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STRUCTURE OF SEMIPRIME RINGS
SATISFYING CERTAIN CONDITIONS

TsuNEKAZU NISHINAKA

Throughout, R will represent a ring (not necessarily with 1) with cen-
ter C = C(R). Let Z denote the ring of rational integers, and Z(X,Y)
the free algebra over Z in the indeterminates X and Y. We call a
polynomial f(X) in XZ[X] comonic if its lowest coefficient is 1 (i.e.,
f(X)= X™+ X™Hg(X) for some m > 0 and ¢(X) € Z[X] ).
In his paper [9], Herstein introduced the concept of the hypercenter of
a ring; the hypercenter Ty of the ring R is defined by Ty(R) = {a € R| for
each z € R, there exists n > 0 such that [a,2"] = az™ — z"a = 0}. He
showed that Ty(R) coincides with the center of R if R has no non-zero
nil ideal. By making use of this result, in [10] he also studied the rings
R satisfying the condition; (h) for each z,y € R, there exist m,n > 0
such that [z™,y"] = 0, and showed that a ring satisfying (h) has the nil
commutator ideal. Further, in [11], he conjectured that a ring R has also
the nil commutator ideal if for each z,y € R, there exist positive integers
k, m and n such that [z™,y")x = [[---[z™, "], "], - -}, ¥*] = O (k-times).
Recently, Chuang and Lin [8] gave a partial answer for the conjecture. On
the other hand, in connection with (h), Chacron [6] investigated structure
of rings R satisfying the condition: For each z,y € R there exist polynomi-
als f(X)and g(X) in Z[X] such that [z™ — 2™ f(z),y™ —y™ g(y)] = 0,
where m is a fixed positive integer. To generalize their results in [3,5,6,8],
we consider the following subsets of a ring R:
§* = §*(R) = {a € R| for each z € R, there exist k > 0 and a comonic
f(X) € XZ[X] such that [a, f(z)]x = 0}.
T* = T*(R) = {a € R| there exist £ > 0 and n > 0 such that for each
z € R, [a,2™ — z"*! f(z)]x = 0 for some f(X) € Z[X]}.
Tow =Thn(R) = {a € R| for each z € R there exists f(X) € Z[X] such
that [a,z™ — 2™+ f(z)]; = 0}, where n and k are positive integers.
In the present paper, we shall show that, under appropriate hypothesis,
these subsets coincide with the center of the ring R, and in connection with
these subsets we shall also study structure of semiprime rings satisfying
the following conditions:
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(H) For each z,y € R, there exist comonic polynomials f(X),
9(X) € XZ[X] and k > 0 such that [f(z),g(y)]x = 0.

(H)’(m) For each = € R, there exist &k > 0 and n > 0 such that for
each y € R, [z™ — 2™ f(z),y" — y**tlg(y)]x = 0 for some
polynomials f(X),g(X) € Z[X], where m is a positive integer.

(H zlm,n,.k) For each z,y € R, there exist polynomials f(X),g(X) € Z[X]
such that [z™ — 2™*! f(z),y" — y"Hg(y)]x = 0, where m, n
and k are positive integers.

Further, we consider the following condition which is studied coupling with

the condition (H) in semiprime rings:

(S)Y For each z,y € R, there exist integers a, 3 and ¥ such that zy =
ayz+ B2 +yy? + f(z,y) for some f(X,Y) € Z{X,Y) each of whose
monomial terms is of length > 3.

In §0, we shall characterize the class of non-commutative semiprime rings

satisfying the condition (S)’. Corollary 0.2 will play an important role in

the latter sections. In §1, we shall prove that a reduced ring satisfying (H)

is commutative (Theorem 1.1). This generalizes the Chacron-Herstein-

Montgomery result [7, Lemma 6]. In §2, we shall prove $*(R) = C(R),

the center of the ring R, if R is a reduced ring (Theorem 2.1). Further,

we shall consider the subsets S*(R) and T*(R) (see §2), and generalize
some of the results in [3] and [8] (Theorem 2.2). Now, for a semiprime
ring R, S*(R) and even T, xy(R) (nk > 1) need not coincide with the
center of R. In fact, since (GF(2)); satisfies the identity X2 — X8 = 0, it
is an obvious example such that T}, ,, does not coincide with the center
of R. However, in §3, we shall show that essentially certain matrix rings
are only semiprime rings in which T(’;l'k and 7™ need not coincide with
the center, respectively (Theorems 3.3 and 3.4). In §4, by making use of

Theorem 1.1 together with the results obtained in former sections, we shall

study structure of semiprime rings satisfying the condition (H), (H)'(m) or

(H){sn nky (Theorems 4.3, 4.4 and 4.5).

In all that follows, D=D(R) denotes the commutator ideal of R, and

J = J(R) the Jacobson radical of R. For z,y € R, define extended

commutators [z,y]; as follows: Let [z,ylo = z, and proceed inductively

[z,y]k = [[z,y]k-1,y]. For asubset U of R, we use the following notations:

(U) (resp. (U)) is the subring (resp. ideal) of R generated by U. Cgr(U) =

{a € R| [a,U] = 0}. Cr(U) = {a € R| there exists ¥ > 0 such that

[a,Ulx = 0}. Ann(U) ={a € R|aU = Ua = 0}.
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0. On non-commutative semiprime rings. In his paper [16],
Streb gave a classification of non-commutative rings. In this section, we
shall state the similar results for non-commutative semiprime rings.

We consider the following type of rings:

a) (GI:)(p) GI*;)(p)), P a prime,.

a)y (g ggg;), P a prime.

GF(p) GE(p) :
a)? ( 0 GF(p))’ P a prime.

a)' (GE(p))a, p a prime.

¢) A non-commutative division ring.

d)’ A non-commutative radical domain, namely a non-commutative rad-
ical ring with no non-zero divisor of zero.

d)! A domain T = (1) + S, S is a subring of 7' which is of type d)’.

e} S is a finite nilpotent ring such that D(S) is the heart of R, and
SD(S)= D(S)S =0.

e)! T={(1)+5, S is a subring of T which is of type e).
Combining [12, Proposition 1(3)] and [14, Lemma 1.4(1)(4)] with [11,

Proposition 2], we can easily see the following:

Proposition A. Let R be a non-commutative ring.

(1) Ifzy # 0 = yz for some z,y € R, then there exists a factorsubring
of R (i.e., a homomorphic image of a subring of R) which is of typ e a);,
a), ore).

(2) Suppose that there ezists a factorsubring of R which is of type a);
or a),. If R has the unit element 1, then there exists a factorsubring of R
which is of type a)l.

(3) Suppose that there exists a factorsubring of R which is of type e).
If R has the unit element 1, then there erists a factorsubring of R which
is of type e)l.

By the structure theorem for primitive rings, we can easily see the
following.

Lemma 0.1. If R is a primitive ring which is not a division ring,
then there ezists a factorsubring of R which is of type a)'.

Proposition 0.1. Let R be a non-commutative semiprime ring.
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Then there exists a factorsubring of R which is of type a), a),, c), d)
or e).

