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STRUCTURE OF RINGS SATISFYING CERTAIN
POLYNOMIAL IDENTITIES AND
COMMUTATIVITY THEOREMS

Isao MOGAMI

0. Introduction. Throughout, all rings will mean associative rings
which are not necessarily commutative. Moreover, Z will represent the ring
of rational integers, and by Z(X,Y) will be meant the free algebra over
Z in two indeterminates. For positive integers ny,---,n, their greatest
common divisor is denoted by (n1,--+,n,).

In [5], Y. Kobayashi defined an additive map & of Z(X,Y) to Z, and
indicated that for f(X,Y) € Z(X,Y), &(f(X,Y)) is closely related with
the commutativity of rings with 1 and satisfying the polynomial identity
f(X,Y) = 0, where & will be defined later. In [6], he turned his attention to
the fact that #((XY )" - X"Y") = —n(n—1)/2 for n > 1, and investigated
the structure of n(n — 1)/2-torsion free rings with 1 and satisfying the
polynomial identity (XY)* — X"Y"™ = 0. Coincidentally, he proved the
following ([6, Theorem]): Let R be a ring with 1. If E(R) = {n € Z|
n > 0 and (zy)* = 2"y for all z,y € R} contains integers ny,-+-,n, > 2
such that (n1(n1—-1)/2,---,n.(n,—1)/2) = 1 and some of n;’s is even, then
R is commutative. In connection with the above theorem, Y. Kobayashi
and the present author raised respectively the following conjectures:

Conjecture 0.1 ([7, Conjecture 1]). Let R be a ring with 1. If
E(R) contains integers ny,---,n, > 2 such that R is (ni1(nq — 1)/2,---,
nr(nr — 1)/2)-torsion free and some of n;’s is even, then R is commutative.

Conjecture 0.2 ([16, Conjecture (I)]). Let R be a ring with 1. If
for each z,y € R, there exist integers n; > 2 (¢ = 1,---,r) such that
(n1(n1—-1)/2,---,n.(n, —1)/2) = 1 and some of n;’s is even and such that
(zy)™ = z™y™ (i = 1,-+-,r), then R is commutative.

In [8] and [9], Y. Kobayashi gave partial affirmative answers to the
above conjectures. In §2 and §4 of the present paper, those results will be
improved more precisely and satisfactorily.

Meanwhile, J. Grosen [2] generalized some known commutativity
theorems for a ring with 1 and satisfying certain polynomial identities
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by assuming that the identities hold merely for the elements of a certain
subset of the ring rather than for all elements of the ring. Almost all the
results obtained in [2] have been improved and sharpened in [13]. In §3 of
the present paper, we shall prove some commutativity theorems for a ring
with 1 and satisfying polynomial identities of the form (XY )* - X"Y" =0
merely for the elements of a certain subset of the ring,.

Recently, W. Streb [17] gave a classification of non-commutative rings.
H. Komatsu and H. Tominaga applied the classification to the proof of
some commutativity theorems, in [11], [12], [13] and [14]. In our subsequent
study, we shall use frequently several results obtained in [12] and [14],
which will be summarized in §1 together with notations employed in the
present paper.

1. Preliminaries. Throughout the present paper, R will represent
a ring with 1. We use the following notations. Let M be a non-empty
subset of R, and & a positive integer.

C = C(R) = the center of R.

D = D(R) = the commutator ideal of R.

N = N(R) = the set of all nilpotent elements in R.

N*=N*(R)={z € R| 2?2 =0}.

J = J(R) = the Jacobson radical of R.

U = U(R) = the set of units in R.

Q@ = the intersection of the set of non-units in R with the set of

quasi-regular elements in R = (1 + U)\U (2 NU J).

Cr(M) = the centralizer of M in R.

Anng(M)={z € R|zM = Mz = 0}.

As usual, for r,y € R, let [z,yy = [z,y] = 2y — yz, and define,
recursively [z, y}x = [z, y]k-1,y] for all k > 1.

Z(X,Y) = the free algebra over Z in the indeterminates X and Y.

K =Z(X,Y)[X,Y]Z(X,Y).

K. = the set of all f(X,Y) € K each of whose monomial terms is of

length > & (together with 0).
W = the set of all words in X and Y, namely products of factors each
of which is X or Y (together with 1).

As is well-known, K = K, coincides with the kernel of the natural
homomorphism of Z{X,Y) onto Z[X,Y]. Let f(X,Y) =3 fi;(X,Y) be
a polynomial in Z(X,Y), where f;;(X,Y) is a homogeneous polynomial
with degree 7 in X and degree j in Y. Then we can easily see that f(X,Y’)
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is in K if and only if for each i, j, the sum of the coeflicients of f;;(X,Y’)
equals zero.

Following [5], we denote by @ the additive map of Z(X,Y) to Z defined
as follows: For each monic monomial X;--- X, (X; is either X or Y),
&(Xy--+X,) is the number of pairs (¢,7) such that 1 < ¢ < j < r and
X; = X, X; =Y. We can easily see that, for any f(X,Y) € Z(X,Y),
&(f(X,Y)) equals the coefficient of XY occurring in f(1 + X,1 + Y).
Now, let f(X,Y) € K. Then f(1+ X,14+Y) € K, and so there exists
9(X,Y) € K3 such that f(1+ X,14+Y)=&(f(X.Y))[X,Y]+ g(X,Y).

