e,€,20) 3 ivk mod 2i,75(Q2) = 0. For (g,e,2) = (¢,(v?,2¢,7),24) =
{{e.v?,20),m,20) + (e,v2,(2t,m,2¢)) = (pK,m,20) + (e,v%,m%) 3 vk + 0
mod e75 (S5%) + 775(S%)on? = {n?p}. So, ii) implies v). Since wsr? = 0
by Lemma 1.2 of [13], we have the first half of vi). By iv), we have
w4n? = i6n* mod inn* and hence the second half of vi). This completes
the proof.

We recall the canonical map h,:CP?***! — HP" [13] and we set
vl = o (H): $**3 — HP™ and p), = p,(H): HP™ — S*". By (5) of [13],

we have an exact sequence

tn. S —_ hn— * S —_ fn— -
Wgo(Qn) — Wlbg(CPh 1 T 71'i"g(HPn 1) -

WfQ(Qn) —

(*)n

. Lemma 1.3. i) tange = =ink + vs¢ modii and tg‘ﬂ'go(Qg) =
Zy{ink + vse} & Zo{ysno} © Z2{if}.
i) th,m5,(Qx) = Za{ink} ® Z{ifi} for k = 4 and 5.

Proof. We recall the element 6” = t36. By Lemma 1.2 and (*)2, we
have the relations {3612 = & 7%, t3(inn*) = 0, t3(in*p) = 0 and t3(ifg) =
ifi. By Proposition 4.18 of [13], " %* = ~s0n modinyx = 0. So we
have t3,75,(Q3) = {taME.ysno,iii}. Since ho(ink) = ipenk = insx and
hoyse = vhe € —i(v,2v,e) 3 ink mod 0, we have ifk + 75¢ € t3,T5,(Q3)
by (*)3. Applying ps: CP® — S0 to this relation, we obtain ik + ys¢ €
{ts7E,iji}. Hence, by the relation 237 = ivk = 2inK, we have i). By i)
and Lemma 1.2, we have ii). This completes the proof.

In (6)4, we have the relations y4u = itawou = inp = 0 and y4np = 0
by Lemma 1.2. Let 2 € (7,74.4) be a coextension of p. Then we have the
following

Proposition 1.4. 75,(CP%) = Zy2e{i{} ® Z4{j1 £ 2i(} & Z4{i7k} &
Zy{vsno} ® Za{yse}-

Proof. We have 2j1 € —i(v4, i,2t) D i{taws, p,2t) and (tawe, pu,2t) C
(t2,inp,2t) D (t2,im,2thop D (i,m,2u)0p D i(ep modiy, T5e(Q2) +
2n55(CP3) = 2775(CP®) by Lemma 1.2. So we have 2ji = i(yp
mod 2i.775(CP?). Therefore, by a suitable choice of ji, we have 2ji = i(yp
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and 2(g £ 2iC) = iCyp £ 4iC. Hence, by Proposition 1.1, we have the
proposition. This completes the proof.

2. Determination of n3;( HP™;2). To determine the group ex-
tension of 7j,(CP®), we shall examine w3,( HP™) for n < 5. We set
¢’ = hyi(. Then we have pQC ¢ and 8¢ = +2hei(p = F4ip. So
we have 775( HP?) = Z4{C'} @ Za{ip £ 2('} & Zo{ink}. We set HP} =
HP"/HP*=1. Since HP§ = 5%y, €!? = £°Q; and (2v,0,161) > 2z(
for an odd integer z ([14]), we have 73,( HP3) = Zs4 {5} & Z,{zi( + 85},
where & = £%§3 for 613 € {i,2v10,013}. We also have n5,(HP;) =
Zy{on} & Z2{¢}, where ¢ € (i,2v,¢).

We set 7, = I 55, for oy € {vs,2vs,p"}, where p’ = T-1p"
Y 'HP? — SY is the collapsing map. We recall that SHP? =
55U,;; C(HP3). Since 7,613 € {v7,2v10,013} C 721(87) = {0’014,K7}
([14]), we have 5’6 = 0 or k. On the other hand, #'é € (v,2v,0) 3 0
mod o2. So we have 7' = 0 and we can define an element &' € (i,7',5) C
T3 HP?) as a coextension of .