Proof. If R is semiprimitive, then it is a subdirect sum of primitive
rings. Hence, there exists a factorsubring of R which is of type a)’ or c)
by Lemma 0.1, and so there exists a factorsubring of type a);, a), or c).
Now, since R is a subdirect sum of prime rings, we may assume that R
is a prime ring. If R is not a domain, then there exist non-zero a,b € R
such that ab = 0. Then, bRa # 0 because R is prime, and so there exists
r € R such that bra # 0. Put z = br and y = a. Then yz = 0 # zy. By
Proposition A(1), there exists a factorsubring of R which is of type a),,
a), or e). Therefore, we may assume that R is a domain with J # 0. As
is well known, a domain with a non-zero commutative ideal must itself be
commutative, and so J is non-commutative; thus it is of type d)'.

In case R has 1, from the above proof, we can see that d)’ can be ex-
changed with d)! in Proposition 0.1. Further, by Proposition A(2) and (3),
if R is of type a);, a),, or e}, then there exists a factorsubring of R which
is of type a)! or e)!. Therefore, we get the following:

Proposition 0.2. Let R be a non-commutative semiprime ring
with 1. Then there ezists a factorsubring of R which is of type a)!, c),
d)! ore)l.

Propositio 0.3. If R is a semiprime ring satisfying (S), then
R/Ann(J) is a reduced ring.

Proof. Let a be an arbitrary element in R such that a? € Ann(J).
Since R satisfies (S)', for each = € J, there exist integers a, 3 and « such
that

aza = ad’r + Bazax + vya® + f(az,a)
for some f(X,Y) € Z(X,Y) each of whose monomial terms is of length
> 3. Since a? € Ann(J), for each y € J, we have
(0.1) yaze = yPazar + yf(az,a).

On the other hand, a? € Ann(J) enables us to see that f(az,a) = g1(az)+
g2(az)a +g3(a) for some g;(X),93(X) € X32Z[X] and g2(X) € X?Z[X].
Combining this with (0.1), We can see that

yaza = yBazazx + yg1(ar) + ygz(az)a € yazal.
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Hence we get yaza = 0. We have thus seen that (Ja)? = 0, and thus
Ja = 0 by the semiprimeness of R. That is, a € Ann(J).

Corollary 0.1. Suppose that R satisfies (S)'. If R is a prime ring
with J # 0, then R is a domain.

Proof. Since Ann(J) = 0, the assertion is clear by Proposition 0.3.

The next corollary is immediate by Corollary 0.1.

Corollary 0.2. If R is a semiprime ring satisfying (S), then R is
a subdirect sum of domains with non-zero radical and primitive rings. In
particular, R has no non-zero nil right ideal.

Proposition 0.4. Let R be a non-commutative semiprime ring. If
R satisfies (S)', then there ezists a factorsubring of R which is of type a)’,
¢) ord).

Proof. If R is primitive, then there exists a factorsubring of R which
is of type a)’ or ¢) by Lemma 0.1. Therefore, in view of Corollary 0.2, we
may assume that R is a non-commutative domain with J # 0. Then J is
of type d)'.

Corollary 0.3. Let P be a ring-property which is inherited by the
factorsubrings.

(1) Then the following conditions are equivalent:
(i) For any ring R satisfying (S)' and P, D(R) is nil.
(ii) Every semiprime ring satisfying (S)’ and P is commutative.
(iii) Fach ring of type a)', c) or d)’ fails to satisfy either (S) or P.
(2) Let R be a semiprime ring satisfying (S) and P. If each ring of
type c) or d) fails to satisfy P, then R is a subdirect sum of rings each of
which has one of the following types.
(i) a commutative ring.
(i1) @ primitive ring which is not a division ring.

Proof. (1) By Proposition 0.4.

(2) If R is a domain with J # 0, then J is a radical domain satisfy-
ing P. Hence, J is commutative by the hypothesis, and so R is commuta-
tive. Since R cannot be a non-commutative division ring by our hypothesis,
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the assertion is now clear by Corollary 0.2.

In Corollary 0.3(1), we should note that rings of type a)’ satisfy (S)'.
In fact, if (‘CZ 2) € (GF(p))z, then it is a root of the equation X? — (a +
d)X + (ad — be) = 0. Hence, if a + d # 0, then there exist a,8 € Z such
that z is a root of the equation X + aX?+ 3X3 = 0. In this case, for each
y € (GF(p))2, we have that [y, z+az?+323) = 0. Therefore, it is enough to
consider the elements of the form ((cz _2) in (GF(p))2. Let 2 and y are such
elements in (GF(p))2. Then, we can easily see that there exists & € Z such
that a pair (z,y) is a root of the equation XY = Y X 4+ a(XY + Y X )2

1. The commutativity of reduced rings satisfying (H). Let
& = {f(X) € XZ[X]| f(X) is a comonic polynomial}, and consider the
following condition:
(H) For each z,y € R, there exist f(X), g(X) € £ and k£ > 0 such that
[f(z),9(y)]k = 0.
The main purpose of this section is to prove the following theorem
which generalizes [7, Lemma 6]:

Theorem 1.1 If R is a reduced ring satisfying (H), then R is com-
mutative.

In preparation for proving the above theorem, we state five lemmas.
The first one, which plays an important role in our study, is an extension
of [2, Theorem 1].

Lemma 1.1. Let £ = {f(X) € XZ[X]| f(X) is a primitive poly-
nomial (i.e., the coefficients of f(X) are relatively prime)}. Suppose that
for each z,y € R there exist f(X),9(X) € € and ky > ki > 0 such that
[f(2), 9]k, = [f(),9(¥)]k,- If R is a torsion ring, then D is periodic.

Proof. Let R, := {z € R| p"z = 0 for some n > 0}, p a prime.
As is easily seen, R, is an ideal of R and R = @, prime Rp- By [2,
Lemma 2], there exists a maximal periodic ideal P(R,) of R, such that
R, = R,/P(R,) has no non-trivial periodic ideal. Since R, has no non-
zero nil ideal and pR, is a nil ideal, we see that R, is an algebra over
GF(p), and also it has no non-zero algebraic ideal (see [2]). If z,y € R,,
then there exist f(X),g(X) € & and positive integers & and d such
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that [f(2),9()k = [f(2),9(¥)]ksa- By [2, Lemma 4], we can easily
see that there exist & > 8 > 0 with p* — p? = 0 (mod d) such that
[£(2).9()”°] = [f(2), 9(9pe = [f(2),9(¥)]ps = [f(2):9(y)""], and s0 we
get [f(z),g(y)?" - g(y)pﬂ] = 0. Since it is easily seen that g(X)?" —g(X)Pﬁ
is non-zero in XGF(p)[X], we can see that R, is commutative by [4, The-
orem 3.6], and thus D(R,) C P(R,). Since D(R) = @ D(R,), we see that
D(R) is periodic.

Lemma 1.2. Let I be an ideal of a ring R whichis a division ring
or a radical domain, and the characteristic Ch(I) = 0. Let a € R. If for
each z € I there exists k > 0 such that [z,a]x = 0, then [I,a] = 0.