Further, we put

k if £ is even,
e(k) = {k. 1 ifkis odd.

We consider the following conditions:
(S) For each z,y € R, there exists f(X,Y) € K3 such that [z,y] =

f(z.9).
Q(k) If z,y € R and k[z.y] = 0 then [z,y] = 0.

By [12, Theorem 1.2, Proposition 1.6 and Proposition 1.7], we obtain
the next

Theorem 1.1. Let R be a non-commutative ring with 1. Then there

ezists a factorsubring of R which is of type a)!, b), c), d)! ore)l:
GF(p) GF(p) :
1 ‘ mbe:

a) ( 0 GF(p))’ where p a prime number.

b) My(K) = {(g a&))‘ a,f€ K}, where K is a finite field with a
non-trivial automorphism o.

c) A non-commutative division ring.

d)! A domain which is generated by 1 and a simple radical subring.

e)! A ring B = (1,2,y) with 1 such that D(B) is the heart of B and
z,y € Anng(D(B)).

Now, let (a 5 ) be an element of M (A"). Let K7 = {y € K'| o(7) =

o(a)
v}. Then ’
o* (o(a¥)—a*)a(a)—a)T'B) .
(1.1) (3 g )k: (Ok i @D > o g K7,
o(@) of ka™ 74 ' if o € K°.

0 o®
This formula will be used repeatedly in §2 and §4.
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By [12, Proposition 1.3(2), Lemma 1.4(1) and (4), and Proposi-
tion 1.7], we obtain

Lemma 1.2. Let R be a ring with 1. If ay # 0 = yx for some
z,y € R, then there erists a factorsubring of R which is of type a)! or e)l.

Lemma 1.3 ([12, Lemma 2.1]). Let R be a ring satisfying (S) such
that D C N. Then there hold the following:

(1) N is a commutative ideal of R.

(2) Cr(N™) is a mazimal commutative subring of R.

(3) Annpg([N*,R]) is the largest commutative ideal of R and is con-
tained in Cr(N™).

(4) For any non-empty subset M of N, R/Annr([M, R]) has no non-
zero nil ideals.

(5) Letc € N, xz € R, k a positive integer, and p a prime number.

(i) If 2*[c,z] = 0 = [¢, z]z* then [¢,2] = 0.

(ii) If [c,z]x = O then [c,z] = 0.

(iii) If [c,pz] = 0 = [e,2P], then [c,z] = 0.

(iv) If the additive order of [c,z] is finite, then it is square-free.

The next is included in [14, Proposition 2.9(2)].

Lemma 1.4. Let R be a non-commutative subdirectly irreducible ring
satisfying (S). Suppose that R satisfies the identity (XY )" - X"Y", X] =0
with some n > 1. Then R is isomorphic to some M, (K).

The next is included in [14, Lemma 2.10(2)].

Lemma 1.5. Let n be a positive integer. Let R = M,(K), and
put t = (|K| = 1)/(|K?| = 1). If R satisfies the identity [(XY )"+ —
XnHlyn+l X| = 0, then t divides n orn + 1.

Theorem 1.6 ([12, Theorem 3.6]). Let R be a ring with 1, and n a
positive integer. Then the following conditions are equivalent:
1) R satisfies the identities [X*, Y] =0 and [X - X™,Y -Y™] =0
for some m > 1.
2) R satisfies (S) and the identity (X™,Y"] = 0.
3) R is a subdirect sum of rings each of which has one of the following



RINGS SATISFYING CERTAIN POLYNOMIAL IDENTITIES 89

types:
i) A commutative ring.
ii) My(K), where (|K| —1)/(|K?| — 1) divides n.

The next is included in [14, Theorem 2.12(II)].

Theorem 1.7. Let R be a ring with 1, and n a positive integer. If
k =mn(n+ 1)/2 is odd, then the following conditions are equivalent:
1) R satisfies Q(k) and the identity (XY )* — Y™ X" = 0.
2) R satisfies Q(k) and the identity (XY )™*t! — Xn+lyn+l — g,
3) R is a subdirect sum of rings each of which has one of the following
lypes:
i} A commutative ring.

ii) My (K), where (|| — 1)/(| K| — 1) divides e(n + 1) and 2K = 0.

2.0n Conjecture 0.1. Given z,y € R, we denote by E(z,y) the set
of integers n > 1 such that (zy)" = 2"y"; and E‘(z,y) = E(z,y)Nn E(y,z).
For a positive integer n, an element z of a module G is said to be n-torsion
free if the order of z is infinite or relatively prime to n. Obviously, every
element of G is n-torsion free if and only if nz = 0 implies 2 = 0 for any
reG.

The purpose of this section is to give a complete answer to Conjec-
ture 0.1. In [8], Kobayashi proved the following theorem which is a partial
answer to Conjecture 0.1.