Lemma 2.1. 7jy(HP®) = Z64{5’} & Zﬁ4{7f}o

Proof. Let M™ = §™"1J,, _ €™ be a Moore space. Since 2v5 = 7576
and 7lgo2us € {26, 76,207 org = indvg = 0, we can take Dy so that
205 = M58 + ac™p’. Here 8 = 7 € {is,2vs,p"} C [HP3,M7] is an
extension of s and @ = 0 or 1. Now we have 645 € —i(9',5,64¢) and
86 € (7,2v,0) C i.75,(8') = 0. So we have 2(i',5,64:) C (73,5,64t) +
(8acp',&,64t) D 7(3,5,64t) mod iBr5,( HP3) + 64m55(S°) = 0. For
(8aop’.5,64t) C (Bao,0,64:) C (8ao,20,32:) D 32a{c,20,8:) = 0 mod0
and 78n5,(HP3) = 2(#' + 4aop')om5y(HP3) = 0. We have (3,5.64:) C
m35(M?) = {io?,ix} and so 7(3,5,64t) > 0 mod {nk} + 7875 (HP}) =
{nk}. Since nx is not divisible by 2, we have 2(7',5,64¢) 3> 0 mod 0 and
1285" = 0. Now we consider an exact sequence associated with 7':

ma(HPS) 25 n5y(SY) =5 niy( HP?) 25 niy(HP)) =

We have 7' 017 =0,7'¢ € (v,2v, 6) > 1K mod 0 and p(zi{ +85") = zi( +85.
Since 1285' = 0, we have 16(zi(’ -I—SU )= 16:1:1( = +8zip. Thus we deduce
that zi(' + 85 is of order 64, 2(ziC + 85 ) = yip for an odd integer y and
&' is of order 64. This completes the proof.
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By Proposition 4.18 of [13], we have f(ys0) = 2. Here ja stands for
the order of a. Let 20 € {i,7s,20) C w{(CP®) be a coextension of 20.

Lemma 2.2. hy,755(CP®) = x3,( HP?) and hzi2c = 25" for a suil-
able choice of 20.

Proof. By Proposition 4.18 of [13], we have t36n = 6 n # 0 and
tainx = ink # 0 in 733(CP?). So, by Lemma 1.2, t3,: 75(Q3) — 7is(CP%)
is monomorphic and hence we have the first half by (*)3. Since p3h3ié; =
20 = py(26"), we have hzi2c = 26 mod i, wy( HP?) = i’ hy, 75(CP%) =
ha,i.m3%(CP®). So there exists an element a € wP5(CP®) such that
hs(i(20 + ia)) = 26". So, by a suitable choice of 20, we have the sec-
ond half. This completes the proof.

Lemma 2.3. i) 2y; = ail' + 2bi5" for odd integers a and b.

ii) The element Y4v is of order 4 and ni,( HPY) = Zis{7,} ®
Zss{i5'}.

iii) w3 (HP%) = Ze4{i5'}.

Proof. We recall that v} is of order 128 ([12]) and that pjy} = 4v. So,
by Lemma 2.1, we have 2y} = ai(' + big', where a or b is odd. Therefore
we have 2y} = ai( + bid, where v} is 7} followed by the projection HP* —
HP}. Since v7 is of order 64 ([1]), we have 32y] = 16bi5 and b = 2} for
an odd integer b’. Hence a is odd. This leads us to i).

Obviously we have mig( HP?) = Z3{i0?} ® Z{ix} ® Zo{# pn}, where
7 € {,v, n) C n5 (HP?). Since v4 € (i,v,2v), v4v € —i{v,2v,v) = 0 and
¥4 € {(i,74, v}, we have 2v4v € —i{y, v, 2v) = —i{v,2v,v,2v) 3 ik mod ic?
([4], [6]). Here {(v,2v,v,2v) is a tertial composition ([4]). So we have the
first half of ii). i) and Lemma 2.1 imply the second half of ii), which implies
directly iii). This completes the proof.

Remark. The result iii) of Lemma 2.3 does not coincide with that
of Theorem 5.3 of [3] which asserts that 775( HP) = Z3; & Z,.

Proposition 2 4. 75(CP") = n{y(CP®) = Zlgg{ZC} &) Z32{20 18

Z4{ink}, where % =2 + 2bi with b = 0 or 1 and 8% = i(f1 £ 2i)
mod {32iC, 7k }.

Proof. In (6)s, we have y6v? = itaw3r? = 0 by Lemma 1.2 of [13].
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So we have the first isomorphism. In (*)4, by Lemmas 1.3 and 2.2, we
have 3220 = a#7jk + biji for integers a and b. Applying g7 to this relation,
we obtain 0 = 2ak. So we have ¢ = 0 mod4, and hence we have that
3220 = bifi = 64biC. By Lemmas 2.2 and 2.3, we have hgi(16(20 +2bi()) =
32(6" + bi(’) # 0. Therefore 20 + 2bi( is of order 32.