Proof. Suppose that [ is a radical domain, and further suppose, to
the contrary, that there exists z € I such that [z,a] # 0. Then, by the
hypothesis, [z,a]; = 0 for some s > 1. Let & be the minimum integer in
{t > 1| [z,a]t = 0}. Put y = [z,a]k—2. Then y € I. Since I is a radical
domain, there exists y* € I which is the quasi inverse of y. Embedding R
into a ring with 1, we see that 1+ y* is the inverse of 1+ y. Put u = 1+ y.
Since [y,al2 = 0 # [y, a),

(1.1) [u,alz =0 # [u,aq].
Noting that 0 = [uu~!,a] = u[u~1,a] + [u,a]u?!, we get
(1.2) [u™!,a] = —u Mu,au?.

By (1.1) and (1.2), we can easily see that [u=!,a]l; = 2(u"![u,a])?u"?,
and proceeding by induction, we get [u~!,a], = (—=1)"n!(uv"}[u,a])"u"?
for all n > 0. Since Ch(I) = 0 and also (u~![u,a])*u~! € I, we see that
[u=1,a], # 0 and so [y*,a], # 0 for all n > 0. On the other hand, since
y* € I, we get that [y*,a],» = 0 for some n’ > 0, a contradiction.

In case that [ is a division ring, we can get the conclusion in the same
way.

Lemma 1.3. Let R be a ring satisfying (H). If R is torsion free,
then every primitive factorsubring of R is a division ring.

Proof. By (H), for each prime p and each z,y € R, there exist
fo(X),g0(X) € Z[X] and positive integers m, n and k such that

[(pz)™ = (pz)™*" fo(pz), (py)" — (P¥)"*'g0(py)]k = 0.
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It follows that

0= [pmxm _ pm+lxm+lf(x)’ pnyn _ pn+1yn+lg(y)]]c
= p™ ™ — pe™ ! f(2),y" — Py 99k,

where f(X) = fo(pX) and g(X) = go(pX). Hence,

(1.3) [a™ — pa™* f(2), 4" - py" T g(y)lk = 0.

Let R’ be a primitive factorsubring of R. Suppose that R’ is not a division
ring. Then we see that there exists a factorsubring of R’ which is of type
a)’ by Lemma 0.1. In (1.3), putting = ez + €22,y = en1 € (GF(p))2, we
get that

0 = [(e21 + e22), €11k = [e21.€11]x—1 = €21 # 0,

a contradiction. Therefore, R’ must be a division ring.

Lemma 1.4. Let R be a domain. If for each z,y € R, there exist
f(X),g9(X) € & such that [f(x),g9(y)] = 0, then R is commutative.

Proof. 1f Ch(R) # 0, then D is periodic by Lemma 1.1, and so D
is commutative by the well known Jacobson theorem. As is well known,
a domain with a non-zero commutative ideal must itself be commutative,
and thus D = 0. We may assume therefore that Ch(R) = 0. If R is
semiprimitive, then it is a subdirect sum of primitive rings. Since Ch(R) =
0, R is a subdirect sum of division rings by Lemma 1.3. We may assume
therefore that R is a division ring. Then, by [5, Remark 10], for each z,y €
R, there exists f(X) € £* such that [z, f(y)] = 0. For z,y € R, consider
the subring (z,y) of R generated by z and y. Then we can easily see that
for each a € (z,y), there exists f(X) € £~ such that f(a) € C((z,y)).
Since (z,y) is domain, (z,y) is commutative by [7, Lemma 6], and so
[z,y] = 0. We have thus seen that R is commutative in semiprimitive case.
If R is not semiprimitive, then R has the non-zero radical J. Since J is a
radical domain, we have that for each z,y € R, there exists f(X) € £* such
that [z, f(y)] = 0 again by [5, Remark 10]. Therefore, in the same way as
above, we can see that J is commutative. Hence R must be commutative.

Lemma 1.5. Let R be a domain satisfying (H), and a,b € R. If
there ezxists k > 0 such that [a,b]x = 0, then [a,d] = 0.
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Proof. If Ch(R) = p # 0, then D is a periodic domain by Lemma 1.1,
and thus D is commutative. Hence R must be commutative. We may
assume therefore that Ch(R) = 0. Obviously, Cx(b) is a subring of R and
b € Cg(b). Also Cg(b) satisfies (H) and Ceyy)(b) = Cr(b) N Cp(b) =
CRr(b). Therefore, under the hypothesis Cx(b) = R, it is enough to show
be C(R).

First, we suppose that R is semiprimitive. Since R satisfies (H) and
Ch(R) = 0, R is a subdirect sum of division rings R; ( € I) by Lemma
1.3. Let ¢; be the natural epimorphism of R onto R;, and put b; = &;(b).
It suffices to show that b; € C(R;) (¢ € I). Since R; satisfies (H), as we
saw at the first of the proof, we may assume that Ch(R;) = 0. Then, for
each z € R;, there exists k > 0 such that [z,b;]x = 0, and so [z,b;] = 0 by
Lemma 1.2.

Suppose next that R has the non-zero radical J. Then, J is a radical
domain, and for each z € J, there exists & > 0 such that [z,b]y = 0.
Hence, by Lemma 1.2, we get that [J,b] = 0. Since R is a domain, as is
well known, Cr(J) C C(R), and so b € C(R).

Proof of Theorem 1.1. Since R is a subdirect sum of domains by [1,
Theorem 2], we may assume that R is a domain. By (H), for each z,y € R,
there exist f(X),g(X) € £* and k > 0 such that [f(z),¢(y)]x = 0. Hence
we get that [f(z),¢(y)] = 0 by Lemma 1.5. Therefore, R is commutative
by Lemma 1.4.

2. Generalized hyper- and cohypercenter. Throughout this sec-
tion, we use the following notations:
& ={f(X) € XZ[X]| f(X) is a comonic polynomial}.
& ={f(X) € XZ[X]| (1) = £1}.
Eqy =1X" - X™1p(X)| p(X) € Z[X]}, where n > 0.
We consider the following subsets of R:
S* = S§*(R)={a € R]| for each x € R, there exist k > 0 and f(X) € &*
such that [a, f(z)]x = 0}.
S§'= S'(R)={a € R| for each = € R, there exist ¥ > 0 and f(X) € &
such that [a, f(z)]x = 0}.
S§* = §*(R)={a € R|foreach z € R, thereexist k > 0 and f(X) € £*n&’
such that [a, f(2)]x = 0}.
T* = T*(R)={a € R| there exist £ > 0 and n > 0 such that for each
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t € R, [a, f(z)]x = 0 for some f(X) € Sf‘n)}.
T* = T*(R)={a € R| there exist £ > 0 and n > 0 such that for each
z € R, [a, f(z)]e = 0 for some f(X) € €7, N &'}
Obviously, 7* C S*. Further, §* and 7™ include the hypercenter ([9])
and the cohypercenter ([5]), respectively.
The main purpose of this section is to prove the following theorems:

Theorem 2.1. If R is a reduced ring, then S* = C.

Theorem 2.2. (1) If R is a ring with no non-zero nil right ideal,
then S* = C.
(2) If R is a semiprime ring, then T = C.

Note that Theorem 2.2(1) and Theorem 2.2(2) generalize [8, Theo-
rem 4] and [3. Theorem 2], respectively.

In preparation for proving our theorems, we state the following lem-
mas.

