STRUCTURE OF RINGS SATISFYING CERTAIN POLYNOMIAL IDENTITIES AND COMMUTATIVITY THEOREMS

Isao MOGAMI

0. Introduction. Throughout, all rings will mean associative rings which are not necessarily commutative. Moreover, Z will represent the ring of rational integers, and by Z(X,Y) will be meant the free algebra over Z in two indeterminates. For positive integers n_1, \dots, n_r their greatest common divisor is denoted by (n_1, \dots, n_r) .

In [5], Y. Kobayashi defined an additive map Φ of Z(X,Y) to Z, and indicated that for $f(X,Y) \in Z(X,Y)$, $\Phi(f(X,Y))$ is closely related with the commutativity of rings with 1 and satisfying the polynomial identity f(X,Y)=0, where Φ will be defined later. In [6], he turned his attention to the fact that $\Phi((XY)^n-X^nY^n)=-n(n-1)/2$ for n>1, and investigated the structure of n(n-1)/2-torsion free rings with 1 and satisfying the polynomial identity $(XY)^n-X^nY^n=0$. Coincidentally, he proved the following ([6, Theorem]): Let R be a ring with 1. If $E(R)=\{n\in Z\mid n>0 \text{ and } (xy)^n=x^ny^n \text{ for all } x,y\in R\}$ contains integers $n_1,\cdots,n_r\geq 2$ such that $(n_1(n_1-1)/2,\cdots,n_r(n_r-1)/2)=1$ and some of n_i 's is even, then R is commutative. In connection with the above theorem, Y. Kobayashi and the present author raised respectively the following conjectures:

Conjecture 0.1 ([7, Conjecture 1]). Let R be a ring with 1. If E(R) contains integers $n_1, \dots, n_r \geq 2$ such that R is $(n_1(n_1-1)/2, \dots, n_r(n_r-1)/2)$ -torsion free and some of n_i 's is even, then R is commutative.

Conjecture 0.2 ([16, Conjecture (I)]). Let R be a ring with 1. If for each $x, y \in R$, there exist integers $n_i \geq 2$ ($i = 1, \dots, r$) such that $(n_1(n_1-1)/2, \dots, n_r(n_r-1)/2) = 1$ and some of n_i 's is even and such that $(xy)^{n_i} = x^{n_i}y^{n_i}$ ($i = 1, \dots, r$), then R is commutative.

In [8] and [9], Y. Kobayashi gave partial affirmative answers to the above conjectures. In §2 and §4 of the present paper, those results will be improved more precisely and satisfactorily.

Meanwhile, J. Grosen [2] generalized some known commutativity theorems for a ring with 1 and satisfying certain polynomial identities 86 I. MOGAMI

by assuming that the identities hold merely for the elements of a certain subset of the ring rather than for all elements of the ring. Almost all the results obtained in [2] have been improved and sharpened in [13]. In §3 of the present paper, we shall prove some commutativity theorems for a ring with 1 and satisfying polynomial identities of the form $(XY)^n - X^nY^n = 0$ merely for the elements of a certain subset of the ring.

Recently, W. Streb [17] gave a classification of non-commutative rings. H. Komatsu and H. Tominaga applied the classification to the proof of some commutativity theorems, in [11], [12], [13] and [14]. In our subsequent study, we shall use frequently several results obtained in [12] and [14], which will be summarized in §1 together with notations employed in the present paper.

1. Preliminaries. Throughout the present paper, R will represent a ring with 1. We use the following notations. Let M be a non-empty subset of R, and k a positive integer.

C = C(R) =the center of R.

D = D(R) =the commutator ideal of R.

N = N(R) =the set of all nilpotent elements in R.

 $N^* = N^*(R) = \{x \in R \mid x^2 = 0\}.$

J = J(R) =the Jacobson radical of R.

U = U(R) =the set of units in R.

Q = the intersection of the set of non-units in R with the set of quasi-regular elements in $R = (1 + U) \setminus U$ ($\supseteq N \cup J$).

 $C_R(M)$ = the centralizer of M in R.

 $Ann_{R}(M) = \{x \in R \mid xM = Mx = 0\}.$

As usual, for $x, y \in R$, let $[x, y]_1 = [x, y] = xy - yx$, and define, recursively $[x, y]_k = [[x, y]_{k-1}, y]$ for all k > 1.

Z(X,Y) = the free algebra over Z in the indeterminates X and Y.

 $K = Z\langle X, Y \rangle [X, Y] Z\langle X, Y \rangle.$

 K_k = the set of all $f(X,Y) \in K$ each of whose monomial terms is of length $\geq k$ (together with 0).

W = the set of all words in X and Y, namely products of factors each of which is X or Y (together with 1).

As is well-known, $K = K_2$ coincides with the kernel of the natural homomorphism of Z(X,Y) onto Z[X,Y]. Let $f(X,Y) = \sum f_{ij}(X,Y)$ be a polynomial in Z(X,Y), where $f_{ij}(X,Y)$ is a homogeneous polynomial with degree i in X and degree j in Y. Then we can easily see that f(X,Y)

is in K if and only if for each i, j, the sum of the coefficients of $f_{ij}(X, Y)$ equals zero.

Following [5], we denote by Φ the additive map of Z(X,Y) to Z defined as follows: For each monic monomial $X_1 \cdots X_r$ (X_i is either X or Y), $\Phi(X_1 \cdots X_r)$ is the number of pairs (i,j) such that $1 \leq i < j \leq r$ and $X_i = X, X_j = Y$. We can easily see that, for any $f(X,Y) \in \mathbb{Z}\langle X,Y \rangle$, $\Phi(f(X,Y))$ equals the coefficient of XY occurring in f(1+X,1+Y). Now, let $f(X,Y) \in K$. Then $f(1+X,1+Y) \in K$, and so there exists $g(X,Y) \in K_3$ such that $f(1+X,1+Y) = \Phi(f(X,Y))[X,Y] + g(X,Y)$.

Further, we put

$$e(k) = \begin{cases} k & \text{if } k \text{ is even,} \\ k-1 & \text{if } k \text{ is odd.} \end{cases}$$

We consider the following conditions:

For each $x,y \in R$, there exists $f(X,Y) \in K_3$ such that [x,y] =

Q(k) If $x, y \in R$ and k[x, y] = 0 then [x, y] = 0.

