TTF-THEORY OVER A SEMIPERFECT RING

SHOJI MORIMOTO

In his paper [4], Storrer has studied hereditary torsion theories over a perfect ring. He proved that every hereditary torsion class is a TTF-class and determined the smallest element of the Gabriel topology corresponding to a hereditary torsion theory by using the notion of corresponding idempotents to modules. In this paper, we study hereditary 3-fold torsion theories over a semiperfect ring by means of the concept of corresponding idempotents. In this case, every module does not necessarily have a simple submodule. Thus we must admit 0 as a corresponding idempotent to a module M such that Soc(M) = 0. Let (T_1, T_2, T_3) be a 3-fold torsion theory. First we give equivalent conditions for which the 3-fold torsion theory over a right perfect ring R has length 2 (Theorem 1.7). Next we prove that if (T_1, T_2, T_3) is hereditary, then $\mathcal{L}(t_1)$ has the smallest element ReR, where t_1 is the cotorsion radical corresponding to a heretitary torsion theory (T_1, T_2) and e is an idempotent of R (Theorem 2.2). Also let e be an idempotent element of R with Re two-sided ideal of R. Finally, we give necessary and sufficient condition for e which is the idempotent corresponding to Re (Theorem 2.4).

Throughout this note, R means a semiperfect ring with Jacobson radical J(R) and modules mean unitary left R-modules. We denote the injective hull (resp. socle) of a module M by E(M) (resp. Soc(M)). Let e and f be idempotents of R. We call e is isomorphic to f if $Re \cong Rf$.

We consider a fixed representation of the identity 1 of R as sum of orthogonal primitive idempotents

$$1 = e_{11} + \dots + e_{1k_1} + \dots + e_{n1} + \dots + e_{nk_n}$$

where e_{ij} is isomorphic to e_{kl} if and only if i = k. We also put $e_i = e_{i1}$. For each simple module S_i , there is a unique primitive idempotent e_i such that $e_i S_i \neq 0$. We shall say that e_i corresponds to S_i . Also for each module M, we put e the sum of e_i corresponds to the simple submodules of M. Again we say that e corresponds to M. If Soc(M) = 0, then we shall say that e is the corresponding idempotent to M.

As for terminologies and basic properties concerning of torsion theories and preradicals, we refer to [1] and [3]. For each preradical t, we denote

the t-torsion (resp. t-torsionfree) class by T(t) (resp. F(t)). Also we denote the left linear topology corresponding to a left exact preradical t by $\mathcal{L}(t)$.

1. We shall begin with useful lemmas.

Lemma 1.1. Let I be a left ideal of R. Then I = Rf + X for some idempotent f of R and submodule X of J(R).

Proof. Let $0 \to K \to P \xrightarrow{\alpha} R/I \to 0$ be the projective cover of R/I. We consider a diagram

$$0 \longrightarrow K \longrightarrow P \xrightarrow{\alpha} R/I \longrightarrow 0$$

where π is the canonical map. Then there exists an R-homomorphism $h: R \to P$ such that $\alpha \circ h = \pi$. Since P = Im(h) + K and K is small in P, h is epic. Thus there exists an R-monomorphism $g: P \to R$ such that $h \circ g = 1_P$ and so R = Im(g) + Ker(h). We put Re = Im(g) and Rf = Ker(h). Since $Rf \subset I$, we have the exact sequence

$$0 \longrightarrow Re \cap I \longrightarrow Re \xrightarrow{\pi'} R/I \longrightarrow 0$$

where π' is the restriction of π to Re. Also we have $Re \cap I = g(K)$, namely, $Re \cap I$ is small in Re. Thus $Re \cap I \subset J(R)$. Hence I = Rf + X for some submodule X of J(R).

Lemma 1.2. Let S_i be a simple module with corresponding idempotent e_i and I a two-sided ideal of R. Then $IS_i = S_i$ if and only if $e_i \in I$.

Proof. It is sufficient to prove the "only if" part. Suppose that $IS_i = S_i$. By Lemma 1.1, I = Rf + X, where f is an idempotent of R and $X \subseteq J(R)$. Then $IS_i = (Rf + X)S_i = RfS_i + XS_i = RfS_i = S_i$. Thus $fS_i \neq 0$ and so there exists a primitive idempotent f_i such that $f_iS_i \neq 0$. Since f_i is isomorphic to e_i and $f_i \in I$, $e_i \in I$.

Lemma 1.3. Let M be a module with corresponding idempotent e. If $m \in Soc(M)$ and eRm = 0, then m = 0.

Proof. Let m be a nonzero element of Soc(M). Then $Rm = \sum_{\lambda \in \Lambda} \oplus S_{\lambda}$ for some family of simple modules $\{S_{\lambda}\}_{{\lambda} \in \Lambda}$. Thus $eRm \neq 0$. This is a contradiction.