Theorem A. Let R be a ring with 1. If for any z,y € R,
E’(:z:,y) contains (at least one) even integers ny,---,ns and odd integers
Nsgl, " 0p (r > s > 1) such that (ny,+++ ,ngyngp1 — 1,-++,np — 1) is 2
(or a multiple of 4) and [z,y] is (n1(n1 — 1)/2,--- ,n.(n, — 1)/2)-torsion
free, then R is commutative.

In connection with the above theorem, in [9], he determined the
structure of n(n — 1)/2-torsion free rings with 1 satisfying the identity
(zy)* = 2™y", when n is a positive even integer. Recently, this result has
been generalized by Komatsu and Tominaga (see [14, Theorem 2.12]). The
main theorems of this section can be stated as follows:

Theorem 2.1. Let R be a ring with 1. Suppose that, for each z,y €
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R, E(z,y) contains ny,---,n, such that (e(ny),---,e(ns)) = 0 (mod4)
and [z,y] is (n1(ny — 1)/2,-- -, ns(ns — 1)/2)-torsion free. Then R is com-
mutative.

Theorem 2.2. Let R be a ring with 1, and n a positive integer such
that n = 2 (mod 4). Then the following conditions are equivalent:

1) R satisfies Q(n(n — 1)/2) and the identity (XY )* — X"Y™ = 0.

2) R satisfies Q(n{n + 1)/2) and the identity (XY )" - Y*X" = 0.

3) R satisfies Q(n(n + 1)/2) and the identity (XY )1 — xntlyntl
=0.

4) For each v,y € R, E'(a:,y) contains my,---,ng and my,---,
m, such that (e(ny),---,e(ns)) = n and [z,y] is (my(mq — 1)/2,---,
me(m, — 1)/2)-torsion free.

5) R is a subdirect sum of rings each of which has one of the following
types:

i) A commutative ring.

i) My(K'), where K is a finite field of characteristic 2 with a non-
trivial automorphism o such that (| K| — 1)/(|K7| — 1) divides n/2.

In preparation for proving our theorems, we state the next lemma.

Lemma 2.3. Let R be a ring with 1. Suppose that, for each z,y €
R, E(z,y) contains my,-+-,m, such that [z,y] is (mi(mq — 1)/2,---,
my(m, — 1)/2)-torsion free. Then there hold the following:

(1) DCN.

(2) 2[N,R] =0, namely 2N C C.

(3) R satisfies (S).

(4) R is completely rveflexive, namely xy = 0 implies yz = 0 for any
z,y € R.

(5) Leta € N, and ¢ € R. If n € E(1+ a,z) then [a,2°™] = 0.

Proof. In preparation for proving (1), we state three claims.

Claim 1. Ifz,y€ Rand n € E(r,y), then y[z™,y" "ty = 0.
Proof. Actually, y[z™,y" ]y = ya™y" — y"z"y = y(zy)" — (yz)*y
=0.

Claim 2. For each 2,y € R, and for each positive integer k, there
exists a positive integer m and f(X,Y) € Ki such that m(z,y] = f(z,y)
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and [z, y] is m-torsion free.

Proof. There exist positive integers m,---,m, in E‘(l—}-m, 1+y) such
that [z,y] = [1 + z,1 + y] is m-torsion free, where m = (m;(m; — 1)/2,
s++,my(m,; —1)/2). Then we can easily see that there exist f;(X,Y) € K3
such that

0=Q4+z)™A+ )™ - {(1+z)(1 +y)}™
= mi(mfi_l)[x,y] + fi(z.y).

Hence we obtain m[z,y] = f(z,y) with some f(X,Y) € K3. Claim 2 is an
easy consequence of this fact.

Claim 3. N is a commutative ideal of R.

Proof. Let a € N, and z € R. Obviously, a?* = 0 for some
positive integer s. Now, choose n; € E(a.,:r), and inductively n;4; €
E(a"""”",x"l"'nf) (¢t = 1,---,8—1). Then ny---n, is in E‘(a,m) and
a™"s = (), and so both az and ze are in N. Now let ¢ € N, and suppose
that ac = 0. Then cza = [¢,za] = 0. If not, Claim 2 shows that there
exists a positive integer m such that 0 # m[e,za] = f(c¢,za) with some
f(X,Y) € K,,, where n is a positive integer such that ¢ = 0 = (za)™.
But this forces a contradiction that f(c,za) = 0. We have thus seen that
if c € N and ac = 0 then ¢Ra = 0. Now, let b € ¥, and 2 = 0 = b*.
Then, by the above, we see that a’Ra’ = 0, provided i + j > v. Fur-
ther, we see that a’Ra’Ra* = 0, provided i + j + k > v. Continuing
this procedure, we obtain eventually (a)” = 0; similarly, () = 0. If
[a,b] # 0 then Claim 2 shows that there exists a positive integer p such
that 0 # pla,b] = g(a,b) with some g(X,Y) € K,,. But, as is easily
seen, g(a,b) = 0. This contradiction shows that ¥ is commutative, and
therefore N forms a commutative ideal.