By [12, Theorem 1.2, Proposition 1.6 and Proposition 1.7], we obtain the next

Theorem 1.1. Let R be a non-commutative ring with 1. Then there exists a factor subring of R which is of type $a)^1$, b), c), $d)^1$ or $e)^1$:

- a)¹ $\begin{pmatrix} \operatorname{GF}(p) & \operatorname{GF}(p) \\ 0 & \operatorname{GF}(p) \end{pmatrix}$, where p a prime number. b) $\operatorname{M}_{\sigma}(K) = \left\{ \begin{pmatrix} \alpha & \beta \\ 0 & \sigma(\alpha) \end{pmatrix} \middle| \alpha, \beta \in K \right\}$, where K is a finite field with a
 - c) A non-commutative division ring.
 - d) A domain which is generated by 1 and a simple radical subring.
- $e)^{1}A$ ring $B = \langle 1, x, y \rangle$ with 1 such that D(B) is the heart of B and $x, y \in \operatorname{Ann}_B(D(B)).$

Now, let $\begin{pmatrix} \alpha & \beta \\ 0 & \sigma(\alpha) \end{pmatrix}$ be an element of $M_{\sigma}(K)$. Let $K^{\sigma} = \{ \gamma \in K \mid \sigma(\gamma) = 1 \}$ γ }. Then

(1.1)
$$\begin{pmatrix} \alpha & \beta \\ 0 & \sigma(\alpha) \end{pmatrix}^{k} = \begin{cases} \begin{pmatrix} \alpha^{k} & (\sigma(\alpha^{k}) - \alpha^{k})(\sigma(\alpha) - \alpha)^{-1}\beta \\ 0 & \sigma(\alpha^{k}) \end{pmatrix} & \text{if } \alpha \notin K^{\sigma}, \\ \begin{pmatrix} \alpha^{k} & k\alpha^{k-1}\beta \\ 0 & \alpha^{k} \end{pmatrix} & \text{if } \alpha \in K^{\sigma}. \end{cases}$$

This formula will be used repeatedly in §2 and §4

- By [12, Proposition 1.3(2), Lemma 1.4(1) and (4), and Proposition 1.7], we obtain
- **Lemma 1.2.** Let R be a ring with 1. If $xy \neq 0 = yx$ for some $x, y \in R$, then there exists a factorsubring of R which is of type a) or e).
- **Lemma 1.3** ([12, Lemma 2.1]). Let R be a ring satisfying (S) such that $D \subseteq N$. Then there hold the following:
 - (1) N is a commutative ideal of R.
 - (2) $C_R(N^*)$ is a maximal commutative subring of R.
- (3) Ann_R([N*, R]) is the largest commutative ideal of R and is contained in $C_R(N^*)$.
- (4) For any non-empty subset M of N, $R/\operatorname{Ann}_R([M,R])$ has no non-zero nil ideals.
 - (5) Let $c \in N$, $x \in R$, k a positive integer, and p a prime number.
 - (i) If $x^k[c, x] = 0 = [c, x]x^k$ then [c, x] = 0.
 - (ii) If $[c, x]_k = 0$ then [c, x] = 0.
 - (iii) If $[c, px] = 0 = [c, x^p]$, then [c, x] = 0.
 - (iv) If the additive order of [c, x] is finite, then it is square-free.

The next is included in [14, Proposition 2.9(2)].

Lemma 1.4. Let R be a non-commutative subdirectly irreducible ring satisfying (S). Suppose that R satisfies the identity $[(XY)^n - X^nY^n, X] = 0$ with some n > 1. Then R is isomorphic to some $M_{\sigma}(K)$.

The next is included in [14, Lemma 2.10(2)].

Lemma 1.5. Let n be a positive integer. Let $R = M_{\sigma}(K)$, and put $t = (|K| - 1)/(|K^{\sigma}| - 1)$. If R satisfies the identity $[(XY)^{n+1} - X^{n+1}Y^{n+1}, X] = 0$, then t divides n or n + 1.

Theorem 1.6 ([12, Theorem 3.6]). Let R be a ring with 1, and n a positive integer. Then the following conditions are equivalent:

- 1) R satisfies the identities $[X^n, Y^n] = 0$ and $[X X^m, Y Y^m] = 0$ for some m > 1.
 - 2) R satisfies (S) and the identity $[X^n, Y^n] = 0$.
 - 3) R is a subdirect sum of rings each of which has one of the following

types:

- i) A commutative ring.
- ii) $M_{\sigma}(K)$, where $(|K|-1)/(|K^{\sigma}|-1)$ divides n.

The next is included in [14, Theorem 2.12(II)].

Theorem 1.7. Let R be a ring with 1, and n a positive integer. If k = n(n+1)/2 is odd, then the following conditions are equivalent:

- 1) R satisfies Q(k) and the identity $(XY)^n Y^nX^n = 0$.
- 2) R satisfies Q(k) and the identity $(XY)^{n+1} X^{n+1}Y^{n+1} = 0$.
- 3) R is a subdirect sum of rings each of which has one of the following types:
 - i) A commutative ring.
 - ii) $M_{\sigma}(K)$, where $(|K|-1)/(|K^{\sigma}|-1)$ divides e(n+1) and 2K=0.
- **2.** On Conjecture 0.1. Given $x, y \in R$, we denote by E(x, y) the set of integers n > 1 such that $(xy)^n = x^n y^n$; and $\tilde{E}(x, y) = E(x, y) \cap E(y, x)$. For a positive integer n, an element x of a module G is said to be n-torsion free if the order of x is infinite or relatively prime to n. Obviously, every element of G is n-torsion free if and only if nx = 0 implies x = 0 for any $x \in G$.

The purpose of this section is to give a complete answer to Conjecture 0.1. In [8], Kobayashi proved the following theorem which is a partial answer to Conjecture 0.1.

Theorem A. Let R be a ring with 1. If for any $x, y \in R$, $\tilde{E}(x,y)$ contains (at least one) even integers n_1, \dots, n_s and odd integers n_{s+1}, \dots, n_r $(r \ge s \ge 1)$ such that $(n_1, \dots, n_s, n_{s+1} - 1, \dots, n_r - 1)$ is 2 (or a multiple of 4) and [x,y] is $(n_1(n_1-1)/2, \dots, n_r(n_r-1)/2)$ -torsion free, then R is commutative.

In connection with the above theorem, in [9], he determined the structure of n(n-1)/2-torsion free rings with 1 satisfying the identity $(xy)^n = x^n y^n$, when n is a positive even integer. Recently, this result has been generalized by Komatsu and Tominaga (see [14, Theorem 2.12]). The main theorems of this section can be stated as follows:

Theorem 2.1. Let R be a ring with 1. Suppose that, for each $x, y \in$

90 I. MOGAMI

R, $\widetilde{E}(x,y)$ contains n_1, \dots, n_s such that $(e(n_1), \dots, e(n_s)) \equiv 0 \pmod{4}$ and [x,y] is $(n_1(n_1-1)/2, \dots, n_s(n_s-1)/2)$ -torsion free. Then R is commutative.