Proposition 1.4. Let M be a module with corresponding idempotent e and I a two-sided ideal of R. Then ISoc(M) = Soc(M) if and only if $e \in I$.

Proof. Suppose that ISoc(M) = Soc(M). We may assume that $Soc(M) \neq 0$. Let S_i be a simple submodule of M with corresponding idempotent e_i . Then $Soc(M) = S_i \oplus X$ for some submodule X of M. Thus $Soc(M) = IS_i \oplus IX$. If $IS_i = 0$, then IX = Soc(M). Hence $X \supset Soc(M)$ and so $S_i = 0$. Therefore $IS_i = S_i$. By Lemma 1.2, $e_i \in I$. Hence $e \in I$. Conversely suppose that $e \in I$. Let S_i be a simple submodule of M. Then $IS_i \neq 0$, namely, $IS_i = S_i$. Since $Soc(M) = \sum_{\lambda \in \Lambda} \oplus S_{\lambda}$ for some family of simple modules $\{S_{\lambda}\}_{{\lambda} \in {\Lambda}'}$, $ISoc(M) = \sum_{{\lambda} \in {\Lambda}} \oplus IS_{{\lambda}} = \sum_{{\lambda} \in {\Lambda}} \oplus S_{{\lambda}} = Soc(M)$.

Let (T_1, T_2, T_3) be the 3-fold torsion theory corresponding to an idempotent two-sided ideal I of R and M a module with corresponding idempotent e. Now we consider the following conditions:

(C₁): If $M \in T_1$, then $e \in I$.

(C₂): If $e \in I$, then $M \in T_1$.

The following examples show that both (C_1) and (C_2) do not hold in general.

Example 1.5. Let R be the ring of 2×2 upper triangular matrices over a field K, and set

$$e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \qquad e_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix},$$
 $A = \begin{pmatrix} 0 & K \\ 0 & K \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} K & K \\ 0 & 0 \end{pmatrix}.$

(1) Let (T_1, T_2, T_3) be the 3-fold torsion theory corresponding to an idempotent two-sided ideal I = A of R. We put M = A. Then $M \in T_1$ and e_1 is the corresponding idempotent to M, namely, e_1 does not belong to I.

(2) Let (T_1, T_2, T_3) be the 3-fold torsion theory corresponding to an idempotent two-sided ideal I = B of R. We put M = A. Then e_1 is the corresponding idempotent to M. However

$$IM = \begin{pmatrix} 0 & K \\ 0 & 0 \end{pmatrix} \neq M,$$

that is, M is not in T_1 .

Moreover we consider the following conditions:

(D₁): If $A \in T_1$, then every simple submodule of A is in T_1 .

(D₂): If every simple submodule of A is in T_1 , then $A \in T_1$.

Lemma 1.6. If T_1 satisfies (D_1) , then it satisfies (C_1) .

Proof. Let M be a module in T_1 . If Soc(M) = 0, then the corresponding idempotent to M is 0. Thus we assume that $Soc(M) \neq 0$. Since T_1 satisfies (D_1) , $Soc(M) \in T_1$ and ISoc(M) = Soc(M). By Proposition 1.4, $e \in I$.

We call a class of modules \mathscr{C} stable if it is closed under essential extensions. Also we shall say that a 3-fold torsion theory (T_1, T_2, T_3) has length 2 if $T_1 = T_3$.

Theorem 1.7. Let R be a right perfect ring. Then the following conditions are equivalent.

- (1) T_1 satisfies (D_1) and is stable.
- (2) T_1 satisfies (D_1) and (D_2) .
- (3) T_1 satisfies (C_1) and (C_2) .
- (4) (T_1, T_2, T_3) is a 3-fold torsion theory with length 2.

Proof. (1) \Longrightarrow (2). Let M be a module with $Soc(M) \in T_1$. Since T_1 is stable and Soc(M) is essential in M, M is in T_1 . Hence T_1 satisfies (D_2) .

 $(2) \Longrightarrow (4)$. Let M be a module in T_1 and N its submodule. Since every simple submodule of N is in T_1 , Soc(N) is in T_1 . Thus N is in T_1 by assumption. Hence T_1 is hereditary and so T_1 is a TTF-class by [4, Proposition 2.3]. Also since Soc(M) = Soc(E(M)), E(M) is in T_1 and so T_1 is stable. Let (T_0, T_1, T_2, T_3) be a 4-fold torsion theory. Since T_1 is stable, T_0 is hereditary and so T_0 is a TTF-class. Thus (T_1, T_2, T_3) has length 2.