(1) Note that N is an ideal by Claim 3. It suffices to show that R/N
is commutative. Let x,y € R. Then, by Claim 1, y[z",y" !]y = 0 for
some n > 1. Since y[z”,y""!] and [z™,y" ]y belong to N, we see that

[mn,yZ(n—l)] — yn—l[xn’yn—ll + [xn’yn—l]yn—l € N.
Hence R/N is commutative, by [3, Theorem)].

Claim 4. Let @ € N, z € R, and n a positive integer. If z"[a,z] =
0 = [a,z]z", then [a,z] = 0.
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Proof. It is easy to see that [a,{z)?"] = 0. Suppose, to the contrary,
that [a,2] # 0. Then Claim 2 shows that there exists a positive integer
m and f(X,Y) € K, such that 0 # m[a,z] = f(a,z). Since {z)?" C
Cr(a), N is commutative and N2 C C (Claim 3), we can easily see that
f(a,z) = 0. But this is a contradiction.

Claim5. Ifee N,z € R,andn € E(1+a,:r), then nzfa, " ')z = 0,
(n = 1)[a,z"] = 0 and n(n — 1)[a,z] = 0.
Proof. Noting that N2 C C by Claim 3, we see that

nzfa,z" 'z = z[(1+a)*, 2" ']z = 0
by Claim 1, and

(n—Dfa,2"] = -(1+a) {1+ a)z",(1+ a)* )1 + a)}(1 + a)”"
=0.

From those above, we obtain
n(n - 1)[e,z)z" = n(n — ]a, 2"z — n(n — Dz[e, 2"z = 0;

and similarly, n(n — 1)z"[a,z] = 0. Hence n(n — 1)[a,z] = 0, by Claim 4.
(2) Let @ € N, and € R. Then E’(l + a,z) contains mq,---,m,
such that [a,z] = [1 + a,z] is m-torsion free, where m = (m1(m; — 1)/2,
-oo,mp(m, — 1)/2). By Claim 5, mi(m; — 1)[a,z] =0 (i = 1,---,7); and
so 2m[a,z| = 0. Hence 2[a,z] = 0.
(3) Let z,y € R, and choose n in E(z,y) Since 2D C 2N C C by (1)
and (2), we see that

0= 2y[z", 4" 'y = 2(n - Dlz",yly" = 2n(n - )"z, y]y"
by Claim 1. Similarly, for n’ € E(z,1+ y), we obtain
2n'(n’ — 1)z™ z,y)(1 + y)* = 0.

Then, as is easily seen, lz*[z,y] = 0 for some positive integers k,!.
Repeating the above process, we see that !/[z,y] = 0 for some posi-
tive integer I’. Now, by Claim 2, there exists a positive integer m and
f(X,Y) € K3 such that m[z,y] = f(z,y) and [z,y] is m-torsion free.
Since the additive order of [z,y] is finite, there exists an integer m’ such
that [z,y] = m'm[z,y] = m'f(z,y).
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(4) Obviously,

{e11(e12 + €22)}" —eli(€1z + €22)" = —€13 # 0

for any integer n > 1. Hence R has no factorsubring of type a)!. On the
other hand, R satisfies (S) by (3), and so R has no factorsubring of type
e)l. Hence, by Lemma 1.2, R is completely reflexive.

(5) By Claim 5, we see that nz[a,z" !]z = 0 = (n — 1)[a,2?]. If
n is even then [a,z"] = 0 by (2). On the other hand, if » is odd then
z[a.z" ']z = 0 again by (2). Further, z%a,z""'] = 0 = [e,2"7}]2?,
by (4). Now, Claim 4 shows that [a,z""!] = 0.

Proof of Theorem 2.1. By Lemma 2.3(1) and (3), D C N and R
satisfies (S). Hence Cr(V) is commutative by Lemma 1.3(2). Now, let
a € N, and z € R. Then E(l + a,z) contains ny,---,n, such that
(e(n1),+--,€e(ns)) = 0 (mod4) and [a,2] = [1 + a,z] is (ny(n; — 1)/2,
--+,ng(ns — 1)/2)-torsion free. As is easily seen, (e(n1),---,e(ns)) =
0 (mod4) if and only if (ny(ny — 1)/2,---,ns(ns — 1)/2) is even. Hence,
in view of Lemma 2.3(2), we obtain [a,z] = 0. We have thus seen that
R = Cr(N), which is commutative.

Proof of Theorem 2.2. Obviously, 1) implies 4), and Theorem 1.7
shows that 2), 3) and 5) are equivalent. It suffices therefore to show that
4) = 5) = 1).