Theorem 2.2. Let R be a ring with 1, and n a positive integer such that $n \equiv 2 \pmod{4}$. Then the following conditions are equivalent:

- 1) R satisfies Q(n(n-1)/2) and the identity $(XY)^n X^nY^n = 0$.
- 2) R satisfies Q(n(n+1)/2) and the identity $(XY)^n Y^nX^n = 0$.
- 3) R satisfies Q(n(n+1)/2) and the identity $(XY)^{n+1} X^{n+1}Y^{n+1} = 0$.
- 4) For each $x,y \in R$, $\tilde{E}(x,y)$ contains n_1, \dots, n_s and m_1, \dots, m_r such that $(e(n_1), \dots, e(n_s)) = n$ and [x,y] is $(m_1(m_1-1)/2, \dots, m_r(m_r-1)/2)$ -torsion free.
- 5) R is a subdirect sum of rings each of which has one of the following types:
 - i) A commutative ring.
- ii) $M_{\sigma}(K)$, where K is a finite field of characteristic 2 with a non-trivial automorphism σ such that $(|K|-1)/(|K^{\sigma}|-1)$ divides n/2.

In preparation for proving our theorems, we state the next lemma.

Lemma 2.3. Let R be a ring with 1. Suppose that, for each $x, y \in R$, $\tilde{E}(x,y)$ contains m_1, \dots, m_r such that [x,y] is $(m_1(m_1-1)/2, \dots, m_r(m_r-1)/2)$ -torsion free. Then there hold the following:

- (1) $D \subseteq N$.
- (2) 2[N,R] = 0, namely $2N \subseteq C$.
- (3) R satisfies (S).
- (4) R is completely reflexive, namely xy = 0 implies yx = 0 for any $x, y \in R$.
 - (5) Let $a \in N$, and $x \in R$. If $n \in \tilde{E}(1+a,x)$ then $[a,x^{e(n)}]=0$.

Proof. In preparation for proving (1), we state three claims.

Claim 1. If $x,y\in R$ and $n\in \tilde{E}(x,y)$, then $y[x^n,y^{n-1}]y=0$. Proof. Actually, $y[x^n,y^{n-1}]y=yx^ny^n-y^nx^ny=y(xy)^n-(yx)^ny=0$.

Claim 2. For each $x, y \in R$, and for each positive integer k, there exists a positive integer m and $f(X,Y) \in K_k$ such that m[x,y] = f(x,y)

and [x, y] is m-torsion free.

Proof. There exist positive integers m_1, \dots, m_r in $\widetilde{E}(1+x,1+y)$ such that [x,y]=[1+x,1+y] is m-torsion free, where $m=(m_1(m_1-1)/2,\dots,m_r(m_r-1)/2)$. Then we can easily see that there exist $f_i(X,Y) \in K_3$ such that

$$0 = (1+x)^{m_i} (1+y)^{m_i} - \{(1+x)(1+y)\}^{m_i}$$
$$= \frac{m_i(m_i-1)}{2} [x,y] + f_i(x,y).$$

Hence we obtain m[x,y] = f(x,y) with some $f(X,Y) \in K_3$. Claim 2 is an easy consequence of this fact.

Claim 3. N is a commutative ideal of R.

Proof. Let $a \in N$, and $x \in R$. Obviously, $a^{2^s} = 0$ for some positive integer s. Now, choose $n_1 \in \tilde{E}(a,x)$, and inductively $n_{i+1} \in$ $\widetilde{E}(a^{n_1\cdots n_i},x^{n_1\cdots n_i})$ $(i=1,\cdots,s-1)$. Then $n_1\cdots n_s$ is in $\widetilde{E}(a,x)$ and $a^{n_1 \cdots n_s} = 0$, and so both ax and xa are in N. Now let $c \in N$, and suppose that ac = 0. Then cxa = [c, xa] = 0. If not, Claim 2 shows that there exists a positive integer m such that $0 \neq m[c,xa] = f(c,xa)$ with some $f(X,Y) \in K_{2n}$, where n is a positive integer such that $c^n = 0 = (xa)^n$. But this forces a contradiction that f(c, xa) = 0. We have thus seen that if $c \in N$ and ac = 0 then cRa = 0. Now, let $b \in N$, and $a^{\nu} = 0 = b^{\nu}$. Then, by the above, we see that $a^i R a^j = 0$, provided $i + j > \nu$. Further, we see that $a^i R a^j R a^k = 0$, provided $i + j + k > \nu$. Continuing this procedure, we obtain eventually $(a)^{\nu} = 0$; similarly, $(b)^{\nu} = 0$. If $[a,b] \neq 0$ then Claim 2 shows that there exists a positive integer μ such that $0 \neq \mu[a,b] = g(a,b)$ with some $g(X,Y) \in K_{2\nu}$. But, as is easily seen, g(a,b) = 0. This contradiction shows that N is commutative, and therefore N forms a commutative ideal.

(1) Note that N is an ideal by Claim 3. It suffices to show that R/N is commutative. Let $x, y \in R$. Then, by Claim 1, $y[x^n, y^{n-1}]y = 0$ for some n > 1. Since $y[x^n, y^{n-1}]$ and $[x^n, y^{n-1}]y$ belong to N, we see that

$$[x^n, y^{2(n-1)}] = y^{n-1}[x^n, y^{n-1}] + [x^n, y^{n-1}]y^{n-1} \in N.$$

Hence R/N is commutative, by [3, Theorem].

Claim 4. Let $a \in N$, $x \in R$, and n a positive integer. If $x^n[a,x] = 0 = [a,x]x^n$, then [a,x] = 0.

Proof. It is easy to see that $[a,\langle x\rangle^{2n}]=0$. Suppose, to the contrary, that $[a,x]\neq 0$. Then Claim 2 shows that there exists a positive integer m and $f(X,Y)\in K_{2n}$ such that $0\neq m[a,x]=f(a,x)$. Since $\langle x\rangle^{2n}\subseteq C_R(a)$, N is commutative and $N^2\subseteq C$ (Claim 3), we can easily see that f(a,x)=0. But this is a contradiction.

Claim 5. If $a \in N$, $x \in R$, and $n \in \tilde{E}(1+a,x)$, then $nx[a,x^{n-1}]x = 0$, $(n-1)[a,x^n] = 0$ and n(n-1)[a,x] = 0.

Proof. Noting that $N^2 \subseteq C$ by Claim 3, we see that

$$nx[a, x^{n-1}]x = x[(1+a)^n, x^{n-1}]x = 0$$

by Claim 1, and

$$(n-1)[a,x^n] = -(1+a)^{-1}\{(1+a)[x^n,(1+a)^{n-1}](1+a)\}(1+a)^{-1}$$

= 0.

From those above, we obtain

$$n(n-1)[a,x]x^n = n(n-1)[a,x^n]x - n(n-1)x[a,x^{n-1}]x = 0;$$

and similarly, $n(n-1)x^n[a,x]=0$. Hence n(n-1)[a,x]=0, by Claim 4.