Lemma 2.1. All of §*, 5, 5, T* and T*' are subrings of R.

Proof. If a € S™, then for each ¢ € R, there exist k&; > 0 and
p(X) € £*N & such that [a,p(z)]y, = 0. and if b € 5™/, then for p(z),
there exist k2 > 0 and ¢(X) € £ N &' such that [b, ¢(p(z))]k, = 0. Since
la,—p(z)]k, = 0, we may assume that p(1) = 1, and also that ¢(p(X)) €
E*NE&'. Putting k = maz{ky,k2} and h(X) = ¢(p(X)),

[a, k()i = [a,q(p(2)))k = Y_ Mi(z)[a, p(z)]eNi(z) = 0,

2

where M;(X), N;(X) € XZ[X]. Hence,
[a,h(z)k = 0 = [b, h(2)]k-

Furthermore, since [a + b, h(z)]x = [a, h(z)]x + [b, h(z)]x and [ab, h(z)]x =

?zok(zz-k)[(l,h(.’l?)],’[b,h(:l?)]gk_,‘ = 0, we can easily see that (a,b) C S*,
and so $™* is a subring of R. Similarly, $*, S’, T* and T™*' are subrings
of R.

Lemma 2.2. Let p be a prime integer, R an algebra over GF(p),
and A(R) the algebraic hypercenter of R (see [4]). Then S*(R) = A(R).
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Proof.  Obviously, A(R) C §*(R). On the other hand, since [z,y],e =
[z,y?"] for all z,y € R and all @ > 0, we can easily see that $*(R) C A(R).

Lemma 2.3. Let R be a prime ring with no non-zero nil ideal. If R
has the non-zero radical J and Ch(R) = p # 0, then S* = C.

Proof. First, we claim that R has no non-zero periodic ideal. Sup-
pose, to the contrary, that R has a periodic ideal I # 0. Since R is a
prime ring, I N J # 0. For each z € I N J, there exist positive integers n
and d such that z” = z”t4, and so z* € z"J. We see that z* = 0. This
implies a contradiction that I N J is a non-zero nil ideal. Hence R has no
non-zero periodic ideal as claimed. R is an algebra over GF(p) and it has
no non-zero periodic ideal; thus it has no non-zero algebraic ideal. Then
C = the algebraic hypercenter of R by [4, Theorem 1.6]. On the other
hand, we see that S~ = the algebraic hypercenter of R by Lemma 2.2.
Therefore, we get that 5* = C.

Lemma 2.4. If R is a division ring, then S = C.

Proof. By Lemma 2.1, 5~ is a subring of R. Since S* satisfies (H), it
is commutative by Theorem 1.1. Let K be the subfield of R generated by
S*. Then, it is clear that K is preserved by all automorphisms of R, and
so S* = C by Cartan-Brauer-Hua theorem.

Lemma 2.5. If R is a primitive ring which is not a division ring,
then §' = C.

Proof. By the density theorem, R acts densely on a vector space V
over the division ring A with dimV > 1. Suppose that there exist v € V
and z € 5 such that v and vz are linearly independent. By the density
action of R, there exists y € R such that vy = 0 and vzy = vz. Since
z € §’, there exist £ > 0 and f(X) € XZ[X] with f(1) = £1 such that
[z, f(y¥)]x = 0. On the other hand, we see that

vz, f(y)] = v(ef(y) - f(y)e) = f(1)ve,

and by an easy induction, we have that v[z, f(y)]x = f(1)*vz. Hence we
get that 0 = o[z, f(¥)]k = f(1)¥vz = +vz, a contradiction. Therefore,
for each v € V and = € 5’, there exists A € A such that vz = Av, and
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so z € C by [5, Remark 13]. We have thus seen that $" C C, and thus
S’ =C.

Lemma 2.6. Let R be a semiprimitive ring. If R is torsion free,

then S* =C.

Proof. R is a subdirect sum of primitive rings R; (i € I). Let ¢; be
the natural epimorphism of R onto R;. It suffices to show that ¢;(5*) C
C(R;) for all i € I. If a € 5™, as we saw in the proof of Lemma 1.3, then
for each prime p and y € R, there exist m > 0, £ > 0 and f(X) € Z[X]
such that

(2.1) [a,y™ — py™* f()lk = 0.

If R; is a division ring, then S*(R;) = C(R;) by Lemma 2.4, and so
¢i(5™) C S*(R;) = C(R;). We may assume therefore that R; is not a divi-
sion ring. Consider the case that Ch(R;) = p # 0. If a € S*, then for each
y € R;, there exists b € R such that y = ¢;(b) and [¢i(a),y™]r = 0 for some
m > 0 by (2.1). Therefore, we see that ¢;(S*) C S’(R;). Hence, we get that
#:(5*) € C(R;) by Lemma 2.5. Next, consider the case that Ch(R;) = 0.
Since R; is a primitive ring which is not a division ring, by the density
theorem, R; acts densely on a vector space V; over the division ring A;
with dimV; > 1. Suppose that there exist v € V; and z € ¢;(5™) such that
v and vz are linearly independent. By the density action of R;, there exists
y € R; such that vy = 0 and vxy = vz. Since z € ¢;(5*) and ¢;(R) = R;,
there exist m,k > 0 and f(X) € Z[X] such that [z,y™ — 2y f(y)]x = 0
by (2.1). Put g(X) = X™ — 2X™*1 f(X). Then g(1) = 1 — 2f(1) # 0.
On the other hand, as we saw in the proof of Lemma 2.5, we have that
o[z, g(W)]x = 9(1)*vz, and thus 0 = v[z,9(y)]x = g(1)*vx # 0, a contra-
diction. Hence, for each v € V; and z € ¢;(5*), there exists A € A; such
that vz = Av, and so z € C(R;) by [5, Remark 13]. We have thus seen
that ¢;(57) C C(R;).

We are now in a position to prove Theorem 2.1.

Proof of Theorem 2.1. R is a subdirect sum of domains Ry (A € A)
by [1, Theorem 2]. Let ¢ be the natural epimorphism of R onto R). Since
dA(S™(R)) C S*(R»). it is enough to show that S*(Ry) = C(R)) for all
A € A. That is to say, we may assume that R is a domain.
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First, we suppose that Ch(R) = p # 0. If there exists a non-zero
periodic ideal I, then the domain I is commutative by the well-known
Jacobson theorem. As is well known, a domain with a non-zero commuta-
tive ideal must itself be commutative, and thus §* = C = R. Therefore,
we may assume that R has no non-zero periodic ideal and thus it has no
non-zero algebraic ideal over GF(p). Then it follows that $* = C by [4,
Theorem 1.6] and Lemma 2.2.

Suppose next that Ch(R) = 0. Since S* is a domain satisfying (H),
it is a commutative subring of R by Theorem 1.1. Therefore, if R has the
non-zero radical J, then §* = C by [5, Remark 9]. On the other hand, if
R is semiprimitive, then §* = C by Lemma 2.6.

To prove Theorem 2.2, we shall state some more lemmas.

Lemma 2.7. (1) If R is a prime ring with J # 0, then T* is a
reduced ring.