4) = 5). Suppose that R satisfies 4). Then, by Lemma 2.3(1)
and (3), D C N and R satisfies (§). Let a € N, and z € R. Then
E(1 4 a,z) contains ny,--+,n, such that (e(n;),---,e(n;)) = n. Without
loss of generality, we may assume that n = —mye(ny) — -+ — mqee(n,) +
myp1€(nig1) + -+ + mse(n,) with some m; > 0. Put k& = mye(ny) +
- 4+ mye(n;) and I = mypie(nig1) + -+ - + mse(ns). By Lemma 2.3(5),
[a,2¢(™)] =0 (i = 1,---,s). Then we see that

[a,2"z* = [a,2"*"] = [a,2] = 0,

and similarly z*[a,2"] = 0. Hence [a,2"] = 0, by Lemma 1.3(5)(i). Fur-
ther, Cr(N) is commutative by Lemma 1.3(2). Hence R satisfies the
identity [X™,Y™"] = 0. Now, we can apply Theorem 1.6 to see that R is a
subdirect sum of a commutative ring and rings each of which is isomorphic
to some M,(K'), where (JK'| — 1)/(|K°| — 1) divides n. Furthermore, by
Lemma 2.3(2), 2R C Cgr(4V), which is commutative. Hence 4[R,R] = 0,



94 I. MOGAMI

and so we can easily see that 2K = 0. Then (|K| — 1)/(|K?| — 1) is odd
and divides n/2.

5) = 1). It is easy to see that R satisfies Q(n(n — 1)/2). Suppose
that M, (k) is of type ii). Then, o™ € K7 for all @ € K. Since, n is even
and K is of characteristic 2, we can easily see that

EARCE

0 ola))] ~\0 a™

for all @,8 € K, by (1.1) in §1. Hence, M (k') satisfies the identity
(XY)* — X*"Y" =0.

3. Commutativity theorems for rings satisfying the polyno-
mial identities of the form (XY )" — XY™ = 0 on certain subsets.
In this section, we shall generalize some known commutativity theorems for
aring R satisfying the polynomial identities of the form (XY )*-X"Y" =0
by assuming that the identities hold merely for the elements of a certain
subset of R rather than for all elements of R.

Let k be a positive integer, and A a subset of R. We consider the
following conditions:

Po(k,A) (zy)* = 2Fy* forall 2,y € A.
Pi(k,A) (zy)f = y*2* forall 2,y € A.

The statements in the following theorem are included in [15, Theorem 2]
and [18, Theorem 4], respectively.

Theorem B. Suppose that a ring R with 1 satisfies Po(k,R) (k =
n,n+2,n+4).

(1) If n is even, then R is commutative.

(2) Ifz* € C for all x in R, then R is commutative.

More recently, Komatsu and Tominaga proved (13, Theorems 2.4
and 2.7] which encompass several results of Grosen [2]. From [13, The-
orems 2.4 and 2.7], we readily obtain

Theorem C. (1) Suppose that a ring R with 1 satisfies Py(k, R\Q)
(k=m,m+ 1,n,n+1). If R satisfies Q((m,n)), then R is commutative.

(2) Suppose that a ring R with 1 satisfies Po(n + 1,R\Q) (or
P3(n,R\Q)). If R satisfies Q(n(n + 1)), then R is commutative.
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Obviously, Theorem C(2) includes [10, Theorem 1(b) and Theo-
rem 2(b)]. The first main theorem of this section is stated as follows:

Theorem 3.1. Let R be a ring with 1. Let ny,---,n, be positive
integers such that (nq(ny — 1)/2,--,n.(n, — 1)/2) = 1. If R satisfies
Po(ni, R\J) (i = 1,---,7), then R is commutative.

In preparation for proving Theorem 3.1, we state the following two
lemmas.

Lemma 3.2. Let R be a ring with 1. Let k,m,n be non-negative
integers, and f: R — R a function such that f(z) = f(z+1) forallz € R.
If f(z)(z + k)™z™ = 0 (or 2™(z 4+ k)™ f(z) = 0) for all z € R, then
(E+1)™*f(z) = 0. In particular, if f(z)z™ = 0 (or 2" f(z) = 0) for all
T € R, then f(z)=0.

Proof. Obviously,

0= f(z)(z+k+1)™(z+ 1)z +k)"z"!
= (k+ )™ f(z)(z + k)™z" L.

Continuing this process, we get (k + 1)™" f(z)(z + k)™ = 0. Next, we
obtain

0= (k+ )™ f()((& + k) + 1)™(z + k)™~
= (k+ )™ f(z)(= + k)™,

Continuing this process, we conclude that (k + 1)™" f(z) = 0.

Lemma 3.3. Let R be a ring with 1. Suppose that R satisfies
Po(n,R\Q) (n > 1). Then, for each u € U,u*=V) € C, and D C N.
In particular, if R satisfies Po(k,R\Q) (kK = n (> 1),n + 2,n + 4), then
u? € C for eachu e U.

Proof. Let u,v € U, and z € R\@. Then
u[z™, u* Nu = uz™u® — vz u = u(zu)® — (uz)*u = 0,

and so [z",u""!] = 0. In particular, [v",u""1] = 0 = [u",v""!]. Accord-
ingly, [v", u"(*~ D] = 0 = [u™"~1), "], whence [~ 1), v] = 0 follows.
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Now, let u € U, and z € R. In case u" 'z € @, by the above,

0= [u‘n(n_l),l _ un—lx] — _un—l[un(n—l)’m]?

and so [u™™=1 z] = 0. Similarly, in case z € Q, we obtain [u**~1) z] = 0.