- (2) Let $a \in N$, and $x \in R$. Then $\widetilde{E}(1+a,x)$ contains m_1, \dots, m_r such that [a,x] = [1+a,x] is m-torsion free, where $m = (m_1(m_1-1)/2, \dots, m_r(m_r-1)/2)$. By Claim 5, $m_i(m_i-1)[a,x] = 0$ $(i=1,\dots,r)$; and so 2m[a,x] = 0. Hence 2[a,x] = 0.
- (3) Let $x, y \in R$, and choose n in $\tilde{E}(x, y)$. Since $2D \subseteq 2N \subseteq C$ by (1) and (2), we see that

$$0 = 2y[x^n, y^{n-1}]y = 2(n-1)[x^n, y]y^n = 2n(n-1)x^{n-1}[x, y]y^n$$

by Claim 1. Similarly, for $n' \in \tilde{E}(x, 1+y)$, we obtain

$$2n'(n'-1)x^{n'-1}[x,y](1+y)^{n'}=0.$$

Then, as is easily seen, $lx^k[x,y] = 0$ for some positive integers k,l. Repeating the above process, we see that l'[x,y] = 0 for some positive integer l'. Now, by Claim 2, there exists a positive integer m and $f(X,Y) \in K_3$ such that m[x,y] = f(x,y) and [x,y] is m-torsion free. Since the additive order of [x,y] is finite, there exists an integer m' such that [x,y] = m'm[x,y] = m'f(x,y).

(4) Obviously,

$$\{e_{11}(e_{12}+e_{22})\}^n - e_{11}^n(e_{12}+e_{22})^n = -e_{12} \neq 0$$

for any integer n > 1. Hence R has no factorsubring of type $a)^1$. On the other hand, R satisfies (S) by (3), and so R has no factorsubring of type $e)^1$. Hence, by Lemma 1.2, R is completely reflexive.

(5) By Claim 5, we see that $nx[a, x^{n-1}]x = 0 = (n-1)[a, x^n]$. If n is even then $[a, x^n] = 0$ by (2). On the other hand, if n is odd then $x[a, x^{n-1}]x = 0$ again by (2). Further, $x^2[a, x^{n-1}] = 0 = [a, x^{n-1}]x^2$, by (4). Now, Claim 4 shows that $[a, x^{n-1}] = 0$.

Proof of Theorem 2.1. By Lemma 2.3(1) and (3), $D \subseteq N$ and R satisfies (S). Hence $C_R(N)$ is commutative by Lemma 1.3(2). Now, let $a \in N$, and $x \in R$. Then $\tilde{E}(1+a,x)$ contains n_1, \dots, n_s such that $(e(n_1), \dots, e(n_s)) \equiv 0 \pmod 4$ and [a,x] = [1+a,x] is $(n_1(n_1-1)/2, \dots, n_s(n_s-1)/2)$ -torsion free. As is easily seen, $(e(n_1), \dots, e(n_s)) \equiv 0 \pmod 4$ if and only if $(n_1(n_1-1)/2, \dots, n_s(n_s-1)/2)$ is even. Hence, in view of Lemma 2.3(2), we obtain [a,x] = 0. We have thus seen that $R = C_R(N)$, which is commutative.

Proof of Theorem 2.2. Obviously, 1) implies 4), and Theorem 1.7 shows that 2), 3) and 5) are equivalent. It suffices therefore to show that $4) \Rightarrow 5) \Rightarrow 1$).

 $4) \Longrightarrow 5$). Suppose that R satisfies 4). Then, by Lemma 2.3(1) and (3), $D \subseteq N$ and R satisfies (S). Let $a \in N$, and $x \in R$. Then $\widetilde{E}(1+a,x)$ contains n_1, \dots, n_s such that $(e(n_1), \dots, e(n_s)) = n$. Without loss of generality, we may assume that $n = -m_1 e(n_1) - \dots - m_t e(n_t) + m_{t+1} e(n_{t+1}) + \dots + m_s e(n_s)$ with some $m_i \geq 0$. Put $k = m_1 e(n_1) + \dots + m_t e(n_t)$ and $l = m_{t+1} e(n_{t+1}) + \dots + m_s e(n_s)$. By Lemma 2.3(5), $[a, x^{e(n_i)}] = 0$ $(i = 1, \dots, s)$. Then we see that

$$[a, x^n]x^k = [a, x^{n+k}] = [a, x^l] = 0,$$

and similarly $x^k[a, x^n] = 0$. Hence $[a, x^n] = 0$, by Lemma 1.3(5)(i). Further, $C_R(N)$ is commutative by Lemma 1.3(2). Hence R satisfies the identity $[X^n, Y^n] = 0$. Now, we can apply Theorem 1.6 to see that R is a subdirect sum of a commutative ring and rings each of which is isomorphic to some $M_{\sigma}(K)$, where $(|K|-1)/(|K^{\sigma}|-1)$ divides n. Furthermore, by Lemma 2.3(2), $2R \subseteq C_R(N)$, which is commutative. Hence 4[R,R] = 0,

94 I. MOGAMI

and so we can easily see that 2K = 0. Then $(|K| - 1)/(|K^{\sigma}| - 1)$ is odd and divides n/2.

5) \Longrightarrow 1). It is easy to see that R satisfies Q(n(n-1)/2). Suppose that $M_{\sigma}(K)$ is of type ii). Then, $\alpha^n \in K^{\sigma}$ for all $\alpha \in K$. Since, n is even and K is of characteristic 2, we can easily see that

$$\begin{pmatrix} \alpha & \beta \\ 0 & \sigma(\alpha) \end{pmatrix}^n = \begin{pmatrix} \alpha^n & 0 \\ 0 & \alpha^n \end{pmatrix}$$

for all $\alpha, \beta \in K$, by (1.1) in §1. Hence, $M_{\sigma}(K)$ satisfies the identity $(XY)^n - X^nY^n = 0$.

3. Commutativity theorems for rings satisfying the polynomial identities of the form $(XY)^n - X^nY^n = 0$ on certain subsets. In this section, we shall generalize some known commutativity theorems for a ring R satisfying the polynomial identities of the form $(XY)^n - X^nY^n = 0$ by assuming that the identities hold merely for the elements of a certain subset of R rather than for all elements of R.

Let k be a positive integer, and A a subset of R. We consider the following conditions:

$$P_0(k,A)$$
 $(xy)^k = x^k y^k$ for all $x, y \in A$.

$$P_0^*(k,A)$$
 $(xy)^k = y^k x^k$ for all $x, y \in A$.

The statements in the following theorem are included in [15, Theorem 2] and [18, Theorem 4], respectively.

Theorem B. Suppose that a ring R with 1 satisfies $P_0(k,R)$ (k = n, n + 2, n + 4).

- (1) If n is even, then R is commutative.
- (2) If $x^4 \in C$ for all x in R, then R is commutative.

More recently, Komatsu and Tominaga proved [13, Theorems 2.4 and 2.7] which encompass several results of Grosen [2]. From [13, Theorems 2.4 and 2.7], we readily obtain

Theorem C. (1) Suppose that a ring R with 1 satisfies $P_0(k, R \setminus Q)$ (k = m, m + 1, n, n + 1). If R satisfies Q((m, n)), then R is commutative.

