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TTF-THEORY OVER A SEMIPERFECT RING

Suoi1t MORIMOTO

In his paper [4], Storrer has studied hereditary torsion theories over a
perfect ring. He proved that every hereditary torsion class is a TTF-class
and determined the smallest element of the Gabriel topology correspond-
ing to a hereditary torsion theory by using the notion of corresponding
idempotents to modules. In this paper, we study hereditary 3-fold torsion
theories over a semiperfect ring by means of the concept of corresponding
idempotents. In this case, every module does not necessarily have a sim-
ple submodule. Thus we must admit 0 as a corresponding idempotent to
a module M such that Soc(M) = 0. Let (T1,T%2,73) be a 3-fold torsion
theory. First we give equivalent conditions for which the 3-fold torsion
theory over a right perfect ring R has length 2 (Theorem 1.7). Next we
prove that if (T7,T,,T3) is hereditary, then %(¢;) has the smallest ele-
ment ReR, where t; is the cotorsion radical corresponding to a heretitary
torsion theory (77,72) and e is an idempotent of R (Theorem 2.2). Also
let e be an idempotent element of R with Re two-sided ideal of R. Finally,
we give necessary and sufficient condition for e which is the idempotent
corresponding to Re (Theorem 2.4).

Throughout this note, R means a semiperfect ring with Jacobson rad-
ical J(R) and modules mean unitary left R-modules. We denote the in-
jective hull (resp. socle) of a module M by E(M) (resp. Soc(M)). Let e
and f be idempotents of R. We call e is isomorphic to f if Re = Rf.

We consider a fixed representation of the identity 1 of R as sum of
orthogonal primitive idempotents

I=en+ - +em + - +ent-+en,

where e;; is isomorphic to e if and only if ¢ = k. We also put e; = ¢;;. For
each simple module §;, there is a unique primitive idempotent ¢; such that
e;5; # 0. We shall say that e; corresponds to §;. Also for each module M,
we put e the sum of €; corresponds to the simple submodules of M. Again
we say that e corresponds to M. If Soc(M) = 0, then we shall say that 0
is the corresponding idempotent to M.

As for terminologies and basic properties concerning of torsion theories
and preradicals, we refer to [1] and [3]. For each preradical t, we denote

T
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the ¢-torsion (resp. t-torsionfree) class by T(t) (resp. F(t)). Also we denote
the left linear topology corresponding to a left exact preradical ¢ by 5(t).

1. We shall begin with useful lemmas.

Lemma 1.1. Let I be a left ideal of R. Then I = Rf + X for some
idempotent f of R and submodule X of J(R).

Proof. Let 0 — K — P 3 R/I — 0 be the projective cover of R/I.
We consider a diagram

R

|

0 —- K — P SR/ IT—0

where 7 is the canonical map. Then there exists an R-homomorphism
h:R — P such that a o h = 7. Since P = Im(h) + K and K is small
in P, h is epic. Thus there exists an R-monomorphism g: P — R such
that hog = 1p and so R = Im(g) + Ker(h). We put Re = Im(g) and
Rf = Ker(h). Since Rf C I, we have the exact sequence

0 — Renl — Re =5 R/I — 0

where 7’ is the restriction of 7 to Re. Also we have Renl = g(K'), namely,
Ren I is small in Re. Thus Ren I C J(R). Hence I = Rf + X for some
submodule X of J(R).

Lemma 1.2. Let S; be a simple module with corresponding idempo-
tent e; and I a two-sided ideal of R. Then IS; = S; if and only ife; € I.

Proof. It is sufficient to prove the “only if” part. Suppose that I.5; =
Si. By Lemma 1.1, I = Rf 4+ X, where f is an idempotent of R and
X CJ(R). Then IS; = (Rf + X)S; = RfS; + XS; = RfS; = S;. Thus
fSi # 0 and so there exists a primitive idempotent f; such that f;5; # 0.
Since f; is isomorphic to e; and f; € I, ¢; € 1.

Lemma 1.3. Let M be a module with corresponding idempotent e.
If m € Soc(M) and eRm = 0, then m = 0.
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Proof. Let m be a nonzero element of Soc(A). Then Rm =
Taea DS for some family of simple modules {Sx}rea. Thus eRm # 0.
This is a contradiction.

Proposition 1.4. Let M be a module with corresponding idempotent
e and I a two-sided ideal of R. Then ISoc(M) = Soc(M) if and only if
ecl.

Proof. Suppose that ISoc(M) = Soc(M). We may assume that
Soc(M) # 0. Let S; be a simple submodule of M with corresponding
idempotent e;. Then Soc(M) = §; & X for some submodule X of M.
Thus Soc(M) = I1S; @ IX. If IS; = 0, then IX = Soc(M). Hence
X D Soc(M) and so §; = 0. Therefore 1.5; = 5;. By Lemma 1.2, ¢; € 1.
Hence e € I. Conversely suppose that e € I. Let S; be a simple submod-
ule of M. Then IS; # 0, namely, IS; = S;. Since Soc(M) = Y ,cp &S5
for some family of simple modules {Sy}aear, ISoc(M) = 3,0 ®IS) =
Z/\EA DSy = Soc(M).