Finally, we consider the case that v~ !z ¢ Q and z ¢ Q. Obviously,
"1 ¢ Q. Recalling that [z",u""1] = 0, we see that

(mn—lun—lx)n — xn(n—l)(un—lx)n - xn(n—l)un(n—l)_xn

— mnzun(n—l}.
On the other hand,

(zn~lun—1x)n — mn—l(un—lxn)n—lun—lm
- - -1)2 p—
= " lxn(n l)u(n 1) Wz

2_ -
— " 1un(n 1):1,‘.

Hence z°~1[u™™~1 z] = 0, and so [u**~1 2] = 0 by Lemma 3.2.

Now, it is easy to see that R satisfies the polynomial identity
{(XY)" - XY™} Z[(1 - X)"~D (1 - y)"=D] = o.

But, no M3(GF(p)). p a prime, satisfies the above identity, as a consider-
ation of the following elements shows: X = ey, Y = €12 + €22, Z = e2.
Hence, D C N by [1, Theorem 1] (or [4, Proposition 2]).

Noting that (n(n—1),(n+2)(n+1),(n+4)(n+3)) = 2, we can easily
see the latter assertion.

Proof of Theorem 3.1. First, we shall show that J is commutative.
Let z,y € J. Then

0=(1+z)"(1+y)™ - {1 +2)1+y)}"™
n;(n; — 1
= %[z,y] + fi(z.y),
where f;(X,Y) € Ks. Since (ni(n1 — 1)/2,---,n,(n — 1)/2) = 1, we
see that J satisfies the condition (S) (and D C N by Lemma 3.3). By
Lemma 3.3, v*(®~1) ¢ C for each v € U (t=1,---,7), so that u? € C.
Now, let a € J, and d € N*. Then 2d = 1 — (1 — d)? € C, and [d,a?] =
[d,(1 - a)?] +[2d,a] = 0. Now, by Lemma 1.3(5)(iii) shows that [d,a] = 0.
Hence [N*,J] = 0. By Lemma 1.3(2), this implies that J is commutative.
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Noting that J is a commutative ideal, we readily see that [J,R]J =
[J, RJ] = 0. This enables us to see that if e is in J and z in R then

(za)" — z™a™ = z{(az)™ ™' — 2™ @™ '}a € 2([a,z])a = 0.

Similarly, (az)™ —a™z™ = 0. We have thus seen that R satisfies Py(n;, R).
Repeating the argument employed at the opening of this proof, we see that
R satisfies (S) (and D C N). Now, by Lemma 1.4, R is a subdirect sum
of commutative rings and some M,(/K)’s. Suppose, to the contrary, that
M, (K) appears as a factor of the subdirect sum. Then, by Lemma 1.5,
(1K= 1)/(|K?| — 1) divides n;(n; — 1) (i = 1,---.7), and so does 2. But
this is impossible.

Corollary 3.4. Let R be a ring with 1, and n a positive integer.
If R satisfies Po(k, R\J) (k = n,n+2,n +4), then R is commutative.

Proof. It suffices to note that (n(n — 1)/2,(n + 2)(n + 1)/2,
(n+4)(n+3)/2)=1.

Theorem 3.1'. Let R be a ring with 1. Let ny,---,n, be positive
integers such that (ny(ny — 1)/2,---,n.(n, — 1)/2) = 1. If R satisfies
Py(n;, R\N) (i =1,---,7), then R is commutative.

Proof. Since D C N by Lemma 3.3, N forms an ideal of R. Then,
careful scrutiny of the proof of Theorem 3.1 shows that R is commutative,

Corollary 3.4'. Let R be a ring with 1, and n a positive integer.
If R satisfies Po(k, R\N) (k = n,n+2,n +4), then R is commutative.

Corollary 3.5. Let R be a ring with 1.

(1) If there exist positive integers ny,--+,n, with (ny(nq — 1)/2,:--,
ny(nr —1)/2) = 1 such that R satisfies Po(n;, R) (i = 1,---,r), then R is
commutative.

(2) If there exist positive integers m, n with (m,n) = 1 or 2 such that
R satisfies Po(k,R) (k =m,m+ 1,n,n + 1), then R is commutative.

(3) If there exists a positive integer n such that R satisfies Po(k, R)
(k=n,n+2,n+4), then R is commutative.

Needless to say, Theorem B is included in Corollary 3.5(3).
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Now, by making use of Corollary 3.5, we shall prove the following two
theorems, which are related with Theorem C.

Theorem 3.6. Let R be a ring with 1. Suppose that R satisfies
Po(k,R\Q) (k=n,n+2,n+4).

(1) If n is even, then R is commutative.

(2) If 2[z,a] = 0 implies [z,a] = 0 for eacha € Q and x € R, then R
is commutative.

Theorem 3.7. Let R be a ring with 1. Suppose that R satisfies
Py(k,R\Q) (k =n,n+2,n+4). Then R is commutative.

