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ON R-AUTOMORPHISMS OF R[X]
MicueLr FERRERO and ANToNIO PAQUES

Let R be a ring with an identity element and let R[X] be the polyno-
mial ring over R in an indeterminate X. The R-automorphisms of R[X]
have been characterized by R. W. Gilmer when R is a commutative ring
([6], Theorem 3). It follows that if ¢ is an R-automorphism of R[X], ¢
is completely determined by ¢(X) = Y%, a;X*. This is also true if R is
a non-commutative ring and since (X)) is a central element of R[X], the
description given by Gilmer shows that v is an R-automorphism of R[X]
if and only if a; € Z(R), for 0 < i < n, a; is a unit and a; is nilpotent for
i>2.

On the other hand, if G is a group of R-automorphisms of R[X], the
computation of the invariant subring R[X]C is a question of interest. In
particular, if G is a finite group and R is an integral domain, J. B. Castillon
[1] showed that R[X]® = R[f], where f = [T,ec #(X). The original
motivation of our study was to obtain an extension of this result and to
determine conditions under which R[X] is a Galois extension of R[X]C.
Since every automorphism of such a group is of finite order, we found that it
is interesting to characterize such kind of automorphisms. Also, in section 3
we show that when there exists a finite group G of R-automorphisms of
R[X]such that R[X] is a Galois extension of R[X], then the characteristic
of R is finite. So, this case is of particular interest.

In §1 we study automorphisms of finite order. The main theorem
of this section states that when the characteristic of R is finite, then an
automorphism such as ¢ given above is of finite order if and only if there
exists an integer t > 1 with a} = 1.

In §2 we extend the result of [1]. We prove that if G is finite and
@(X)— X is not a zero divisor in R[X], for any 1 # ¢ € G, then R[X]% =
R[f] where f =[] eg @(X). The converse is also true if R has no non-zero
nilpotent elements.

In §3 we consider the question of whether R[X] is a Galois extension
of R[X]% under some additional assumptions. The main result of this

This paper was partially supported by Conselho Nacional de Desenvolvimento
Cientifico e Tecnolégico (CNPq) and Coordenagio de Aperfeicoamento de Pessoal Su-
perior (CAPES), Brazil.

63



64 M. FERRERO and A. PAQUES

section gives a characterization of a Galois automorphism of R[X], i.e., an
R-automorphism ¢ such that R[X] is a Galois extension of R[X](¥), where
(¢) is the cyclic group generated by ¢. It follows that the order of  must
be a prime integer p and the characteristic of R must be p®, e > 1. Also we
show that a group G as above is necessarily a p-elementary abelian group.

Throughout this paper R is a (not necessarily commutative) ring with
an identity element. The center of R is denoted by Z and the group of units
of Z by U(Z). The set of all the nilpotent elements of R will be denoted
by N(R) and we put N(Z) = N. Finally, the order of ¢ is denoted by
||. We recall that a commutative ring is said to be reduced if it has no
non-zero nilpotent elements.

1. Automorphisms of finite order. Throughout this section we
assume that ¢ is an R-automorphism of R[X] defined by ¢(X) = a¢ +
X + -+ apX™, whereq; € Z,i=0,1,...,n,a; € U(Z) and a; € N
for 7 > 2.

Recall that an element a € R is said to be a (Z-) torsion element if
there exists an integer t > 1 such that ta = 0. The ring R is said to
be torsion free (or having characteristic zero) if R has no non-zero torsion
elements. In the case that there exists an integer m > 2 such that mR = 0,
R is said to be of finite characteristic and the characteristic of R is the
smallest such integer m.

The main result of this section gives a complete description of the R-
automorphisms of R[X] which are of finite order, under the assumption
that R is a ring of finite characteristic. In fact, we will prove the following
more general result

Theorem 1.1. Assume that a; is a torsion element, for j = 0,2,3,
...,n. Then |p| < oo if and only if a1 is a root of the unit element of R.

To prove the theorem we need some lemmas. We begin with the
following

Lemma 1.2. Assume that b; € N are torsion elements of R, for
i=1,2,...,n, and o is the R-automorphism of R[X)] defined by o(X) =
X + 3%, b; X', Then |o| < oo.