Let (Ty,T3,T3) be the 3-fold torsion theory corresponding to an idem-
potent two-sided ideal 7 of R and M a module with corresponding idem-
potent e. Now we consider the following conditions:

(Cr): If M €Ty, theneeI.

(C2): Ifec I, then M € Ty.

The following examples show that both (C;) and (C3) do not hold in
general.

Example 1.5. Let R be the ring of 2 X 2 upper triangular matrices
over a field K, and set

o (1 0) o — (0 0)
-1 — 0 0 ] 2 - 0 1 Q)
ae (0 Ix') o B (A I\;).
0 K 0 0
(1) Let (11,T>,T3) be the 3-fold torsion theory corresponding to an
idempotent two-sided ideal I = A of R. We put M = A. Then M € T}

and e; is the corresponding idempotent to M, namely, e; does not belong
to I.
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(2) Let (Ty,T3,T3) be the 3-fold torsion theory corresponding to an
idempotent two-sided ideal I = B of R. We put M = A. Then ¢; is the
corresponding idempotent to M. However

0 K

M= M,
(0 0) #

that is, M is not in T3.
Moreover we consider the following conditions:

(D1): If A€ Ty, then every simple submodule of A is in T.
(D2): If every simple submodule of A is in Ty, then A € Ty.

Lemma 1.6. If T satisfies (D), then it satisfies (C,).

Proof. Let M be amodule in 7. If Soc(M ) = 0, then the correspond-
ing idempotent to M is 0. Thus we assume that Soc(M) # 0. Since T
satisfies (D1), Soc(M) € Ty and ISoc(M) = Soc(M). By Proposition 1.4,
ecl.

We call a class of modules % stable if it is closed under essential ex-
tensions. Also we shall say that a 3-fold torsion theory (77,7%,T3) has
length 2 if T} = T5.

Theorem 1.7. Let R be a right perfect ring. Then the following
conditions are equivalent.

(1) T\ satisfies (D1) and is stable.

(2) T satisfies (Dy) and (D).

(3) T satisfies (Cy) and (C3).

(4) (Th,T2,T3) is a 3-fold torsion theory with length 2.

Proof. (1) = (2). Let M be a module with Soc(M) € T;. Since T
is stable and Soc(M ) is essential in M, M is in T;. Hence T} satisfies (D2).

(2) = (4). Let M be a module in T and N its submodule. Since
every simple submodule of N is in Ty, Soc(N) is in Ty. Thus N isin T}
by assumption. Hence T} is hereditary and so T} is a TTF-class by [4,
Proposition 2.3]. Also since Soc(M) = Soc(E(M)), E(M) is in Ty and
so T, is stable. Let (Ty,71,1%.T3) be a 4-fold torsion theory. Since 7} is
stable, Ty is hereditary and so Ty is a TTF-class. Thus (Ty,7%.T3) has
length 2.
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(4) => (3). Let M be a module in 77 with corresponding idempotent
e. Since T is hereditary, Soc(M ) is in Ty. Thus ISoc(M) = Soc(M) and
so e isin I by Lemma 1.3. Thus T; satisfies (C;). Let IV be a module with
corresponding idempotent f in I. Then f is the corresponding idempotent
to Soc(N). Since e € I, ISoc(N) = Soc(N). Also since T} is stable,
M € Ty. Thus T satisfies (C2).

(3) = (1). Let M be a module in T; with corresponding idempotent
e and S its simple submodule with corresponding idempotent e;. By as-
sumption, e € I and so ¢; = e;e € I. By (C2), S € Ty. Let N be a module
in T; with corresponding idempotent e. By (C;), e € I. Let L be an
essential extension of N. Since Soc(L) = Soc(N), e is the corresponding
idempotent to L. Thus by (C3), Lis in T}. Thus T} is stable.

2. In this section, we shall treat hereditary 3-fold torsion theo-
ries. Let (77,73,T3) be a 3-fold torsion theory and t; the torsion func-
tor corresponding to torsion theories (7;,Ti41) (¢ = 1,2). Let ¥ =
{51, 52,++,9n} be the complete set of non-isomorphic simple modules
inTy,, Weput S =595 ---D S5, and F = E(S). For each module
M, kys denotes the largest one of those preradicals = such that #(M) = 0.
As is well-known, ka7 is a radical and is left exact if M is injective.

Proposition 2.1 ([2, Proposition 2]). Let (T}, T,,T3) be a hereditary
3-fold torsion theory. Then t; = kEg.

Proof. Let M be a module in T7. Then Homg(M, E) = 0, namely,
kg(M) = M. Thus Ty C T(kg) and so t; < kg. Suppose that t; # kg.
Then there exists a module N such that kg(N) = N and t1(N) # N.
Since N/t1(N) € T2, Rm € T; for some m = m + t;(N). Also Rm
has a maximal submodule X. Since Rm/X is simple and T3 is closed
under homomorphic images, Rm/X € T,. Thus Homgp(Rm/X,E) # 0.
Therefore Homg(Rm, E') # 0. Since E is injective, Homp(N/t;(N), E) #
0. Hence Homp(N, E) # 0, namely, kg(N) # N. This is a contradiction.