(2) Let R be a ring with no non-zero nil right ideal. If there exists a
non-zero a € S* with a®> = 0 then aJ = 0.

Proof. (1) Suppose that there exists a non-zero element a € T* such
that a®> = 0. Then, since R is prime, aJ is non-zero. By the property of
T, there exist & > 0 and n > 0 such that for each z € J, [a,(az)" —
(az)** f(azx)); = 0 for some f(X) € Z[X]. We get that

0 = ((az)" - (az)"*! f(az))*a = ((az)" — (az)"+! f(az))*az

because of a? = 0. Hence, there exists m > 0 such that for each y € aJ,
y™ — y™t1h(y) = 0 for some A(X) € Z[X]. Then, y™ = y™t'h(y) =
y™(yh(y)), and so y™ € y™J. Hence y™ = 0 for all y € aJ. Therefore,
R has a non-zero nilpotent ideal by the well-known Levitzki’s result, but
this contradicts the hypothesis that R is prime. We have thus seen that
T* is a reduced ring.

(2) Suppose, to the contrary, that aJ # 0. Since a € §~, for each
z € J, [a, f(az)] = 0 for some k > 0 and f(X) € £*. As we saw in the
proof of (1), we can get that (az)™ = 0 for some m > 0 depending on z.
This implies a contradiction that aJ is a non-zero nil right ideal, and thus
aJ = 0.

The next one has proved essentially at [8, Lemma 22].
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Lemma 2.8. Let R be a ring with the non-zero radical J. If A is
a commutative reduced subring of R which is preserved by all quasi-inner
automorphisms, then 2[A,J] = 0.

Proof. Let a € A and z € J. Put a1 = (1 + 2)a(l + :1:)'l and
as = (1+2:r)a(1+23:)_1. Then a; and a; are in A because of the hypothesis
of A. Write (1 4+ 2)a = a;(1 + z) and (1 + 2z)a = az(1 + 2z). Compute

a=2142z)a—(1+2z)a=2a,(1+2z)—az(l+2z)
= (2a) — a3) + 2(ay — az)z.
Since A is commutative, we have that
(2.2) 0=[a,a] = [a,(2a) — az) + 2(a1 — a3)z] = 2(ay - ay)[a,z].
Noting that
a1 —az = (1+2)a(l +2z)"! — (142z)a(1 +22)7!
={(1+2)a(l +2z) — (1 +2z)a(l + z)}(1 + z)71(1 + 22)7!
and (14 z)a(l 4 2z) — (1 + 2z)a(l + z) = [a, z], we get that

(2.3) ay - az = [a,z)(1+ )71 (1 + 22)~L.

Hence, 2(a; —az)? = 2(a; — az)[a,z](1+2)~ (14 2z)~! = 0 by (2.2). Since
A is a reduced ring, we see that 2(a; — az) = 0. Going back to (2.3), we
get that 2[a,z] = 0. We have thus seen 2[A,J] = 0.

Lemma 2.9. If R is semiprimitive, then S* = C.

Proof. By Theorem 2.1, if R is a division ring, then S* = C. In case
that R is a primitive ring which is not a division ring, since §* C 5’, we
get that ' = C' by Lemma 2.5. Since a semiprimitive ring is a subdirect
sum of primitive rings, we have thus shown that 5’ = C in semiprimitive
case.

Lemma 2.10. Let R be a prime ring, and J the Jacobson radical
of R.

(1) If R satisfies (SY and J # 0, then §* = C.

(2) If J#£0, thenT™ = C.
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Proof. (1) R is a domain by Corollary 0.1. Hence S* = C by Theo-
rem 2.1,

(2) By Lemma 2.7(1), T* is a reduced ring. Hence, T™ is commutative
by Theorem 2.1. Therefore, in view of [5, Remark 9], we get 7* = C.

Proof of Theorem 2.2. (1) Since R has no non-zero nil ideal, R is a
subdirect sum of prime rings R; (i € I) each of which has no non-zero nil
ideal. Let ¢; be the natural homomorphism of R onto R;. It suffices to
show that ¢;(5*') C C(R;) for all i € I. By Lemma 2.9, we may assume
that both R and R; have the non-zero radical. If Ch(R;) = p # 0, then
S*(R;) = C(R;) by Lemma 2.3, and so ¢;(S*') C S*(R;) = C(R;) as
desired. We may assume henceforth that Ch(R;) = 0. By Lemma 2.9,
S*(R/J) = C(R/J). Then, we claim that $*' is a reduced ring. Assume,
to the contrary, that there exists a non-zero a € §* with a? = 0. Then,
by Lemma 2.7(2), aJ =0 and a ¢ J. Put R= R/J, and @ = a+ J. Since
§*(R) = CR), @R is a nil ideal of R. Hence @R = 0 and thus az € J for
all 2 € R. Therefore, aRa C Ja = 0. This contradicts the semiprimeness
of R. We have thus seen that 5*' is reduced. Hence S™’ is a commutative
reduced ring by Theorem 2.1. By Lemma 2.8, we can see that 2[S*,J] =
0, and that 2[¢:(5*),¢i(J)] = 0. Hence, [¢:i(5*),¢:(J)] = 0, and thus
@i(S*) C Cr(¢:(J)). If ¢;(J) # 0, then it is a non-zero ideal of prime
ring R;. As is well known, Crg,(¢:(J)) C C(R;:), and so ¢;(S*') C C(R;).
If ¢;(J) =0, then, [R, 5] C J implies that

[Ri, $i(S™)] = [$i(R), :i(5™)] C ¢(J) = 0.
Therefore, we get that ¢;(5*') C C(R;).

(2) Since R is a subdirect sum of prime rings, we may assume that
R is a prime ring, and further, that R has the non-zero radical J by (1).
Since T™' C T™, we get the conclusion by Lemma 2.10(2).

Corollary 2.1. If R is a semiprime ring satisfying (S)', then
s¥=C.

Proof. By Corollary 0.2, R has no non-zero nil right ideal. Then we
get the conclusion by Theorem 2.2(1).

The next is a special case of the above corollary.

Corollary 2.2. Let H = {a € R| for each x € R, there exist k > 0
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and m > 0 such that [a,z2™];, = 0}. If R is a semiprime ring satisfying
(S), then H =C.

3. The subsets S*, T* and T, ,, in semiprime rings. In sec-
tion 2, we saw that S*(R) = C(R) if R is a reduced ring. However, if
R is a semiprime ring, (or a ring with no non-zero nil ideal) then S*(R)
and even T("n,k)(R) (nk > 1) need not coincide with C(R) in general. In
this section, we shall study structure of semiprime rings R in which S*(R),
T*(R) and TG,k (k> 1) do not coincide with C'(R), respectively.
Throughout this section, for n > 0, R,, will denote the ring of n X n-
matrices over a ring R. We call a field F periodic if it is an algebraic
extension field over a finite field.
Let » and & be positive integers, and consider the following subsets:
S* = §*(R) = {a € R| for each z € R, there exist k' > 0 and f(X) € £~
such that [a, f(z)]x = 0}.

T = T*(R) = {a € R| there exist ¥/ > 0 and »’ > 0 such that for each
z € R, [a, f(z)]x = 0 for some f(X) € Sf'n,)}.