Proof. Denote by I the ideal of R generated by {b1,b2,....0,}.
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Note that 02(X) = X + 20 6 X  + Y0 bi(X + 20,6, X9) = X +
25" b XE 4+ s, ex X%, for some elements ¢ € I2. An easy induction
argument gives 0%(X) = X + s, b;Xi + L1 d; X7, for any integer
s > 2, where d; € I*. Since by,bs,...,b, are torsion elements there exists
an integer v > 2 with 0¥(X) = X + 3 5, €. X%, where €; € I’. Repeating
the argument starting with o¥ we obtain 0**(X) = X + Y35, S X¥, for
some elements f, € I*. Now it is easy to complete the proof since [ is a
nilpotent ideal.

Lemma 1.3. Assume thatb; € N, fori=10,...,n, and let ¢ be the
R-automorphism of R[X] defined by o(X) = by + X + 3% b; X Then
for every s > 2 there exist elements ¢y € I? and ¢,..., ¢ € I such that
o*(X) =sbo+co+ X + X7, ¢; X7, where I is the ideal of R generated by
{bo,b1,...,b,}.

Proof. We have 02(X) =bo+ (bo + X + 2%, 5:; X?) + 2i=1bj(bo +
X A2 biXPY = 2bo+ X+ 0 b X+ 50 bibd + sy ce X, for some
c¢ € I. Note that > 1, bjbf; € I” and so the result is true for s = 2. Now
it is easy to complete the proof using an induction argument.

Corollary 1.4. Assume that b; € N are torsion elements of R,
Jor 1 = 0,1,...,n, and let o be the R-automorphism of R[X] defined by
o(X)=bo+ X + 3%, 6:X". Then |o| < .

Proof. By the assumption there exists an integer s > 2 such that
sb; = 0, for ¢ = 0,...,n. Then there exist co € I* and ¢;,...,¢,, € I
such that ¢°(X) = cD+.X + 37 ¢ XY by Lemma 1.3. —\pplvmg the same
argument to the automorphism o we obtain o*° (X) = do+X+30, d; X,

where dg € I3, dy,....d; € I. Since the ideal I is nilpotent, repeating this
way we arrive to 0¥(X) = X + Y% ¢; X/, for some integer v > 2 and
€1,...,e, € I. Hence o7 is of finite order by Lemma 1.2 and we have
lo] < oo.

Proof of Theorem 1.1.  Assume that there exists an integer s > 1 such
that a1 = 1. By an induction argument we can easily see that ¢*(X) =
a0 ioal +bo+ X + 271 b; X7, where bg,by,..., by are in the ideal
I generated by {as,...,a,}. Then B (X) = 2(10 Sial +eo+ X +

j-:l ¢; X7, where cp,...,c; are in I. Repeating the argument and using
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the fact that ag is a torsion element we obtain an integer » > 1 and
elements do,dy,...,d, in I such that ¢*(X) =do+ X + 3%, d;X'. Then
o is of finite order by Corollary 1.4.

Conversely, assume that || = m < oo. From the formula obtained
for ¢°(X) above it follows that a]* + b = 1, for some b € I = (ag,...,a,).
Since b is a torsion element there exists an integer v > 1 with ub = 0.
Then af** = (1 - b)* = 1 + b%r, for some r € R. Thus a** = 1 + ¢, where
¢ € I?. Repeating the argument and using the fact that / is a nilpotent
ideal we find an integer ¢ > 1 such that o} = 1.

Now we include some additional remarks concerning the easy partic-
ular case in which ¢(X) = ag + a1 X, a3 € U(Z). This is the case for any
R-automorphism of R[X] if the center Z of R is reduced.

An easy computation shows the following

Proposition 1.5. Let ¢ be the R-automorphism of R[X] defined by
@(X) =ao+ a1 X. Then ¢* =1 if and only if a} = 1 and ap(1 + a1 +
et ar ) =o0.

We say that the ring R satisfies the condition (C) if the following holds:
(C) Foreveryl # ¢ € Z such thate™ = 1, forn > 2, we have 1-¢ € U(Z).

Condition (C) holds, for example, if the center Z of R is a field.

Corollary 1.6. Let o be the R-automorphism of R[X] defined by
@o(X) = ap + a1 X and assume that R satisfies the condition (C). Then
@™ = 1 if and only if one of the following conditions holds

i) a3 =1 and nag = 0,

ii) a1 # 1 and a} = 1.

Proof. Tt is clear that if i) holds, then ¢™ = 1. Assume that ii) holds.
Since (1—a;)(14a14-+-+a7"!) = 1—a} = 0 we have 1+a;+---+a}" 1 =0
by the condition (C). Hence Proposition 1.5 gives ¢™ = 1.