Theorem 2.2. Let (T1,T2,T3) be a hereditary 3-fold torsion theory.
We put e = € + €2 + + -+ + en,, where €; is the corresponding idempotent
of S; (i =1,2,---,m). Then ¥ (t1) = {rJ < R|J 2 ReR}.

Proof. As is well-known, #(t,) = {rJ < R| R = t1(R) + J}. Let
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J be left ideal of R in #(f;). We put K = {a € R| aR C J}. Then
K is the largest two-sided ideal of R contained in J. If K is in %(t;),
then S = SR = t4(R)S + KS = KS. By Lemma 1.2, ¢ € K and so
K O ReR. Hence it is sufficient to prove that K is in 5(¢;). Now let
0 - N —- P — S5 — 0 be the projective cover of S and let M be a
module. If Homg(P, M) = 0, then Homg(M, E) = 0. In fact, we assume
that Homp(M,E) # 0. Then Rf(z)N S # 0 for some f € Homg(M,FE)
and z € M. Thus Rf(z) N C # 0 for some simple module C' which is
isomorphic to some S; (1 < i < m) namely, Rf(z) N C = C. Hence
Rf(z) 2 C, and so Homp(P,C) C Homp(P,Rf(z)). Therefore we have
the following commutative diagram

P
r/ J#O

Rz — Rf(z) — 0

where g(# 0) € Homg(P,Rf(z)) and m(rz) = rf(z) for all r € R. Thus
Homg(P,M) # 0. This is a contradiction. Next assume that R/K is not
in T. Then Homgp(R/K,E) # 0, namely, Homg(P,R/K) # 0. Since
R/K is embeded in [],cgp Ra, Homr(P,R/K) C Homp(P,[],cr Ra) =
[Toer Hompr(P, R@) where @ = a + J. We show that Homg(P, Ra) = 0 for
all @ € R. We assume that there exists 0 # « € Homg(P, Ra). Since P is
finitely generated, a(P) is finitely generated. Thus a(P) has a maximal
submodule L. We put S, = a(P)/L. Since a(P) is in Ty, S, is in Tj.
Thus there exists an epimoprphism poa: P — S,,, where p is the canonical
map a(P) — Sp. Let 0 - X — @ — §, — 0 be the projective cover of
Sn. Then Q/(#1(Q) + X) is a homomorphic image of @/t:(Q) € T, and
Q/X € Ty. Since both Ty and T3 are closed under homomorphic images,
Q/(t1(Q)+X) e TiNnT, = {0}. Thus @ = t,(Q)+ X. Since X is small in
Q, Q = t1(Q). Also @ is isomorphic to a direct summand of P. However
P is the projective cover of S. Since Homg(T,,T2) =0, Rf, is in N, that
is, J(R) contains an idempotent element f, of R. This is a contradiction.
Hence [],cg Homgr(P,R@) = 0 and so Homgr(P,R/K) = 0. Therefore
R/K isin Ty, that is K isin % (t1). Hence k" D ReR. Conversely, let J be
a left ideal of R with J O ReR. We assume that Homp(R/J, E) # 0. Then
Jz = 0 for some z(# 0) € E. Since Rz N § # 0, there exists an element a
of R such that az(# 0) € S. Therefore ReRax C ReRz C Jz = 0, namely
eRaz = 0. By Lemma 1.3, az = 0. This is a contradiction. Hence J is
in ;‘Z/(tl).
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Corollary 2.3. Let (T1,12,T3) be a hereditary 3-fold torsion theory.
Then T is a TTF-class.

Let R be the ring of 2 X 2 upper triangular matrices over a field K.

and I = Rey. Then [ is a two-sided ideal of R and €, is the corresponding
idempotent.

Let e be an idempotent of R with Re two-sided ideal of R. It is an
interesting problem when e corresponds to Re.

Theorem 2.4. Let (11,73,T3,T4) be a 4-fold torsion theory and
{51, 82,--+,Sm} the complete set of non-isomorphic simple modules in Ts.
We put e = €1 + e2 + -+ - + en,, where e; is the corresponding idempotent
of Si (1 = 1,2,---,m). Then e is the corresponding idempotent to Re if
and only if every simple submodule of Re is in Ty and there ezists a simple
submodule of Re which is isomorphic to each simple module in Ty.

Proof. Let S’ be a simple submodule of Re. Then ReS’ = §’. By
Theorem 2.2, ReR = t1(R). Thus §’ is in T;. Let S be a simple module
in T;. Then ReS = S and so ;5 # 0 for some e; € {e;,e2, -+ ,€n}.
Hence S = Re;/J(R)e;. Since e corresponds to Re, there exists a simple
submodule S; of Re with €;5; # 0. Therefore § = S;. Conversely, eS; = 0,
ReS; = S; for all i = 1,2,---,m. Thus S; isin Ty for all i = 1,2,..-,m.
By assumption there exists a simple submodule S} of Re such that S/ = §;
for all ¢ = 1,2,--+, m. Therefore e corresponds to Re.
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