(2) Suppose that a ring R with 1 satisfies $P_0(n+1,R\backslash Q)$ (or $P_0^*(n,R\backslash Q)$). If R satisfies Q(n(n+1)), then R is commutative.

Obviously, Theorem C(2) includes [10, Theorem 1(b) and Theorem 2(b)]. The first main theorem of this section is stated as follows:

Theorem 3.1. Let R be a ring with 1. Let n_1, \dots, n_r be positive integers such that $(n_1(n_1-1)/2, \dots, n_r(n_r-1)/2) = 1$. If R satisfies $P_0(n_i, R \setminus J)$ $(i = 1, \dots, r)$, then R is commutative.

In preparation for proving Theorem 3.1, we state the following two lemmas.

Lemma 3.2. Let R be a ring with 1. Let k, m, n be non-negative integers, and $f: R \to R$ a function such that f(x) = f(x+1) for all $x \in R$. If $f(x)(x+k)^m x^n = 0$ (or $x^n(x+k)^m f(x) = 0$) for all $x \in R$, then $(k+1)^{mn} f(x) = 0$. In particular, if $f(x)x^n = 0$ (or $x^n f(x) = 0$) for all $x \in R$, then f(x) = 0.

Proof. Obviously,

$$0 = f(x)(x+k+1)^m(x+1)^n(x+k)^m x^{n-1}$$

= $(k+1)^m f(x)(x+k)^m x^{n-1}$.

Continuing this process, we get $(k+1)^{mn} f(x)(x+k)^m = 0$. Next, we obtain

$$0 = (k+1)^{mn} f(x)((x+k)+1)^m (x+k)^{m-1}$$

= $(k+1)^{mn} f(x)(x+k)^{m-1}$.

Continuing this process, we conclude that $(k+1)^{mn} f(x) = 0$.

Lemma 3.3. Let R be a ring with 1. Suppose that R satisfies $P_0(n, R \setminus Q)$ (n > 1). Then, for each $u \in U, u^{n(n-1)} \in C$, and $D \subseteq N$. In particular, if R satisfies $P_0(k, R \setminus Q)$ $(k = n \ (\ge 1), n + 2, n + 4)$, then $u^2 \in C$ for each $u \in U$.

Proof. Let $u, v \in U$, and $x \in R \setminus Q$. Then

$$u[x^n, u^{n-1}]u = ux^n u^n - u^n x^n u = u(xu)^n - (ux)^n u = 0,$$

and so $[x^n, u^{n-1}] = 0$. In particular, $[v^n, u^{n-1}] = 0 = [u^n, v^{n-1}]$. Accordingly, $[v^n, u^{n(n-1)}] = 0 = [u^{n(n-1)}, v^{n-1}]$, whence $[u^{n(n-1)}, v] = 0$ follows.

Now, let $u \in U$, and $x \in R$. In case $u^{n-1}x \in Q$, by the above,

$$0 = [u^{n(n-1)}, 1 - u^{n-1}x] = -u^{n-1}[u^{n(n-1)}, x],$$

and so $[u^{n(n-1)}, x] = 0$. Similarly, in case $x \in Q$, we obtain $[u^{n(n-1)}, x] = 0$. Finally, we consider the case that $u^{n-1}x \notin Q$ and $x \notin Q$. Obviously, $x^{n-1} \notin Q$. Recalling that $[x^n, u^{n-1}] = 0$, we see that

$$(x^{n-1}u^{n-1}x)^n = x^{n(n-1)}(u^{n-1}x)^n = x^{n(n-1)}u^{n(n-1)}x^n$$
$$= x^{n^2}u^{n(n-1)}.$$

On the other hand,

$$(x^{n-1}u^{n-1}x)^n = x^{n-1}(u^{n-1}x^n)^{n-1}u^{n-1}x$$

= $x^{n-1}x^{n(n-1)}u^{(n-1)^2}u^{n-1}x$
= $x^{n^2-1}u^{n(n-1)}x$.

Hence $x^{n^2-1}[u^{n(n-1)},x]=0$, and so $[u^{n(n-1)},x]=0$ by Lemma 3.2. Now, it is easy to see that R satisfies the polynomial identity

$$\{(XY)^n - X^nY^n\}Z[(1-X)^{n(n-1)}, (1-Y)^{n(n-1)}] = 0.$$

But, no $M_2(GF(p))$, p a prime, satisfies the above identity, as a consideration of the following elements shows: $X = e_{11}$, $Y = e_{12} + e_{22}$, $Z = e_{21}$. Hence, $D \subseteq N$ by [1, Theorem 1] (or [4, Proposition 2]).

Noting that (n(n-1),(n+2)(n+1),(n+4)(n+3))=2, we can easily see the latter assertion.

Proof of Theorem 3.1. First, we shall show that J is commutative. Let $x, y \in J$. Then

$$0 = (1+x)^{n_i}(1+y)^{n_i} - \{(1+x)(1+y)\}^{n_i}$$
$$= \frac{n_i(n_i-1)}{2}[x,y] + f_i(x,y),$$

where $f_i(X,Y) \in K_3$. Since $(n_1(n_1-1)/2, \dots, n_r(n_r-1)/2) = 1$, we see that J satisfies the condition (S) (and $D \subseteq N$ by Lemma 3.3). By Lemma 3.3, $u^{n_i(n_i-1)} \in C$ for each $u \in U$ $(i=1,\dots,r)$, so that $u^2 \in C$. Now, let $a \in J$, and $d \in N^*$. Then $2d = 1 - (1-d)^2 \in C$, and $[d,a^2] = [d,(1-a)^2] + [2d,a] = 0$. Now, by Lemma 1.3(5)(iii) shows that [d,a] = 0. Hence $[N^*,J] = 0$. By Lemma 1.3(2), this implies that J is commutative.

Noting that J is a commutative ideal, we readily see that [J, R]J = [J, RJ] = 0. This enables us to see that if a is in J and x in R then

$$(xa)^{n_i} - x^{n_i}a^{n_i} = x\{(ax)^{n_i-1} - x^{n_i-1}a^{n_i-1}\}a \in x([a,x])a = 0.$$

Similarly, $(ax)^{n_i} - a^{n_i}x^{n_i} = 0$. We have thus seen that R satisfies $P_0(n_i, R)$. Repeating the argument employed at the opening of this proof, we see that R satisfies (S) (and $D \subseteq N$). Now, by Lemma 1.4, R is a subdirect sum of commutative rings and some $M_{\sigma}(K)$'s. Suppose, to the contrary, that $M_{\sigma}(K)$ appears as a factor of the subdirect sum. Then, by Lemma 1.5, $(|K|-1)/(|K^{\sigma}|-1)$ divides $n_i(n_i-1)$ ($i=1,\cdots,r$), and so does 2. But this is impossible.