Proof of Theorem 3.6. In view of Corollary 3.5, it suffices to show
that R satisfies Po(k,R) (k = n.,n+2,n+4).
Let u,v € U, and z € R. Then (vu)? € C, by Lemma 3.2. Hence

0= (,vu)Z,Un,un _ ,Un+2un+2 — vn(vu)2un _ 2)11-}-2“114!—2

= " [u, v]u™t?,

and so [u,v] = 0. In particular, [Q,u] = [u,1 — @] = 0. From this we see
that
(3.1) (zu)* = z*uF (k=n,n+2,n+4).

(1) Noting that n is even and [z,u%] = 0 by Lemma 3.3, from (3.1)
we get
unmn(mu)2 — xnun(xu)2 — In+'2un+2 — ,unwnx2u2’

whence z"*!{z, u] = 0 follows. By Lemma 3.2, [z, u] = 0. This proves that
@ C C. Hence R satisfies Py(k, R).

(2) In view of (1), we may assume that n is odd. Then, noting that
[z,2%] = 0 by Lemma 3.3, from (3.1) we get

(zu)’zu" = (zu)"T? = 220 %" = 2"t n,

whence zu[z,u]z™ = 0 follows. In this equation, replacing z by x + 1 and
multiplying z” from right, we obtain [z, u](z + 1)"z" = 0. By Lemma 3.2,
27’ [z,u] = 0. Thus [z,] = 0, and so [z,Q] = 0 by the hypothesis. Hence
R satisfies Po(k, R).

Proof of Theorem 3.7. Obviously, R satisfies Po(k + 1, R\Q) (k =
n,n+ 2,n+ 4). By Lemma 3.3, u? € C for each v € U. In case n is odd,
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Theorem 3.6(1) guarantees the commutativity of R. Thus, henceforth, we
may restrict our attention to the case that n is even. Let u € U, and
z € R. Then, as was shown in the proof of Theorem 3.6, [Q, u] = 0. From
this and PJ(k, R\@), we see that

(3.2) (zu)f = v*2*  (k=n,n+2,n+4).
Noting that n is even and [z, u?] = 0, from (3.2) we get

unzn(mu)Z — un+2xn+2 — _un$n+2 u2’

whence z"t1[z,u] = 0 follows. By Lemma 3.2, [z, u] = 0. This proves that
R satisfies Pj(k, R), and also Po(k + 1, R). Hence R is commutative, by
Corollary 3.5.

4. On Conjecture 0.2. In [8, Theorem 2], Y. Kobayashi proved the
following theorem which gives an affirmative answer to Conjecture 0.2 in
a somewhat weak form.

Theorem D. Let R be a ring with 1. If for each z,y € R, E(z,y)
contains integers ny, .-+, n, such that (n1(ny —1)/2,---,n.(n, —1)/2) = 1
and some of n;’s is even, then R is commutative.

In this section, we shall prove a generaliation of Theorem D. We con-
sider the following conditions:

(#) For each x,y € R, there exist integers ¥ > 0, n > 1 and words w(z,y),
w'(z,y) € W such that

w(z,y){(zy)" — 2"y }w'(z,y) = 0 = y*{(yz)" — y"z"}z*.

(§) For each z,y € R, there exist non-negative integers 1y < 7 < r3 <
ry <15 < rg < 17 < 18 With 1 < g, positive integers n; (1 < ¢ < rg),
mi (rg+1 < i <), i (ra+1 < i < rg), and words w;(z,y),

wi(z,y) € W (1 < i< rg) such that

(#)o (n'l(nl +1)/2,---, n”‘z(nrz + 1)/21 M4 1Nrat1y 0 * 7y My Ny
1My 10y 41,00 lrgmrgnrg) = 1,

(1 wilz, y){(zy)™ — y"z™}wi(z,y) =0 (1<i<m),

(D2 wiz,y){(yz)™ —z™y™ jwi(z,y) = 0 (n+1<i<n),

(B3 wile, g™ y™ )™ — (y™a™ ) Jwl(z,5) = 0 (2 +1 < i < 1s),
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()4 wiz, y)[z™, y™]wi(z,y) =0 (rs+1<i<ry),
(£)s wi(z,y)zh, (z™iy™ )M wi(z,y) = 0 (ra+1<i<rs),
(e wilz, y)[z", (y™z™ )" wi(z, y) = 0 (rs+1<i<re),
()7 wilz, y)[y", (@™ y™ )™ wl(z,y) = 0 (re + 1< i< ry),
(Ds wi(z, y)[g", (y™iz™)™wl(z,y) = 0 (rr +1< i< rg).

Now, the main theorem of this section is stated as follows:

Theorem 4.1. Let R be a ring with 1. If R satisfies () and (),
then R is commutative,

According to Theorem 1.1, in order to complete the proof of Theo-
rem 4.1, it suffices to prove the following two lemmas.

Lemma 4.2. If R is of type a)', c¢) or d)!, then R does not sat-
isfy (*).

Lemma 4.3. If R is of type b) or e)!, then R does not satisfy ().

Proof of Lemma 4.2. First, assume that R is of type a)'. Then, for
any integers k > 0 and n > 1, we see that

e{cl{(ell(ew + e22))" —eyi(e12 + 622)”}(612 + 622)k = —e12 #0.