Conversely, assume that ¢ = 1. Hence a} = 1 and we have either
a; # 1ora; =1 and so nag = ap(l + o1 +---+a§"’l) =0.
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Remark 1.7. The above Corollary shows that if ¢(X) = ap + X,
then || < oo if and only if ap is a torsion element. Now, if o is defined
by o(X) = bp + b1 X, where b7* =1 and 1 + b, +--- + b’l”_1 = 0 we have
o™ = 1 for any by € Z. This is the case, for example, if a; is a root of
the unity of order m and Z is a field. This remark shows that probably is
very difficult to obtain a general theorem corresponding to Theorem 1.1
without any additional assumption.

Proposition 1.5 has also the following

Corollary 1.8. Assume that R is a ring of characteristic a prime
integer p and Z is reduced. If ¢ is an R-automorphism of R[X], then the
following conditions are equivalent:

1) |¢| = p¢, for some integer e > 1.

ii) |l =p.

iii) ¢(X) =ao+ X, for some ag € Z.

Proof. Assume that o(X) = ag+ a1 X and |¢| = p°. If a1 # 1 we
have a} = 1. Thus (a; — 1)*° = 0 and so a; — 1 = 0, a contradiction.
Hence i) = iii) and the rest is clear.

From Corollary 1.8 the following is clear.

Remark 1.9. If R is as in Corollary 1.8 we have
i} The set of all the R-automorphisms of R[X] of order p¢, for some
e > 1, is a subgroup of Autg(R[X]) which is isomorphic to the group
(R,+),
ii) Assume that G is a p-group which is a subgroup of Autg(R[X]).
Then G is abelian and any element of G has order p.

Example 1.10. Assume that R is a field of characteristic p and let
¢ be a primitive root of the unity of order a prime ¢ # p. Then the
automorphism ¢ defined by o(X) = ag + €X, ap € R, has order gq. This
example shows that the subgroup of all the R-automorphisms of R[X]

of order p° considered in the Remark 1.9 may be a proper subgroup of
Autp(R[X]).

2. The fixed subring. Let G be a group of R-automorphisms of
R[X]. The computation of the invariant subring R[X]% is a subject of
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interest ([1],(4]). In particular, in [4] the author studied R[X]® when
G is the group of all the R-automorphisms of R[X], for a commutative
ring R. On the other hand, J. B. Castillon [1] proved that if R is a
commutative domain and G is a finite group, then R[X]¢ = R[f], where
[ =Tlpec #(X).

The purpose of this section is to extend the above result. Throughout
R is a (not necessarily commutative) ring and G is a finite group of R-
automorphisms of R[X] whose orderis n. We put f = [ ¢ 9(X) € Z[X].
We will prove the following

Theorem 2.1. Assume that for every p € G, ¢ # 1, o(X) — X is
not a zero divisor in R[X]. Then R[X]® = R[f] and R[X] is a free left
(right) R[X)®-module with the basis {1,X,..., X" 1}.

Note that ¢(X) — X € Z[X]. Then the following is clear.

Corollary 2.2. If R is a prime ring, then R[X]¢ = R[f].

By the definition of f it is clear that R[f] C R[X]®. We begin with
the following

Lemma 2.3. Assume that o(X) — X 1is not a zero divisor in R[X]
for every ¢ € G, ¢ # 1. Then R[X] = Z;-‘;[} R[f] X1,

Proof. An easy computation shows that there exist ¢ € Z[X] with
dg = n and the leading coefficient of g is invertible and h € N[X] such
that f = g+ h, where N is the set of all the nilpotent elements of Z. Then
there exists an integer m > 1 with A™ = 0. Hence g™ = 7, b; f'g™ ¢,
for some b; € Z, and we easily obtain X™™ € Z;-":"O_l Z[flx7 . It follows
that Z[X] is finitely generated over Z[f].

If Z is a reduced ring, then h = 0 and we obtain that Z[X] is gener-
ated over Z[f] by {1, X,...,X""!}. Consequently R[X] = R®z Z[X] =

}‘;01 R[f]X7. The result follows in this case.