Tox = T(“n_k)(R) = {a € R| for each z € R there exists f(X) € Elny such
that [a, f(z)]x = 0}.

Obviously, T(‘;u.k) C T* C 5. The main purpose of this section is to
prove the following theorems:

Theorem 3.1. If R is a semiprime ring satisfying (S)', then R is a
subdirect sum of rings each of which has one of the following types.

(i) a prime ring R’ with §*(R') = C(R').

(ii) a dense ring of linear transformations on a vector space V over
F, where F is a periodic field and dimpV > 1.

Theorem 3.2. If R is a prime ring, then one of the following prop-
erties hold:

(i) T*(R) = C(R).

(ii) R is isomorphic to F;, where F is a periodic field and t > 1 an
integer.

Theorem 3.3. Let n and k be positive integers. If R is a prime
ring, then one of the following properties hold:
(i) TGk (R) = C(R).
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(ii) R is isomorphic to Fy, where F is a periodic field and 1 < t < kn.

If R is n-algebraic over a subring A (see [6]), then Cr(A) C T, 1)(R).
On account of this, we can say that Theorem 3.3 improves [6, Theorem 3].
Needless to say that Theorem 3.2 and Theorem 3.3 can be extended to the
results for semiprime rings, respectively: If R is a semiprime ring, then R
is a subdirect sum of rings each of which is of type (i) or (ii).

In preparation for proving the above theorems, we state the following
lemmas.

Lemma 3.1 Let R be a ring satisfying (H). If a € R with a® = 0,
then for each z € R, there exists f(X) € £ such that f(az) = 0.

Proof. For z € R, we put y = @ + az. By (H), we have that
[p(y).q(az)]x = O for some p(X),q(X) € £* and k& > 0. Since y* =
(az)t + (az)*~'a for all ¢ > 0 because of a®> = 0, we can see that
p(y) = p(az) + po(ax)a, where p(X') = Xpo(X). Hence, we have that

0 = [p(az) + po(az)a, q(az)]k = [po(az)a, q(az)]y = +q(az)*poaz)a,

and so q(az)*pp(az)az = 0. Put f(X) = ¢(X)*p(X). Then we get f(X) €
&* and f(az) = 0.

From the above proof, we can easily see the following remark which is
used in section 4.

Remark 3.1. Let m, n and k be positive integers, and R a ring
satisfying (H '('m nk)- 1 @ € R with a’? = 0, then for each z € R, there

exists f(X) € £, x4 such that f(az) = 0.

Lemma 3.2. Let R be a primitive ring. If §* # C, then R is a
dense ring of linear transformations on a vector space V over F, where I’
is a periodic field and dimpV > 1.

Proof. By the density theorem, R is a dense ring of linear transforma-
tions on a vector space V over a division ring F. Since R is not a division
ring by Theorem 1.1, we see that dimpV > 1, and also that Ch(F) =pis
non-zero by Lemma 2.6. Let @ € S*\C. By [5, Remark 13], there exists
v € V such that va and v are linearly independent over F. Let a be an
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arbitrary element in F'. By the density of R, there exists € R such that
var = ava and vz = 0. Then there exist f(X) € &* and k such that
[a, f(z)]x = 0 because of @ € §*. On the other hand, as we saw in the
proof of Lemma 2.5, we have that

0 = va, f(2)l = f(a) va,

and so f(a)® = 0. Hence, by Theorem 1.1 (or the well-known Herstein
theorem for division rings), F' is commutative, and also F' is a periodic
field over GF(p).

Lemma 3.3. Let p be a prime number, and R an algebra over GF(p).
If a € T*(R), then there exists a positive integer k such that R is k-
algebraic over the subring Cr(a) (see [6]).

Proof. 1f a € T*(R), then there exist positive integers kg and ng such
that for each 2 € R, [a, f(2)]s, = 0 for some f(X) € £, ). Choose k1 > ko
such that k; is a power of p. Since Ch(R) = p, we see that

[a’ f(x)]k() =0= [a'7 f(x)]k, = [aa f(x)kl]

Let k = kyng. We have seen that for each z € R, g(z) € Cgr(a) for some
9(X) € &(x)- Hence, R is k-algebraic over the subring C'r(a).

Lemma 3.4. Let R be a dense ring of linear transformations on a
vector space V over a division ring F. Suppose that dimpV > m for some
m > 0. If v1, v € V and they are linearly independent over F, then there
exists a € R such that vi;a™ = v, and v1a™! = vya = 0.

Proof. Since dimgpV > m, we can choose linearly independent ele-
ments wy,- -, Wn4; 0 V such that wy = v and wp4y = ve. By the
density of R, there exists ¢« € R such that wja = we, wea = w3, ---
Wyt = Wy and wy,p1a = 0. Then, we can easily see that

va”™ = wa™ = w1 = V2 and

m+1 +1

v a =ua™" = w410 = vaa = 0.

We are now in a position to prove our theorems.

Proof of Theorem 3.1. Since R is a subdirect sum of prime rings, we
may assume that R is a prime ring. If R has the non-zero radical J, then
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5= = C by Lemma 2.10(1). Suppose that R is primitive. If R is a division
ring, then S™ = C by Theorem 2.1. If R is not a division ring, then either
S™ = C or R is of type (ii) by Lemma 3.2. Since a semiprimitive ring is a
subdirect sum of primitive rings, we have done.

For a non-empty subset U of R, let Cx(U) = {a € R|foreach y € U,
there exists k¥ > 0 such that [a,y]x = 0}.

Corollary 3.1. Let R be a semiprime ring satisfying (S), and U a
subset of R. If for each x € R, there exists f(X) € £*, such that f(z) € U,
then R is a subdirect sum of rings R; (i € I) each of which satisfies one of
the followings:

() Cr(Uy) = C(R;), where U; = ¢;(U) and ¢; is the natural epimor-
phism of R onto R;.

(ii) R; is a dense ring of linear transformations on a vector space V
over F, where F' is a periodic field and dimpV > 1.

Proof.  Since CE(U;) € §™(R;), the assertion is immediate by Theo-
rem 3.1.

Proof of Theorem 3.2. By Lemma 2.10(2), we may assume that R is
semiprimitive. First, suppose Ch(R) = 0. Then, we see that T™ = C by
Lemma 2.6. Next, suppose Ch(R) = p # 0. We further suppose that R is
not of type (ii). Let a be an arbitrary element of 7. Since R is an algebra
over GF(p), we see that R is k-algebraic over C'g(a) for some k& > 0 by
Lemma 3.3. By [6, Theorem 3], we see that Cr(Cr(a)) = C, and thus
a € Cr(CRr(a)) = C. Therefore, we get T* = C.

Corollary 3.2. Let R be a prime ring, I’ a subset of R, and n «a
positive integer. If for each z € R, there exists f(X) € E(*n) such that
f(z) € U, then one of the following properties hold:

(i) Ca(V) = C(R).

(ii) R ts isomorphic to Fy, where F is a periodic field and t > 1 an
integer.

Proof. Since Cx(U) C T*(R), the assertion is clear by Theorem 3.2.