- $(4) \Longrightarrow (3)$. Let M be a module in T_1 with corresponding idempotent e. Since T_1 is hereditary, Soc(M) is in T_1 . Thus ISoc(M) = Soc(M) and so e is in I by Lemma 1.3. Thus T_1 satisfies (C_1) . Let N be a module with corresponding idempotent f in I. Then f is the corresponding idempotent to Soc(N). Since $e \in I$, ISoc(N) = Soc(N). Also since T_1 is stable, $M \in T_1$. Thus T_1 satisfies (C_2) .
- $(3) \Longrightarrow (1)$. Let M be a module in T_1 with corresponding idempotent e and S its simple submodule with corresponding idempotent e_i . By assumption, $e \in I$ and so $e_i = e_i e \in I$. By (C_2) , $S \in T_1$. Let N be a module in T_1 with corresponding idempotent e. By (C_1) , $e \in I$. Let L be an essential extension of N. Since Soc(L) = Soc(N), e is the corresponding idempotent to L. Thus by (C_2) , L is in T_1 . Thus T_1 is stable.
- 2. In this section, we shall treat hereditary 3-fold torsion theories. Let (T_1, T_2, T_3) be a 3-fold torsion theory and t_i the torsion functor corresponding to torsion theories (T_i, T_{i+1}) (i = 1, 2). Let $\mathscr{S} = \{S_1, S_2, \dots, S_m\}$ be the complete set of non-isomorphic simple modules in T_2 . We put $S = S_1 \oplus S_2 \oplus \cdots \oplus S_m$ and E = E(S). For each module M, k_M denotes the largest one of those preradicals r such that r(M) = 0. As is well-known, k_M is a radical and is left exact if M is injective.

Proposition 2.1 ([2, Proposition 2]). Let (T_1, T_2, T_3) be a hereditary 3-fold torsion theory. Then $t_1 = k_E$.

Proof. Let M be a module in T_1 . Then $Hom_R(M,E)=0$, namely, $k_E(M)=M$. Thus $T_1\subseteq T(k_E)$ and so $t_1\leq k_E$. Suppose that $t_1\neq k_E$. Then there exists a module N such that $k_E(N)=N$ and $t_1(N)\neq N$. Since $N/t_1(N)\in T_2$, $R\overline{m}\in T_2$ for some $\overline{m}=m+t_1(N)$. Also $R\overline{m}$ has a maximal submodule X. Since $R\overline{m}/X$ is simple and T_2 is closed under homomorphic images, $R\overline{m}/X\in T_2$. Thus $Hom_R(R\overline{m}/X,E)\neq 0$. Therefore $Hom_R(R\overline{m},E)\neq 0$. Since E is injective, $Hom_R(N/t_1(N),E)\neq 0$. Hence $Hom_R(N,E)\neq 0$, namely, $k_E(N)\neq N$. This is a contradiction.

Theorem 2.2. Let (T_1, T_2, T_3) be a hereditary 3-fold torsion theory. We put $e = e_1 + e_2 + \cdots + e_m$, where e_i is the corresponding idempotent of S_i $(i = 1, 2, \dots, m)$. Then $\mathcal{L}(t_1) = \{RJ \leq R \mid J \supseteq ReR\}$.

Proof. As is well-known, $\mathcal{L}(t_1) = \{RJ \leq R \mid R = t_1(R) + J\}$. Let

J be left ideal of R in $\mathscr{L}(t_1)$. We put $K = \{a \in R \mid aR \subseteq J\}$. Then K is the largest two-sided ideal of R contained in J. If K is in $\mathscr{L}(t_1)$, then $S = SR = t_1(R)S + KS = KS$. By Lemma 1.2, $e \in K$ and so $K \supseteq ReR$. Hence it is sufficient to prove that K is in $\mathscr{L}(t_1)$. Now let $0 \to N \to P \to S \to 0$ be the projective cover of S and let M be a module. If $Hom_R(P,M) = 0$, then $Hom_R(M,E) = 0$. In fact, we assume that $Hom_R(M,E) \neq 0$. Then $Rf(x) \cap S \neq 0$ for some $f \in Hom_R(M,E)$ and $f \in M$. Thus $f \in M$ is isomorphic to some $f \in M$ in analy, $f \in M$ is isomorphic to some $f \in M$. Thus $f \in M$ is in analy, $f \in M$. Therefore we have the following commutative diagram