Assume now that R is arbitrary. Put Z = Z/N and note that every
¢ € G induces a Z-automorphism @ of Z[X]. Also, by the assumption
B(X) # X if ¢ # 1. Thus the group G = {@:¢ € G} ~ G and we have
Z[X] = T3Z 2[]1X7, where | = [I5¢z #(X) = f + N[X] € Z[X]. Con-
sequently Z[X] = _’7-‘;(} Z[f]X7 + N[X] and the Nakayama’s Lemma gives
Z[X) = Y725 Z[f]X’. Finally, as above we obtain R[X] = Y725 R[f]X7.
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Remark 2.4. We point out that when Z is a reduced ring the
result R[X] = Z’;;& R[f]X/ is independent of the assumption. Also,
since f = n and the leading coefficient of f is invertible we easily ob-
tain that Z;-‘;g R[f1X7 = Z}‘;& ©R[f]X7. Consequently in this case

R[X] = ;-‘;01 @R[ f] X7 holds for any finite group G.

Now we are able to prove the theorem.

Proof of Theorem 2.1. Note that R[X] = Z;};(} R[f]X7

Z}‘;& R[X)® X7 C R[X]. Thus it is enough to show that Z;-’;(} R[X)6X7 =
T BR[X]CX.

Assume that h; € R[X]%, i = 0,...,n — 1, and %) A X = 0.
Then 3774 hip;j(X)' = 0, for every ¢; € G. Denote by A the matrix
whose entries are p;(X) € Z[X]. We easily obtain det(A)k, = 0, for
£=0,...,n — 1. However det(A) is a Wandermonde determinant and by
the assumption is not a zero divisor in R[X]. Consequently h; = 0 for
£=20,...,n — 1, and the proof is complete.

N

It is an open problem whether the converse of Theorem 2.1 holds. We
can prove this under an additional assumption.

Proposition 2.5. Assume that the ring R has no non-zero nilpotent
elements. Then the following conditions are equivalent:
i) RIX]® = R[f].
i) %) RIXI6 X is a direct sum.
iii) o(X)— X is not a zero divisor in R[X], for every 1 # ¢ € G.

Proof. The equivalence between i) and ii) follows from the Re-
mark 2.4. We prove i) = iii).

Assume, by contradiction, that there exists ¢ € G, ¢ # 1, such that
¢(X) — X is a zero divisor in R[X]. Since ¢(X) — X € Z[X] it follows
easily that there exists a non-zero ¢ € R such that ¢(¢(X)— X) = 0. Then
H = {0 € G:o(cX) = ¢X} is a subgroup of G with |H| > 2. Take a set
T1,..., Tt of representatives of the distinct left cosets of H in G and put
g = [I}=; 7:«(cX). Then g is a non-zero element of R[X]® whose degree is
t < n and the leading coefficient is of the type c'd, for some d € U(Z). By
the assumption g = b, f*+- - -+bg, for some b; € R, which is a contradiction
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since the leading coeflicient of f™ is invertible.

We finish this section with the following

Remark 2.6. The subring R[f] of R[X] is a polynomial ring over R,
i.e., there exists and an R-isomorphism ¥: R[t] — R[f] such that ¥(t) = f.
In fact, note that the coefficient of X™ in f is always invertible. Since
f € Z[X] this implies that f is not a zero divisor in R[X]. Assume
that ap + a1 f + --- + a,f® = 0, a; € R. Then ag = 0 because the
constant term of f is zero. Thus (a; + azf + -+ + an f*~1)f = 0 and so
a4 af + -+ 4 a, f"! = 0. Repeating the argument we obtain a; = 0
forz=0,...,n.

3. Galois automorphisms and Galois groups. Let S be a ring
and G a finite group of automorphisms of S. Recall that § is said to
be a Galois extension of S with group G if there exist z;, y; in S, i =
1,...,m, such that >, z;0(y:) = &1, for every o € G ([2],[7]). The set
{zi,yi}1<i<m is called a Galois coordinate system for § over SC.

Throughout this section G is again a finite group of R-automorphisms
of R[X]. We study here under which conditions R[X] is a Galois extension
of R[X]® with group G. When this is the case we say that G is a Galois
group of R[X]. An R-automorphism of R[X] is said to be a Galois auto-
morphism if the cyclic group (i) generated by ¢ is a Galois group of R[X].
Clearly, every element of a Galois group of R[X] is a Galois automorphism.

Every group G of R-automorphisms of R[X] induces a group of Z-
automorphims of Z[X] which is isomorphic to G. Assume that 1 # ¢ € G.
Then ¢(X)— X € Z[X] and so ¢(X) — X is invertible in Z[X] if and only
if o(X)— X is invertible in R[X]. Hereafter we will say simply “p(X)— X
is invertible” when this is the case.