We have 820 € —i(ys,20,8:) and (vs,20,8:) 3 i mod i,75,(CP*). So,
by (6)s and Proposition 1.4, we have the rest of the proposition. This
completes the proof.

3. Determination of n3,(CP;2). By Proposition 4.19 of [13], y7v
is of order 4. Let 4v € (i,y7,4r) C 7{5(CP®) be a coextension of 4.

Lemma 3.1. i) 2h4idv = 27} mod 2i.75,( HP?).

i) 24y = 2i¢ mod {i20 ik} and 4v is of order 256, where z is an
odd integer.

iii) Lety and c be odd integers and d, d’ be integers. Then hqidv = v+
yia +diC ,2(i4v — cyo— d'iC) = yi%’ mod i7% and §(i4v — cyo— d'il) = 64.

Proof. By Lemma 2.3 and from the definition, we have vy} €
(1,73,4v). So we have 24p € —'i('yy 4y,2t) and 2h4idy € — —i{y5,4v,20) =
(1,75, 4v)o2e 3 2v; mod 22*7719 HPS) Hence we have i). By i), Lem-
mas 2.1, 2.2 and 2.3, 2h4idv = hy(aiC + bi20) mod {h4i20,2h4iC} for odd
integers a and b. So, by (*)4, Lemma 1.3 and Proposition 1.4, we have
214y = ail mod {i20,2i(} + {ifk}. Since i.:m{(CP?) — 73H(CP?) is
monomorphic, we have ii).

We have p4h4i17/ = 4v = pjv;. So, by Lemma 2.1, we can set
hyidy = ¥i + di¢’ + yw for some integers y and d. Assume that y = 2y
Then, by Lemmas 1.3, 2.2 and by(x)s, we have 4y = Yo + dz( + ¥y Y90
mod t5, 75,(Qs) = {ink,iz}. Applying pg: CP® — 5'8 to this relation,
we have n = 0. This is a contradiction and we have the first rela-
tion of iii).. We recall i = 16i(3p = 64C. Since 647g = 16ip and
12879 = (on ([13]), we have 128y5 € (i’,7s,128:)on C (¥,16ip,2t)on =
—#'(16ip,2¢,n) D —i(16p,2¢,m) > ifi modi, 7r18(CP8)on By Proposi-
tion 4.19 of [13], the indeterminancy consists of wzn = 0, because
;rsn € —i{n,02,n) mod i.{nn*,n?p} = 0 and the bracket contains an ele-
ment of (2,7,2n) = (¢%,7,0) = 0 ([14]). So we have ii = 128y5. We set
d' = d — yb, where b is the integer in Proposition 2.4. By the first relation
of iii), Proposition 2.4 and (*)s lead us to the rest of iii). This completes
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the proof.

We set 4 = 4v — d'i¢. By Proposition 2.4, Lemma 3.1 and by (6),
for n =7, 8 and 9, we have the following

Pl‘OpOSitiOl’l 3.2. 1) WfQ(CPS) = Z256{‘117,} & Z32{i%l} B Z4{l'(77%}
S Rratd —

ii) 73o(CP°) = Zase{vo} B Zea{idv — cyo} & Zs{inK}.

iii) 775(CPY) = 264{i4l/,} ® Z4{ink}, where 2idp = yi2a/ mod 7K.

4. Determination of 72 (CP;2). First we recall that Wi;(Qz) =
Zg4{0} B Zo{zi( + 80} w1th T odd and 7r14(Q3) = Zsa{ic} & Zs{20' }7
where & € (7,2v,0), 2" =2 - 2i5 and 2 € (i,2v,2v). We shall
determine 75, (Q2). Let & € (i,2v, ) be a coextension of . Then we have
28 € —i(2v,K,2t) D w{(2,k,2t) 3 ivyk = 0 mod 2iv+. So, by a suitable
choice of &, we have that & is of order 2. We have 260 € —i(2v,0,20) >
—2iv* mod 0. So we have the following

Lemma 4.1. 260 = —2iv+ and 73,(Q2) = Zg{60}P Zo{iv++50} D
Zy{k} ® Zo{inp}.

By making use of (6), = (6),,20 of [13] for n = 1, we have 75,(CP?) =
Z4{iv*}. We recall that &' = t,& and set &' = t,%. By making use of (6)2
or (*)2, we have the following

Proposition 4.2. 25 ¢ = 2iv+ and 75,(CP3) = Z4{5'0} & Zo{iv %
+6' 0} ® Zo{R'}.