Corollary 3.4. Let R be a ring with 1, and n a positive integer. If R satisfies $P_0(k, R \setminus J)$ (k = n, n + 2, n + 4), then R is commutative.

Proof. It suffices to note that (n(n-1)/2, (n+2)(n+1)/2, (n+4)(n+3)/2) = 1.

Theorem 3.1'. Let R be a ring with 1. Let n_1, \dots, n_r be positive integers such that $(n_1(n_1-1)/2, \dots, n_r(n_r-1)/2) = 1$. If R satisfies $P_0(n_i, R \setminus N)$ $(i = 1, \dots, r)$, then R is commutative.

Proof. Since $D \subseteq N$ by Lemma 3.3, N forms an ideal of R. Then, careful scrutiny of the proof of Theorem 3.1 shows that R is commutative.

Corollary 3.4'. Let R be a ring with 1, and n a positive integer. If R satisfies $P_0(k, R \setminus N)$ (k = n, n + 2, n + 4), then R is commutative.

Corollary 3.5. Let R be a ring with 1.

- (1) If there exist positive integers n_1, \dots, n_r with $(n_1(n_1-1)/2, \dots, n_r(n_r-1)/2) = 1$ such that R satisfies $P_0(n_i, R)$ $(i = 1, \dots, r)$, then R is commutative.
- (2) If there exist positive integers m, n with (m, n) = 1 or 2 such that R satisfies $P_0(k, R)$ (k = m, m + 1, n, n + 1), then R is commutative.
- (3) If there exists a positive integer n such that R satisfies $P_0(k,R)$ (k = n, n + 2, n + 4), then R is commutative.

Needless to say, Theorem B is included in Corollary 3.5(3).

Now, by making use of Corollary 3.5, we shall prove the following two theorems, which are related with Theorem C.

Theorem 3.6. Let R be a ring with 1. Suppose that R satisfies $P_0(k, R \setminus Q)$ (k = n, n + 2, n + 4).

- (1) If n is even, then R is commutative.
- (2) If 2[x,a] = 0 implies [x,a] = 0 for each $a \in Q$ and $x \in R$, then R is commutative.

Theorem 3.7. Let R be a ring with 1. Suppose that R satisfies $P_0^*(k, R \setminus Q)$ (k = n, n + 2, n + 4). Then R is commutative.

Proof of Theorem 3.6. In view of Corollary 3.5, it suffices to show that R satisfies $P_0(k,R)$ (k=n,n+2,n+4).

Let $u, v \in U$, and $x \in R$. Then $(vu)^2 \in C$, by Lemma 3.2. Hence

$$0 = (vu)^{2}v^{n}u^{n} - v^{n+2}u^{n+2} = v^{n}(vu)^{2}u^{n} - v^{n+2}u^{n+2}$$
$$= v^{n+1}[u, v]u^{n+1},$$

and so [u, v] = 0. In particular, [Q, u] = [u, 1 - Q] = 0. From this we see that

(3.1)
$$(xu)^k = x^k u^k \qquad (k = n, n+2, n+4).$$

(1) Noting that n is even and $[x, u^2] = 0$ by Lemma 3.3, from (3.1) we get

$$u^n x^n (xu)^2 = x^n u^n (xu)^2 = x^{n+2} u^{n+2} = u^n x^n x^2 u^2$$

whence $x^{n+1}[x,u] = 0$ follows. By Lemma 3.2, [x,u] = 0. This proves that $Q \subset C$. Hence R satisfies $P_0(k,R)$.

(2) In view of (1), we may assume that n is odd. Then, noting that $[x, u^2] = 0$ by Lemma 3.3, from (3.1) we get

$$(xu)^2 x^n u^n = (xu)^{n+2} = x^{n+2} u^2 u^n = xu^2 x^{n+1} u^n,$$

whence $xu[x,u]x^n = 0$ follows. In this equation, replacing x by x + 1 and multiplying x^n from right, we obtain $[x,u](x+1)^nx^n = 0$. By Lemma 3.2, $2^{n^2}[x,u] = 0$. Thus [x,u] = 0, and so [x,Q] = 0 by the hypothesis. Hence R satisfies $P_0(k,R)$.

Proof of Theorem 3.7. Obviously, R satisfies $P_0(k+1, R \setminus Q)$ (k = n, n+2, n+4). By Lemma 3.3, $u^2 \in C$ for each $u \in U$. In case n is odd,

Theorem 3.6(1) guarantees the commutativity of R. Thus, henceforth, we may restrict our attention to the case that n is even. Let $u \in U$, and $x \in R$. Then, as was shown in the proof of Theorem 3.6, [Q, u] = 0. From this and $P_0^*(k, R \setminus Q)$, we see that

(3.2)
$$(xu)^k = u^k x^k \qquad (k = n, n+2, n+4).$$

Noting that n is even and $[x, u^2] = 0$, from (3.2) we get

$$u^n x^n (xu)^2 = u^{n+2} x^{n+2} = u^n x^{n+2} u^2,$$

whence $x^{n+1}[x, u] = 0$ follows. By Lemma 3.2, [x, u] = 0. This proves that R satisfies $P_0^*(k, R)$, and also $P_0(k+1, R)$. Hence R is commutative, by Corollary 3.5.

4. On Conjecture 0.2. In [8, Theorem 2], Y. Kobayashi proved the following theorem which gives an affirmative answer to Conjecture 0.2 in a somewhat weak form.

Theorem D. Let R be a ring with 1. If for each $x, y \in R$, $\widetilde{E}(x, y)$ contains integers n_1, \dots, n_r such that $(n_1(n_1-1)/2, \dots, n_r(n_r-1)/2) = 1$ and some of n_i 's is even, then R is commutative.

In this section, we shall prove a generaliation of Theorem D. We consider the following conditions:

- (*) For each $x, y \in R$, there exist integers $k \ge 0$, n > 1 and words w(x, y), $w'(x, y) \in W$ such that $w(x, y)\{(xy)^n x^ny^n\}w'(x, y) = 0 = y^k\{(yx)^n y^nx^n\}x^k.$
- (#) For each $x,y\in R$, there exist non-negative integers $r_1\leq r_2\leq r_3\leq r_4\leq r_5\leq r_6\leq r_7\leq r_8$ with $1< r_8$, positive integers n_i $(1\leq i\leq r_8)$, m_i $(r_2+1\leq i\leq r_8)$, l_i $(r_4+1\leq i\leq r_8)$, and words $w_i(x,y)$, $w_i'(x,y)\in W$ $(1\leq i\leq r_8)$ such that

$$(\sharp)_0 \ (n_1(n_1+1)/2, \cdots, n_{r_2}(n_{r_2}+1)/2, m_{r_2+1}n_{r_2+1}, \cdots, m_{r_4}n_{r_4}, \\ l_{r_4+1}m_{r_4+1}n_{r_4+1}, \cdots, l_{r_8}m_{r_8}n_{r_8}) = 1,$$

$$(\sharp)_1 \ w_i(x,y)\{(xy)^{n_i} - y^{n_i}x^{n_i}\}w_i'(x,y) = 0 \qquad (1 \le i \le r_1),$$

$$(\sharp)_2 \ w_i(x,y)\{(yx)^{n_i} - x^{n_i}y^{n_i}\}w_i'(x,y) = 0 \qquad (r_1 + 1 \le i \le r_2),$$

$$(\sharp)_3 \ w_i(x,y)\{(x^{m_i}y^{m_i})^{n_i}-(y^{m_i}x^{m_i})^{n_i}\}w_i'(x,y)=0 \ (r_2+1\leq i\leq r_3),$$