Proof of Theorem 3.3. 1If T(’:l,k) # C, then R is isomorphic to F; for
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some periodic field F and ¢ > 1 by Theorem 3.2. Hence, it suffices to show
that ¢t < nk. Suppose, to the contrary, that ¢ > nk. Let a € T( x) \C.
Let V and F be as in the proof of Theorem 3.2. By [5, Remark 13|, there
exists » € V such that » and va are linearly independent over F'. Since
t > nk, there exists b € F, such that vad™ = v and vab™+! = vb = 0
by Lemma 3.4. Since a € T(*n,k]’ there exists f(X) € 8&“,“) such that
[a, f(B)]x = 0, and so v[a, f(b)]x = 0. Let f(X)* = X"*F 4 g(X), where
g(X) € X™+'Z[X]. Then, since vab™ = v # 0 and vab™*+! = 0 = vb, we
see that
vla, F(B))k = vaf(b) = vab™ + vag(b) =

This implies a contradiction that » = 0.

For a non-empty subset I of R, let CE(U) = {a € R| [a,U]; = 0}.

Corollary 3.3. Let n and k be positive integers, R a prime ring,
and U a subset of R. If for each x € R, there ezists f(X) € S(*n) such that
f(z) € U, then one of the following properties hold:

(i) ck) =cC.
(ii) R is isomorphic to Fy, where F is a periodic field and 1 <t < kn.

Proof. Since C',’;(U) - T[*n,k)’ the assertion is clear by Theorem 3.3.

4. Structure of semiprime rings satisfying (H). Let m, n and
k be positive integers, and we consider the following conditions:

(H) For each z,y € R, there exist f(X), g(X) € £€* and k > 0 such
that [f(2), g(y)]k = 0.
(H)Em) For each z € R, there exist k£ > 0 and n > 0 such that for each

y € R, [f(2) g(y)]x = 0for some f(X) € & ) and g(X) € £
(H)('m‘n’k) For each z,y € R, there exist f(X) € E(m) and g(X) € E(n)
such that [f(z),g(y)]x = 0.
Obviously, (H)gm,n,k) implies (H){,,,, and (H)zm) implies (H).
In this section, we shall study structure of semiprime rings satisfying
the above conditions, and consequently, give generalizations of results in [6]
and [8].
In section 1, we saw that a reduced ring satisfying (H) is commutative.
However, a ring satisfying (H) with no non-zero nil ideal need not be
commutative. We begin this section by stating the following conjecture:
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Conjecture 4.1. Let R be a ring with no non-zero nil ideal. If R
satisfies (H), then R is a subdirect sum of rings each of which has one of
the following types.

(i) a commutative domain.

(ii) @ dense ring of linear transformations on a vector space V over
F, where F is a periodic field and dimpV > 1.

We claim that if the answer of K6the conjecture (i.e., a ring which has a
non-zero one-sided nil ideal contains a non-zero two-sided nil ideal) is pos-
itive, then the answer of our conjecture is also positive (see Theorem 4.2).
The proof of our conjecture seems to be out of reach, however, by making
use of Theorem 1.1, we can prove the following theorems with respect to
rings satisfying (H), which includes a generalization of [8, Theorem 3]:

Theorem 4.1. Let R be a ring with no non-zero nil ideal. If R is a
torsion ring satisfying (H), then the conclusion of Conjecture 4.1 holds.

Theorem 4.2, Let R be a ring with no non-zero nil right ideal. If
R satisfies (H), then the conclusion of Conjecture 4.1 holds.

Theorem 4.3. Suppose that R satisfies (S) and (H). If R is a
semiprime ring, then the conclusion of Conjecture 4.1 holds.

Note that Theorem 4.2 generalizes [8, Theorem 3].

In preparation for proving the above theorems, we state the following
lemmas.

Lemma 4.1. Let R be a ring satisfying (H). If a € R with a®> = 0,
then aJ is a nil right ideal, where J is the Jacobson radical of R.

Proof. By Lemma 3.1, for each z € J, there exist f(X) € Z[X] and
m > 0 such that (az)™ — (az)™*! f(az) = 0, and so (az)™ € (az)™J,
which implies (az)™ = 0. Therefore, aJ is a nil right ideal.

Lemma 4.2. Let R be a primitive ring which is not a division ring.
If R satisfies (H), then R is a dense ring of linear transformations on a
vector space V over F, where F is a periodic field and dimpV > 1.
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Proof. By hypothesis, R is a dense ring of linear transformations on
a vector space V over F, where F is a division ring and dimgV > 1. Then
Ch(R) = p # 0 by Lemma 1.3. By the structure theorem for primitive
rings, there exists a subring R’ of R which maps onto F,. Then, F; and
also F satisfy (H). By Theorem 1.1, F' is a commutative field. Let «
be an arbitrary element in F. For a(ez + €22),xe11 € F3, there exist
f(X),9(X) € £ and k > 0 such that

0 = [f(a(ea + €22)), g(aer)]k
= f(a')g(a)k[ezl + ez, €11k = f(a)!](a)kezl-

Hence we get that f(a)g(a)* = 0. Since A(X) = f(X)g(X)* € £, we see
that a is algebraic over GF(p).

Lemma 4.3 If R is a semiprimitive ring satisfying (H), then R is a
subdirect sum of rings each of which has one of the following types.

(i) a commutative field.

(ii) a dense ring of linear transformations on a vector space V' over
F, where F is a periodic field and dimpV > 1.

Proof. R is a subdirect sum of primitive rings. If R is a division ring,
then R is a commutative field by Theorem 1.1. Hence the conclusion is
now clear by Lemma 4.2.

Proof of Theorem 4.1. As is well known, R is a subdirect sum of
prime rings with no non-zero nil ideal. We may assume henceforth that R
is a prime ring with no non-zero nil ideal, and also the Ch(R) # 0. Since D
is periodic by Lemma 1.1, as we saw in the proof of Lemma 2.3, if both D
and J are non-zero, then DN J is a non-zero nil ideal. But it is impossible
by our hypothesis. Hence R is either commutative or semiprimitive. Then
we get the conclusion by Lemma 4.3.

Proof of Theorem 4.2. First, we shall show that R = R/Ann(J) is a

reduced ring. Since R is semiprime, we have
(4.1) J N Ann(J) = 0.

Let @ € R such that @ = 0. By (4.1) we can see that aJ is isomorphic
to @J. Then, by Lemma 4.1, @J is a nil right ideal, and so is aJ. By the
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hypothesis we see that aJ = 0 and thus @ = 0. We have thus seen that R
is reduced. Hence R is a subdirect sum of commutative domains by Theo-
rem 1.1 and [1, Theorem 2], and so R is a subdirect sum of semiprimitive
rings and commutative domains by (4.1). Then we get the conclusion by
Lemma 4.3.

Proof of Theorem 4.3. By Corollary 0.2, R has no non-zero nil right
ideal. Then we get the conclusion by Theorem 4.2.

Corollary 4.1. (1) ([5, Theorem 2}) Let R be a semiprime ring. If
for each z,y € R, there exist f(X),9(X) € X2Z[X] such that [z— f(z),y—
g(y)] = 0, then R is commutative.