By (6)3, we have m3(CP*) = 75,(CP®). By Lemma 3.6 of [13] and
Lemma 4.1, we have wy( € —(ws,0,v) 0 8t C 875(Q2) = 0. So, by (6)4,
we have m5,(CP%) = Zy{i6 0} & Zoliv + +i5 0} & Zo{ik'} B Zy{ysu}.
In (6)s, by Lemma 2.9 and Proposition 4.18 of [13], we have y50° = 0
and ysn%c = & ° = 46"V € 4r5,(CP®) = 0. So, we have m5,(CP®) =
Z,{i5'0} @ Zo{iv * +i6'0} & Z,{i%'}. We show

Lemma 4.3. w3oc = +2i60 = +2iv+.

Proof. By Lemma 2.6 of [13], w3 = 2ai5 + 220" for odd integers a

~1 — —~ — —~ :
and b. We have 2v o0 = 20 00 — 2i50 and 20 oo € (1. 2v,2v)o0. We recall
2v = fjof} and so 2voo € —i(v,#},7jo). Since (v,7,70) C (v,2v,0) 3 0
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mod o2 » o (v, 7, o) = (a v, ijYofia C {W13 §%}ofic = 0 and o2 # 0 ([5)),
we have 2voc = 0 and 21/ o0 € —i(2v,2v,0) mod0. Since vv+ = o° (5D
and (2v,2v,0)ov = -20(20,0,v) C —(2v,v, (2v,0,v)) = (2v,v,0) 3 0
mod 0, we have (2v, 2w a) 3 2cv* mod nii with an integer ¢. Therefore
we have w3o = 2(a — 2b)iéo + 4bciv+. This and Lemma 4.1 complete the
proof.

Since wyv # 0 and 2wsv = 0 by Lemma 1.4 of [13], we have that wyv is
of order 2. In (6)s, we have pr(tqwsv) = v? and Y60 = itswso = 2i5 o by
Lemma 4.3. So we have m3,(CP7) = Zz{i4w4u} ® Z,{i5 0} ® Z,{iv+} &
Z,{ik'}. By (6)7, we have 73,(CP8) = m53(CP7). In (6)g, we have ygv =
ttqwav and pg(‘)‘gf]) = n2. So, by (6)s, we have the following

Proposition 4.4. 75 (CP°%) = Zy{ven} & Zo{ié 0} & Z,{ik'} ®
Zy{iv+} and m5,(CP'°) = Z{(10} D Z2{i5 0} ® Z,{ik'} ® Zo{iv*}.

5. The image of the S!-transfer in #$(S°) for k = 20, 21.
First of all we show

Lemma 5.1. g3nk = +2k&, gs¢ = 0 mod 2&, geft = 0 mod4ik and
g—,v:?c:r = 0 mod 2.

Proof. We know the first relation. Assume that gs¢ = &. Then we
have &k = g5(n € —g4(7y3,(,n). Since p3{73.(,n) C {n,(,n) = 0, we have
(13,6, 1) C i.m5)(CP?) = {iv+}. So we have gs5(n = avv* = ac> for
a = 0 or 1. This contradicts the fact that 735,(5°) = Zy{nk} ® Z2{c3} [5].
Therefore we have gs( = 0 mod2&. By the proof of Proposition 1.4,
we have 2gefi = g6(i(2p) = 0. So we obtain the third relation. As-
sume that 975:7' = K. Then nk = g7§¢;on € —ge(7s,20,7n). By Propo-
sition 4.18 of [13], we have (ys,20,7) D (y50,2t,1) = (&' 1+ ain,2¢,1) C
(6" 9,20,m) + (ainx,2t,1) 3 26 v + 2aiv mod {ysu} + 75(CP%)on with
a = 0 or 1. Therefore, by Proposition 1.4 and by the above conclusion, we
have g7%0n € 2155(5%)on = 0. This is a contradiction and completes the
proof.

Lemma 5.2. godv # ¢k and g94u # c'k for odd integers ¢ and .

Proof. 1t suffices to prove the first relation. By Lemma 2.6 of [13],
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24

we have v¢ = ifzws = 2ai5 i—' 20i2v  for odd integers @ and b. So we
have {ye,7,4v) D (aid + bi2v )o(2¢,7,4r) = 0 mod x35(CP®)odv = 0 by
Proposition 4.18 of [13]. Since 0 = gsy7 € (97,76, 7n) and {ys,7n,v) = 0, we
can define a tertiary composition {(g7,7ve,7,47) ([4]). Its indeterminancy
consists of G = gs, T15(CP7) + {Z¥CP?, 5% oar, where o € (3,7,4v) is a
coextension of 4v. Obviously we have {S1°CP?% §°} = Z3,{2p} & Z,{7&},
where 2p € (2p,7,p), TR € (nKk.m,p), 162p = fip and 2K = vkp.
We have that 2poa € (2p,7,4v) D p(2t,1,4v) = 0 mod0 and that
Roa € (nK,n,4v) D (nk,n,2t)o2v 3 0 mod 0. Therefore, by Proposi-
tion 2.4 and Lemma 5.1, we have G = Z4{2k}. From the definition,
we have godv € (98, v7.4v) = {(g7,76,m4v). By [4] and [6], we have

2(97,76, 1, 4¥) = —gr(Y6: 1,41 2) D gr(aic + bi2y )o(2t,m,dv,2) C
75,(5%)075 (§°) = {4&}. This shows that 2godr # +2&, which completes
the proof.