100

$$(\sharp)_4 \ w_i(x,y)[x^{m_i},y^{n_i}]w_i'(x,y) = 0 \qquad (r_3+1 \le i \le r_4),$$

$$(\sharp)_5 \ w_i(x,y)[x^{l_i},(x^{m_i}y^{m_i})^{n_i}]w_i'(x,y) = 0 \qquad (r_4+1 \le i \le r_5),$$

$$(\sharp)_6 \ w_i(x,y)[x^{l_i},(y^{m_i}x^{m_i})^{n_i}]w_i'(x,y) = 0 \qquad (r_5+1 \le i \le r_6),$$

$$(\sharp)_7 \ w_i(x,y)[y^{l_i},(x^{m_i}y^{m_i})^{n_i}]w_i'(x,y) = 0 \qquad (r_6+1 \le i \le r_7),$$

$$(\sharp)_8 \ w_i(x,y)[y^{l_i},(y^{m_i}x^{m_i})^{n_i}]w_i'(x,y)=0 \qquad (r_7+1\leq i\leq r_8).$$

Now, the main theorem of this section is stated as follows:

Theorem 4.1. Let R be a ring with 1. If R satisfies (*) and (\sharp) , then R is commutative.

According to Theorem 1.1, in order to complete the proof of Theorem 4.1, it suffices to prove the following two lemmas.

Lemma 4.2. If R is of type $a)^1$, c) or $d)^1$, then R does not satisfy (*).

Lemma 4.3. If R is of type b) or e)¹, then R does not satisfy (z).

Proof of Lemma 4.2. First, assume that R is of type a)¹. Then, for any integers $k \ge 0$ and n > 1, we see that

$$e_{11}^{k}\{(e_{11}(e_{12}+e_{22}))^{n}-e_{11}^{n}(e_{12}+e_{22})^{n}\}(e_{12}+e_{22})^{k}=-e_{12}\neq0.$$

Hence R does not satisfy (*).

Next, assume that R is of type c) or d)¹. Suppose, to the contrary, that R satisfies (*). Now, let $x, y \in R$, and choose $k \geq 0$, n > 1 and $w(x, y), w'(x, y) \in W$ such that

$$w(x,y)\{(xy)^n - x^ny^n\}w'(x,y) = 0 = y^k\{(yx)^n - y^nx^n\}x^k.$$

Since R is a domain, we see that $(xy)^n = x^n y^n$ and $(yx)^n = y^n x^n$. Therefore,

$$y[x^{n}, y^{n-1}]y = yx^{n}y^{n} - y^{n}x^{n}y = y(xy)^{n} - (yx)^{n}y = 0,$$

and hence $[x^n, y^{n-1}] = 0$. Now, [3, Theorem] forces a contradiction that R is commutative.

Proof of Lemma 4.3. First, assume that $R = M_{\sigma}(K)$. Let γ be a generating element of the multiplicative group of K, and put

$$x = \begin{pmatrix} \gamma & 0 \\ 0 & \sigma(\gamma) \end{pmatrix}$$
 and $y = \begin{pmatrix} \gamma & 1 \\ 0 & \sigma(\gamma) \end{pmatrix}$.

Suppose, to the contrary, that R satisfies (\sharp). Then there exist nonnegative integers $r_1 \leq r_2 \leq r_3 \leq r_4 \leq r_5 \leq r_6 \leq r_7 \leq r_8$ with $1 < r_8$, positive integers n_i ($1 \leq i \leq r_8$), m_i ($r_2 + 1 \leq i \leq r_8$), l_i ($r_4 + 1 \leq i \leq r_8$), and words $w_i(x,y)$, $w_i'(x,y) \in W$ ($1 \leq i \leq r_8$) such that (\sharp)₀-(\sharp)₈ hold good. Since x and y are units in R, (\sharp)₁-(\sharp)₈ become

$$(xy)^{n_i} - y^{n_i}x^{n_i} = 0$$
 $(1 \le i \le r_1),$ $(yx)^{n_i} - x^{n_i}y^{n_i} = 0$ $(r_1 + 1 \le i \le r_2),$ $(x^{m_i}y^{m_i})^{n_i} - (y^{m_i}x^{m_i})^{n_i} = 0$ $(r_2 + 1 \le i \le r_3),$ $[x^{m_i}, y^{n_i}] = 0$ $(r_3 + 1 \le i \le r_4),$ $[x^{l_i}, (x^{m_i}y^{m_i})^{n_i}] = 0$ $(r_4 + 1 \le i \le r_5),$ $[x^{l_i}, (y^{m_i}x^{m_i})^{n_i}] = 0$ $(r_5 + 1 \le i \le r_6),$ $[y^{l_i}, (x^{m_i}y^{m_i})^{n_i}] = 0$ $(r_6 + 1 \le i \le r_7),$ $[y^{l_i}, (y^{m_i}x^{m_i})^{n_i}] = 0$ $(r_7 + 1 \le i \le r_8).$

Further, by making use of (1.1) in §1, we can easily see that for arbitrary positive integers l, m, n,

$$\begin{aligned} &(xy)^n - y^n x^n = -\{(yx)^n - x^n y^n\} \\ &= (\sigma(\gamma^n) - \gamma^n)(\sigma(\gamma^{n+1}) - \gamma^{n+1})(\gamma^2 - \sigma(\gamma^2))^{-1} e_{12}, \\ &(x^m y^m)^n - (y^m x^m)^n \\ &= (\sigma(\gamma^{2mn}) - \gamma^{2mn})(\sigma(\gamma^m) - \gamma^m)(\sigma(\gamma^m) + \gamma^m)^{-1}(\gamma - \sigma(\gamma))^{-1} e_{12}, \\ &\text{provided} \quad \gamma^{2m} \notin K^{\sigma}, \\ &[x^m, y^n] = (\sigma(\gamma^m) - \gamma^m)(\sigma(\gamma^n) - \gamma^n)(\gamma - \sigma(\gamma))^{-1} e_{12}, \\ &[x^l, (x^m y^m)^n] = -[y^l, (y^m x^m)^n] \\ &= (\sigma(\gamma^{2mn}) - \gamma^{2mn})(\sigma(\gamma^l) - \gamma^l)(\sigma(\gamma^m) + \gamma^m)^{-1}(\gamma - \sigma(\gamma))^{-1} \gamma^m e_{12}, \\ &\text{provided} \quad \gamma^{2m} \notin K^{\sigma}, \\ &[x^l, (y^m x^m)^n] = -[y^l, (x^m y^m)^n] \\ &= (\sigma(\gamma^{2mn}) - \gamma^{2mn})(\sigma(\gamma^l) - \gamma^l)(\sigma(\gamma^m) + \gamma^m)^{-1}(\gamma - \sigma(\gamma))^{-1} \sigma(\gamma^m) e_{12}, \\ &\text{provided} \quad \gamma^{2m} \notin K^{\sigma}. \end{aligned}$$