$$Rx \xrightarrow{\pi} Rf(x) \longrightarrow 0$$

where $g(\neq 0) \in Hom_R(P, Rf(x))$ and $\pi(rx) = rf(x)$ for all $r \in R$. Thus $Hom_R(P,M) \neq 0$. This is a contradiction. Next assume that R/K is not in T_1 . Then $Hom_R(R/K, E) \neq 0$, namely, $Hom_R(P, R/K) \neq 0$. Since R/K is embedded in $\prod_{a \in R} R\bar{a}$, $Hom_R(P, R/K) \subseteq Hom_R(P, \prod_{a \in R} R\bar{a}) \cong$ $\prod_{a \in R} Hom_R(P, R\bar{a})$ where $\bar{a} = a + J$. We show that $Hom_R(P, R\bar{a}) = 0$ for all $a \in R$. We assume that there exists $0 \neq \alpha \in Hom_R(P, R\bar{a})$. Since P is finitely generated, $\alpha(P)$ is finitely generated. Thus $\alpha(P)$ has a maximal submodule L. We put $S_n = \alpha(P)/L$. Since $\alpha(P)$ is in T_1 , S_n is in T_1 . Thus there exists an epimoprphism $\rho \circ \alpha$: $P \to S_n$, where ρ is the canonical map $\alpha(P) \to S_n$. Let $0 \to X \to Q \to S_n \to 0$ be the projective cover of S_n . Then $Q/(t_1(Q)+X)$ is a homomorphic image of $Q/t_1(Q)\in T_2$ and $Q/X \in T_1$. Since both T_1 and T_2 are closed under homomorphic images, $Q/(t_1(Q)+X) \in T_1 \cap T_2 = \{0\}$. Thus $Q = t_1(Q)+X$. Since X is small in $Q, Q = t_1(Q)$. Also Q is isomorphic to a direct summand of P. However P is the projective cover of S. Since $Hom_R(T_1, T_2) = 0$, Rf_n is in N, that is, J(R) contains an idempotent element f_n of R. This is a contradiction. Hence $\prod_{a \in R} Hom_R(P, R\bar{a}) = 0$ and so $Hom_R(P, R/K) = 0$. Therefore R/K is in T_1 , that is K is in $\mathcal{L}(t_1)$. Hence $K \supseteq ReR$. Conversely, let J be a left ideal of R with $J \supseteq ReR$. We assume that $Hom_R(R/J, E) \neq 0$. Then Jx = 0 for some $x \neq 0 \in E$. Since $Rx \cap S \neq 0$, there exists an element a of R such that $ax \neq 0 \in S$. Therefore $ReRax \subseteq ReRx \subseteq Jx = 0$, namely eRax = 0. By Lemma 1.3, ax = 0. This is a contradiction. Hence J is in $\mathscr{L}(t_1)$.

Corollary 2.3. Let (T_1, T_2, T_3) be a hereditary 3-fold torsion theory. Then T_1 is a TTF-class.

Let R be the ring of 2×2 upper triangular matrices over a field K. We put

$$e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \qquad e_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

and $I = Re_2$. Then I is a two-sided ideal of R and e_1 is the corresponding idempotent.

Let e be an idempotent of R with Re two-sided ideal of R. It is an interesting problem when e corresponds to Re.

Theorem 2.4. Let (T_1, T_2, T_3, T_4) be a 4-fold torsion theory and $\{S_1, S_2, \dots, S_m\}$ the complete set of non-isomorphic simple modules in T_3 . We put $e = e_1 + e_2 + \dots + e_m$, where e_i is the corresponding idempotent of S_i $(i = 1, 2, \dots, m)$. Then e is the corresponding idempotent to Re if and only if every simple submodule of Re is in T_1 and there exists a simple submodule of Re which is isomorphic to each simple module in T_1 .

Proof. Let S' be a simple submodule of Re. Then ReS' = S'. By Theorem 2.2, $ReR = t_1(R)$. Thus S' is in T_1 . Let S be a simple module in T_1 . Then ReS = S and so $e_iS \neq 0$ for some $e_i \in \{e_1, e_2, \cdots, e_m\}$. Hence $S \cong Re_i/J(R)e_i$. Since e corresponds to Re, there exists a simple submodule S_i of Re with $e_iS_i \neq 0$. Therefore $S \cong S_i$. Conversely, $eS_i = 0$, $ReS_i = S_i$ for all $i = 1, 2, \cdots, m$. Thus S_i is in T_1 for all $i = 1, 2, \cdots, m$. By assumption there exists a simple submodule S_i' of Re such that $S_i' \cong S_i$ for all $i = 1, 2, \cdots, m$. Therefore e corresponds to Re.

Acknowlegement. The author would like to thank the referee for his helpful suggestions.

REFERENCES

- Y. KURATA: On an n-fold torsion theory in the category _RM, J. of Algebra 22 (1972), 559-572.
- [2] E. A. RUTTER: Torsion theory over semiperfect rings, Proc. Amer. Math. Soc. 34 (1972), 389-395.
- [3] Bo STENSTRÖM: Rings of Quotients, Grundl. Math. Wiss. 217. Springer Verlag Berlin, 1975.

[4] H. STORRER: Rational extensions of modules, Pac. J. Math. 38 (1971), 785-794.

HAGI KOEN GAKUIN HIGH SCHOOL HIGASHITAMACHI, HAGI, YAMAGUCHI 758, JAPAN

(Received November 12, 1993)