We begin this section with the following

Lemma 3.1. The following conditions are equivalent:
i) G is a Galois group of R[X].

ii) G is a Galois group of Z[X].

iii) p(X) — X is invertible, for every p € G, ¢ # 1.

Proof. i) = iii) By the assumption there exist z;,y; € R[X], 1 <
i < m, such that Y™, z;0(y:) = 61, for every ¢ € G. Suppose that
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@(X)— X is not invertible. Then there exists a maximal ideal M of R[X]
such that ¢(X) — X € M. We easily obtain that ¢(h) — h € M, for every
h € R[X], and so Y72, zi(yi — ¢(¥:)) € M. Thus ¢ = 1.

iii) = ii) This follows directly from ([2], Theorem 1.3).

ii) = i) This is clear since the Galois coordinate system for Z[X]
is in R[X].

Combining Lemma 3.1 with Theorem 2.1 we immediately have

Corollary 3.2. If G is a Galois group of R[X), then R[X]|® =
R[f] and R[X] is a free left (right) R[X|®-module with the basis
{1,X,..., X" 1}, where f =[], ec ¢(X) and n = order (G).

Now we give a characterization of a Galois automorphism. Assume
that o(X)=ao+ ey X + -+ a, X", a9 € Z, a1 € U(Z) and q; € N for
1> 2. We have

Theorem 3.3. The following conditions are equivalent:
1) ¢ is a non-trivial Galois automorphism of R[X].
ii) ag € U(Z) and there ezists a prime integer p such that the char-
acteristic of R is p*, e > 1, and |¢| = p.
Moreover, under the above conditions a; = 1 (mod N).

Proof. i) => ii) Suppose that ¢ is a Galois automorphism of R[X]
with |¢| = p. We may write ¢(X) = ag + &1 X + g, where g = a; X?--- +
a, X" € N[X]. By Lemma 3.1 ¢(X)—X = ao+(a; —1)X +g is invertible
in Z[X], so we have ap € U(Z) and a; — 1 € N. Then we can easily show
that for every i > 1 there exists h; € N[X] such that ¢'(X) = iag+ X + h;.
Therefore iag = (¢*(X)—X)— h; is invertible in Z if i < p and is nilpotent
if ¢ = p. Tt follows that the integer ¢ is invertible in Z if { < p and is
nilpotent if i = p. Consequently p is prime and p* = 0 for some integer
t > 1. Thus the characteristic of R is a power of p.

ii) = 1) We write again ¢(X) = ap+ ¢1X + g, g € N[X]. Then
X = @P(X) = bp+ai X + h, for some by € Z and h € N[X]. It follows that
a? = 1 (mod N) and so (a; — 1)** = 0 (mod N). Thus a; = 1 (mod N)
and we have ¢ (X) — X = iag + h;, for some h; € N[X]. Since i and ag
are invertible, for 1 < i < p, Lemma 3.1 completes the proof.

For a ring with reduced center we have the following particular case.
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Corollary 3.4. Assume that Z is a reduced ring and ¢ is an R-
automorphism of R[X]. Then the following conditions are equivalent:
i) @ is a non-trivial Galois automorphism of R[X].
i) ¢(X) =X + ao, for some ag € U(Z), and the characteristic of R
is @ prime integer p.

Now we are in position to give a description of a Galois group of R[X].
Recall that a p-elementary abelian group is a group which is isomorphic
to a direct product of cyclic groups of order p. We have

Proposition 3.5. Assume that the characteristic of R is p° and G
is a Galois group of R[X]. Then G is a p-elementary abelian group.

Proof. We know that G is a Galois group of Z[X]. Denote by Z
the factor ring Z/N and consider the group G of Z-automorphisms of
Z[X] induced by G. 1t is easy to see that G is a Galois group of Z[X]
which is isomorphic to G. So we may assume that Z is a reduced ring of
characteristic p. In this case, for every ¢ € G, ¢ # 1, we have ¢(X) =
X + a,, for some a, € U(Z). Also, po ¥(X) = X + (ay + a,). Therefore
the group G is isomorphic to a subgroup of the abelian group (Z,+). The
result is now evident.

Now we can give a representation of all the Galois groups in the re-
duced case. Assume that V' is a non-empty subset of units of Z. We say
that H = V U {0} is an edditive group of units of Z if for every u,v € H
we have u —v € H.