Therefore we obtain

$$\begin{split} & \gamma^{n_i(n_i+1)} \in K^{\sigma} & \quad (1 \leq i \leq r_2), \\ & \gamma^{2m_in_i} \in K^{\sigma} & \quad (r_2+1 \leq i \leq r_4), \\ & \gamma^{2l_im_in_i} \in K^{\sigma} & \quad (r_4+1 \leq i \leq r_8). \end{split}$$

Hence, by $(\sharp)_0$, we get $\gamma^2 \in K^{\sigma}$. But this is impossible.

Next, assume that R is of type $e)^1$. Then Ann(D) contains a, b with $[a,b] \neq 0$. Put x=1+a and y=1+b. Now, suppose, to the contrary, that R satisfies (\sharp). Then there exist non-negative integes $r_1 \leq r_2 \leq r_3 \leq r_4 \leq r_5 \leq r_6 \leq r_7 \leq r_8$ with $1 < r_8$, positive integers n_i ($1 \leq i \leq r_8$), m_i ($r_2+1 \leq i \leq r_8$), l_i ($r_4+1 \leq i \leq r_8$), and words $w_i(x,y)$, $w_i'(x,y) \in W$ ($1 \leq i \leq r_8$) such that (\sharp)0-(\sharp)8 hold good. For each positive integers l, m, n, we can easily see that

$$(xy)^{n} - y^{n}x^{n} = (yx)^{n} - x^{n}y^{n} = \frac{n(n+1)}{2}[a,b],$$

$$(x^{m}y^{m})^{n} - (y^{m}x^{m})^{n} = m^{2}n[a,b],$$

$$[x^{m}, y^{n}] = mn[a,b],$$

$$[x^{l}, (x^{m}y^{m})^{n}] = [x^{l}, (y^{m}x^{m})^{n}]$$

$$= -[y^{l}, (x^{m}y^{m})^{n}] = -[y^{l}, (y^{m}x^{m})^{n}] = lmn[a,b].$$

Recalling here that $\langle a,b\rangle[a,b]=0=[a,b]\langle a,b\rangle$, we readily obtain

$$\frac{n_i(n_i+1)}{2}[a,b] = 0 (1 \le i \le r_2),$$

$$m_i^2 n_i[a,b] = 0 (r_2+1 \le i \le r_4),$$

$$l_i m_i n_i[a,b] = 0 (r_4+1 \le i \le r_8).$$

Hence [a,b] = 0 by $(\sharp)_0$, which is a contradiction.

Noting that $(xy)^n - x^ny^n = x\{(yx)^{n-1} - x^{n-1}y^{n-1}\}y$ for any positive integer n, we obtain the next as an immediate consequence of Theorem 4.1.

Corollary 4.4. Let R be a ring with 1. Suppose that for each $x, y \in R$, there exist positive integers $r \leq s$ and $n_i > 1$ $(i = 1, \dots, s)$ such that

- 1) $(n_1(n_1-1)/2, \cdots, n_s(n_s-1)/2) = 1$,
- 2) $(xy)^{n_i} = x^{n_i}y^{n_i}$ $(i = 1, \dots, r),$
- 3) $(yx)^{n_i} = y^{n_i}x^{n_i}$ $(i = r, \dots, s)$.

Then R is commutative.

Needless to say, Corollary 3.5 is a direct consequence of Corollary 4.4.

REFERENCES

- [1] H. E. Bell: On some commutativity theorems of Herstein, Arch. Math. 24 (1973), 34-38.
- [2] J. GROSEN: Rings satisfying polynomial identities or constraints on certain subsets, Thesis (University of California, Santa Barbara, 1988).
- [3] I. N. HERSTEIN: A commutativity theorem, J. Algebra 38 (1976), 112-118.
- [4] Y. HIRANO, Y. KOBAYASHI and H. TOMINAGA: Some polynomial identities and commutativity of s-unital rings, Math. J. Okayama Univ. 24 (1982), 7-13.
- [5] Y. KOBAYASHI: A note on commutativity of rings, Math. J. Okayama Univ. 23 (1981), 141-145.
- [6] Y. KOBAYASHI: The identity $(xy)^n = x^ny^n$ and commutativity of rings, Math. J. Okayama Univ. 23 (1981). 147-151.
- [7] Y. KOBAYASHI: Some polynomial identities and commutativity of rings. I, Proc. 14th Symp. on Ring Theory, Shinshu Univ. (1981), 1-8.
- [8] Y. KOBAYASHI: On two conjectures about commutativity of rings, Math. Japonica 29 (1984), 219-228.
- [9] Y. KOBAYASHI: On rings satisfying the identity $(xy)^n = x^ny^n$, Math. Japonica 29 (1984), 645-654; ibid. 31 (1986), 165-166.
- [10] H. KOMATSU and H. TOMINAGA: On commutativity of s-unital rings. Math. J. Okayama Univ. 28 (1986), 93-96.
- [11] H. KOMATSU and H. TOMINAGA: Chacron's condition and commutativity theorems, Math. J. Okayama Univ. 31 (1989), 101-120.
- [12] H. KOMATSU and H. TOMINAGA: On non-commutative algebras and commutativity conditions, Resultate Math. 18 (1990), 74-92.
- [13] H. KOMATSU and H. TOMINAGA: Commutativity theorems for rings with polynomial constraints on certain subsets, Bull. Austral. Math. Soc. 43 (1991), 451-462.
- [14] H. KOMATSU and H. TOMINAGA: Commutativity theorems for algebras and rings, Math. J. Okayama Univ. 33 (1991), 71-95.
- [15] I. MOGAMI: Note on commutativity of rings. III, Math. J. Okayama Univ. 23 (1981), 163-169.
- [16] I. Mogami: Note on commutativity of rings, Proc. 14th Symp. on Ring Theory, Shinshu Univ. (1981), 109-115.
- [17] W. STREB: Zur Struktur nichtkommutativer Ringe, Math. J. Okayama Univ. 31 (1989), 135-140.
- [18] C.-T. YEN: Some commutativity theorems for rings, Chinese J. Math. 9 (1981), 99-105.

TSUYAMA COLLEGE OF TECHNOLOGY
TSUYAMA 708, JAPAN

(Received December 17, 1992)