(2) Let R be a ring with no non-zero nil right ideal. If for each z.y €
R, there exist f(X),g(X) € E*NE and k > 0 such that [f(z),9(y)]k =0,
then R is commutative.

(3) Let R be a semiprime ring satisfying (S). If for each z,y € R,
there exist f(X),g(X) € €N & and k > 0 such that [f(z),9(y)]x = 0,

then R is commutative.

Proof. (1) It is clear that R satisfies (S)’. Hence, by Theorem 4.3
and Lemma 0.1, if R is non-commutative, then there exists a factorsubring
of R which is of type (GF(p)); for some prime p. However, noting that for

€12:€21 € (GF(p))2,
[e12 — f(ei2).e21 —glen)] = €11 — €2 # 0

for all f(X),g(X) € X?Z[X), we see that R is commutative.
(2) Noting that for ez + e22, €11 € (GF(p))2.

[f(e21 + €22),9(en)] = e #0

for all f(X),g(X) € &', we can see that R is commutative by Theorem 4.2
and Lemma 0.1.

(3) Since R has no non-zero nil right ideal by Corollary 0.2, we get
the conclusion by (2).

Corollary 4.2. Let R be a semiprime ring satisfying (S)'. If for each
T,y € R, there exist positive integers m, n and k such that [z™.y")x = 0,
then R is commutative.
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Next, we shall prove the following two theorems concerning rings sat-
isfying (H)im) and (H)’(,m,n,k)' respectively.

Theorem 4.4. Let R be a semiprime ring, and m a positive integer.
If R satisfies (H)'(m), then R is a subdirect sum of rings each of which has
one of the following types.

(i) a commutative domain.

(ii) F;, where F is a periodic field and t > 1 an integer.

Theorem 4.5. Let R be a prime ring, and m,n and k positive inte-
gers. If R satisfies (H)’(’m’n’k), then R is of one of the following forms:

(i) a commutative domain.

(ii) Fi, where F is a periodic field and 1 < t < maz{kn,m}.

Taking & = 1 and m = n in Theorem 4.5, we obtain [6, Corollary 5.3].

Lemma 4.4 Let R be a primitive ring which is not a division ring.
If R satisfies (H)’(m) for some m > 0, then R = F, for some t > 1, where
F is a periodic field.

Proof. By Lemma 4.2, R is a dense ring of linear transformations on
a vector space V over a periodic field F' and dimgV > 1. Therefore, it
suffices to show that dimpV is finite. We may assume that dimpV > m.
Let vy,v2 € V such thatthey are linearly independent over F. Then, by
Lemma 3.4, there exists a € R such that v;a™ = vy # 0 = v;a™*!. Now,
by (H)zm), there exist positive integers k£ and n such that for each = € R,

(42)  [f(a),g9(2)]x =0 forsome f(X) € £(,) and g(X) € &,

Since via™ = v,, we see that v1a™ and v; are linearly independent over F.
If dimpV > nk, there exists b € R such that

v1a™ b #0, 1™t =0 and b= 0,

again by Lemma 3.4. By (4.2), there exist f(X) € £(,, and g(X) € &,
such that [f(a),g(b)]x = 0. This forces a contradiction

0 = »[f(a),g(b)]x = v1f(a)g(b)* = v;a™b™* # 0.



SEMIPRIME RINGS SATISFYING CERTAIN CONDITIONS 129

Hence dimpV < nk.

The above proof enables us to see the following:

Lemma 4.5. Let R be a primitive ring which is not a division ring,
and let m,n and k be positive integers. If R satisfies (H ’(’m k) then
R = F;, where F is a periodic field and 1 < t < maz{nk,m}.

Proof of Theorem 4.4. Since R is a subdirect sum of prime rings,
we may assume that R is a prime ring. If R is a division ring, then R
is commutative by Theorem 1.1. Hence, if R is semiprimitive, then it
is a subdirect sum of commutative fields and primitive rings which are
not division rings. Then each of those primitive rings is of type (ii) by
Lemma 4.4. Therefore, it is enough to consider the case that R has the
non-zero radical J. In this case, we shall show that R is a reduced ring.
Suppose, to the contrary, that there exists a non-zero a € R with a2 = 0.
By Lemma 4.1, aJ is a nil right ideal, and aJ # 0 because of primeness
of R. Since R has no non-zero nilpotent ideal, aJ cannot be of bounded
index of nilpotency by the well-known Levitzki’s result. Hence there exists
b € aJ such that b*™ = 0 # ™. By (H)Em], there exist k,n > 0 such that
for each y € J,

[b™ — 6™ %1 £(b), g(b™ )]k = 0

for some f(X) € Z[X] and g(X) € &(n- Since b*™ = 0, we get that
0 = g(b™y) (5™ — 5™ (b)) = g(b™y) b (1 — B (5)),

and so g(b™y)*¥b™ = 0 because of b € J. Hence we have

(4.3) g(b™y) ™y = 0.

We can put g(X)F = Xk — Xknt1g,(X) for some go(X) € Z[X]. By (4.3),
we have that

0 = (b™y)km ! — (b)Y 2go(b™y) = (B™y)F (1 - (5™ y)go(B™y)).

Since b™y € J, we see that (b™y)**+! = 0 for all y € J. We get a
contradiction that 6™J is a non-zero nil right ideal of bounded index. We
have thus seen that R is a reduced ring. Therefore, R is a commutative
domain by Theorem 1.1.
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Proof of Theorem 4.5. In view of Theorem 1.1, it is enough to con-
sider the case that R is not reduced. Let 0 # a € R with a% = 0, and
s = nk + m. By Remark 3.1, for each y € aR, there exists f(X) € Z[X]
such that

(4.4) v — vt f(y) =0,

and thus
v =y f(y) = () = = i f(y)

forall ¢ > 0. Hence, if a R is nil, then a R is a non-zero nil right ideal of index
s, whence aR contains a non-zero nilpotent ideal of R, a contradiction.
Therefore, we can see that there exists non-zero idempotent e = y° f(y)°.
We consider the ring eRe. Note that the primeness of R is inherited by
eRe, and that eRe satisfies (H)z’mnk) By Theorem 4.4, eRe is a subdirect
sum of commutative rings and Fi’s, where F' is a commutative field and
t < maz{nk,m} = t' by Lemma 4.5. By the well-known Amitsur, Levitzki
result, F; satisfies the standard identity of degree 2t', and so does eRe.
Therefore, by the well-known Posner’s theorem, eRe is an order in A; for
some division ring A and ! > 0. Since eRe C aR, eRe satisfies (4.4). Hence
all the regular elements of e Re are invertible in eRe, which implies eRe =
Aj. Then we can see that R has the non-zero socle. As is well known, a
prime ring with the non-zero socle is a primitive ring. Therefore, again by
Lemma 4.5 and Theorem 1.1, we get that either R is a commutative field
F or R = F, for some periodic field and 1 < t < maz{nk,m}.

Corollary 4.3. Let m, n and k be positive integers, and R a semi-
prime ring. If R satisfies (H)l(,'m,n,k , then R satisfies the standard identity
of degree 2t, where t = max{kn,mi.

Proof. This follows from Theorem 4.5 and the well-known Amitsur-
Levitzki result for the polynomial identity satisfied by matrices.
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