On the 3-primary components, we have g4618; € (g3,72.1)08; D
+{a1,01,01)081 = 5% mod g3, 75 (CP?%;3)0B = {ajay8,} = 0. Thus we
have the first assertion of iii) of Theorem. We have g4&' = go(H)& €
{(v,2v,K) 3 nk mod0 and g46 0 = 0 by the proof of Lemma 5.3 of [13].
This leads us to the second assertion of iii), which completes the proof of
Theorem.

6. Appendix: The image of the S®-transfer. Let g, =
go(H):24Q, — S be the $3-transfer map [13]. We set C; =
Im{g,,:72(Qn) — 75(S°) for k < 4n — 1}. First we recall the follow-
ing

Theorem 6.1 (Morisugi [8]). Let n = 2! for some integer t. Then
there exists an element fin € 73,(Qn) such that ghi, € 735 .(5°) is Ma-
howald’s element.

By [9], [12] and the James splitting theorem ([2]), we have the following

Lemma 6.2. Let b(n) =1 for odd n and b(n) = 2 for even n. Then
there exists an element (;, € Tan—1(Qn) such that t,{), = b(n)(an—1 in the
stable range.

By [11], [13] and by Lemma 6.2, we have the following: C3 = B3 =
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Z24{V}; Cr = 260{40'}; Cll =B = 2504{(}~ 4P € 015; C—E Chg. By [11],
[13] and by Theorem 6.1, we have the following: Cg = By = Zy{p}:
Ci6 = B1g = Z{w+}. We show

Proposition 6.3. Cs = Bg = 715(5°); Cg = Z2{v®}; C1p = Byo =
Z3{f1}; Crs = Biz = 7{5(5°); C1a = Big = 75,(5°); Cis = Zi2o{4p} &
Zo{nk}; Ci7r = Za{nwx} ® Zo{vr}; Cis = Big = Zg{v*}; Cr9 = Z264{(};
Cao = Bao = Z4{2R} & Z3{8}} and Cy = B = 73,(5).

Proof.  Since 75(Q2) = Zo{iv}, we have gh(iv) = v2. Since 75 (Q3) =
75(Q2) = Za{ii 0} & Zz{iv?}, we have gj(ifi n) = gj(7i'n) = on = »° and
g5(iv?) = 3. By a suitable choice of 7' € (1,2v,v), we have T3,(Q,) =
Z72{z7'} @ Zgo{3ic}. So we have géz}' € (v,2v,v) 5 £, mod 0. We have
g3(i31) = a1B1. In §5 of [13], we obtain the relations gho = o2, g{,é};’ =K
mod o2 and g4 = vx, where & € (i,2v,0), W € (,2v,2v) and &' €
(i,wq,0). By the last argument of §5 , we have Cy; = B,;. By Lemmas 1.2
and 6.2, we have Cjg = {(} since gi(in*) = vn* = 0. By Lemma 1.2, we
have 75,(Q¢) = Z4{iTE} ® Zo{inn+} & Zo{ifi} ® Z5{i?'3;}. From the
definition, we have g5 € {g5,w2,7n¢). By Lemma 1.2 and [6], we have
(g3, w2,me) C (g3, ink,m) D (vymk,m) D (v,n,9K) > 2& mod g, m5(Q2) =
{4%}. So we have g4 = +2&. We have g4’ 31 = (2. Therefore we have
Co = Bao = Z4{2R} & Zg{ﬁf}. This completes the proof.

Summarizing the above argument, we have the following

Theorem 6.4. Let k < 21.
i) Cy = By, except for k = 7,9,15,17 and 19.
ll) C-,' = 471'-}9(50), Cg = ZQ{V3]_>, C]5 = Z120{4p} & Zg{nf{}, C]7 =
Zy{nw+} & Zo{vk} and Cre = Zes{(}.
iii) The elements 20, nc, ne, 2p, np and & are in the image of the
S1-transfer but not in that of the S3-transfer.
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