Hence R does not satisfy (*).

Next, assume that R is of type c) or d)!. Suppose, to the contrary,
that R satisfies (*). Now, let z,y € R, and choose k > 0, n > 1 and
w(z,y), w'(z,y) € W such that

w(z,y){(zy)" — 2"y " hu'(z,y) = 0 = y*{(y2)" - y"2"}a*.
Since R is a domain, we see that (zy)" = 2"y" and (yz)" = y"z™. There-
fore,
ylz™, vy = yay" — Y2y = ylay)" - (y2)"y = 0,

n—l]

and hence [z",y = 0. Now, [3, Theorem] forces a contradiction that

R is commutative.

Proof of Lemma 4.3. First, assume that R = M,(K). Let v be a
generating element of the multiplicative group of K, and put

- (g 0(07)) and y = (g 0(17))'
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Suppose, to the contrary, that R satisfies (§). Then there exist non-
negative integers 7y < rp < r3 <1y <15 <16 <17 < rg with 1 < rg,
positive integers n; (1 <i<rg), m; (ro+1< i< r8), i (ra+1<¢<rg),
and words w;i(z,y), wi(z,y) € W (1 < ¢ < rg) such that (§)o—(f)s hold
good. Since = and y are units in R, (§)1—(})s become

(zy)™ — yhiz™ =0 (1<i<r),

(yz)™ — z™y™ =0 (m+1<i< ),
(gmiym™i)mi — (ymigmim = () (ra +1<i<r3),
[2™,y™] =0 (ra+1<i<rg),
[zl (@™iy™iymi] = 0 (ra+1<i<rs),
[z, (y™z™ )] = 0 (rs +1 < i < 1g),
[y, (™ y™ )] =0 (re +1< i< r7),
[ylf,(y"”xm")"‘] =0 (rr+1<i<rg).

Further, by making use of (1.1) in §1, we can easily see that for arbitrary
positive integers [, m, n,

(zy)" — y"z" = —{(yz)" - 2"y"}
= (a(y") = Y")e(y™F) = (2 - o(v?)) era,

(xmym)n _ (yml.m)n
= (a(y*™") = Y™ o (7™) = Y™ (v™) + ™) (v - o(1)) enn,
provided 2™ ¢ K7,

[2™,y"] = (a(y™) = "N o (¥™) — ¥ )(v — o(7)) ‘ez,

[xl’(xmym)n] — _[yl,(ymxm)n]
= (@(?™) = 1*™)(0(1) = 3 o (™) +9™) 7 (3 = o (1) e,
provided 2™ ¢ K°,

[:L‘l,(ymxm)"] — —[y’,(:rmym)"]
= (0(7¥™) = ¥ )0 (7)) = Y ) (7™) + ¥™) (v — o(7)) (1™ Jer2s
provided ~2™ ¢ K°.

Therefore we obtain

) € Ko (10 <),
7.2m.‘n.‘ e Kk° (7'2 +1<:< 1‘4),
ylimini ¢ o (ra+1<i<rg).



102 I. MOGAMI

Hence, by (})o, we get ¥2 € K. But this is impossible.

Next, assume that R is of type e)!. Then Ann(D) contains a, b with
[a,b] # 0. Put 2 = 1 + @ and y = 1+ b. Now, suppose, to the contrary,
that R satisfies (}). Then there exist non-negative integes r; < rp < r3 <
rq <75 < 16 < 77 < rg With 1 < rg, positive integers n; (1 < ¢ < rg), m;
(r24+1<i<rg),li (ra+1<1i<rg), and words wi(z,y), wi(z,y) € W
(1 €7 < rg) such that (§)o—(f)s hold good. For each positive integers [, m,
n, we can easily see that

o _n(n41)

3 a,bl,

(zy)" —y"2™ = (y2)" — 2"y
(z™y™)" - (y"z
[z™,y"] = mnla,b],
[}, (™y™)"] = [, (y"e™)"]

= -[y, (z™y™)"] = -y, (y™z™)"] = Imn[a, b]

Recalling here that (a,b)[a,b] = 0 = [a, b]{a, b), we readily obtain

m)n m)n — m2n[a,b],

n,—(nf2+ 1)[a,b]
mina,b] =0 (r241<i< ),

liminila,b] =0 (r4 +1<1i<73).

=0 (1<i<nmy),

Hence [a,b] = 0 by (}§)o, which is a contradiction.
Noting that (zy)" — z”y" = z{(yz)*! — 2"~ !y*~'}y for any positive
integer n, we obtain the next as an immediate consequence of Theorem 4.1.

Corollary 4.4. Let R be a ring with 1. Suppose that for each z,y €
R, there exist positive integers r < s and n; > 1 (i = 1,---,s) such that
1) (ni(ny — 1)/2,-+-,ns(ns — 1)/2) = 1,
2) (zy)¥ = z™y™ (i=1,---,7),
3) (yx) = y™z™ (i=r,---,8).
Then R is commutative.

Needless to say, Corollary 3.5 is a direct consequence of Corollary 4.4.



(14]
(15]
(16]
(17]
(18]

-

W.

C.
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