If H is a finite additive group of units of Z, for any u € H we define
an R-automorphism of R[X] by ¢,(X) = X + u. Then it is clear that
{@y:u € H} is a Galois group of R[X] which is isomorphic to H. The
converse is apparent from the proof of Proposition 3.5. Then we have

Corollary 3.6. Assume that Z is a reduced ring. Then the above
correspondence is a one-to-one correspondence between the set of all the
Galois groups of R[X] and the set of all the finite additive groups of units
of Z.

Remark 3.7. It is clear that in the general case if G' is a Galois
group of R[X], then G is isomorphic to a finite additive group of units of
Z/N. But we do not know whether any such a group can be realized as a



ON R-AUTOMORPHISMS OF R[X] 73

Galois group of R[X].

We finish the paper with some examples, remarks and questions.

First, by Theorem 3.3 if a Galois automorphism of R[X] exists, then
the characteristic of R is p®, for a prime p and e > 1. The following
examples show that any such a characteristic is possible.

Example 3.8. Let R be any ring of characteristic 2°, ¢ > 1, and let
¢ be the R-automorphism of R[X] defined by p(X)=1—X. Then pis a
Galois automorphism.

Example 3.9. Let R be any ring of characteristic p%, where p is
any prime integer and let ¢ be the R-automorphism of R[X] defined by
¢(X) = 14+ X + pXP~l. We show that ¢ is a Galois automorphism.
Put 7(X) = X 4+ 1 and ¢ = XP~'. Using an induction argument we
obtain ¢'(X) = T(X) +p2§;}) 73(g), for 1 < i < p. Then ¢/ (X)— X is
invertible for 1 <i<p-—1land p?(X)=p+ X +p2f;(1, 7i(g). Thus it is
enough to show that p + pi;(lJ 79(g) = 0 in R[X]. In fact, Z’;;[l) m(g) =
Z’;;é(X + )P = Z?;é ¢;js$p—1-;X7, where ¢; is a combinatorial number
with ¢,y = p, 85 = Zf;ll £,for 1 < j < p-1,and ¢¢ = sg = 1.
Clearly s; = 0 (mod p). Now we use the formula (j';l)sl + j*_'})sz +-- 4
(j'.'z'l).sj'_l + (‘j“lLl)Sj = p't! —p, forany j = 1,...,p — 2 ([3],E16,p.17).
Taking 7 = 2 we obtain s = 0 (modp). Continuing this way, taking
successively j = 3,...,p—2 we prove that s; = 0 (mod p) for 1 < j < p-2.
Also s, = Y h-) €271 = (p — 1) (mod p). Consequently, ng?;é Ti(g) =
p(p— 1) = —p and the proof is complete.

The following example shows that there always exists a ring R of
charactreristic p¢ such that R[X] has a Galois automorphism.

Example 3.10. Let A be a commutative ring of characteristic p®
and denote by I the ideal of the polynomial ring A[t] generated by the
polynomial h = 3°7_, (8)t'~!. Put R = A[t]/] and @ = t+1 € R. Then the
characteristic of R is p® and a € N(R) because a?~! = — 77! (®)a’ = pb,
for some b € R. Then ¢(X) = a+ X + aX defines an R-automorphism of
R[X]. It is easy to check that if a € U(R), then ¢ is a Galois automorphism
of R[X].
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Remark 3.11. The above examples and several other particular
cases we have considered, suggest that for every ring R of characteris-
tic p® there should exist Galois automorphisms of R[X]. However we were
unable to prove this conjecture.

Remark 3.12. Assume that G and H are Galois groups of R[X]
and R[X]% = R[X]H. If R is a connected ring, it follows from the results
in [2] that G = H. However the result is not true in general. In fact, let
R be a commutative ring of characteristic p, ¢(X) = X +a, for a € U(R),
and {eq,...,e,_1} a family of orthogonal idempotents whose sum is 1. Put
o=y “le; i¢'. Then we easily see that o is also a Galois automorphism
and [T22, ¢(X) = ) e 1 @/(X). Thus R[X]®¥) = R[X](®), where (¢) and
(o) are the cyclic groups generated by ¢ and o, respectlvely

Remark 3.13. If R is a non-commutative ring and G is a Galois
group of R[X], then G is a Galois group of Z[X] and R[X] = R®z Z[X].
Then, this is an example in which the results on Galois theory for R[X]
over R[X]¢ are trivial extensions of the results for Z[X] over Z[X]¢ ([5],
Theorem 2.1).

Question. It should be interesting to obtain a description of the R-
automorphisms of R[X] of order p when the characteristic of R is p®. We
could not give an answer to this question.
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