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ANTI-INTEGRAL EXTENSIONS AND
UNRAMIFIED EXTENSIONS

MiTsvo KANEMITSU and KEN-1cHI YOSHIDA

All rings considered in this paper are assumed to be commutative and
have an identity.

We will study some properties of anti-integral extensions and unram-
ified extensions.

Let R be a Noetherian integral domain and R[X] a polynomial ring.
Let a be an element of an algebraic field extension L of the quotient field
K of R and let ¥: R[X] — R[a] be the R-algebra homomorphism sending
X to a. Let ¢4(X) be the monic minimal polynomial of a over K with
deg 9o (X) = d and write

pa(X) = X+ mX I 4o g,

Let I: = N%_,(R:rm). For f(X) € R[X], let ¢(f(X)) denote the ideal
generated by the coefficients of f(X). Let J, = ¢(IZ@s(X)), which is an
ideal of R and contains I};. The element « is called an anti-integral element
of degree d over R if Ker¥ = I7¢,(X)R[X]. When o is an anti-integral
element over R, R[a] is called an anti-integral extension of R. In the
case K(a) = K, an anti-integral element « is the same as an anti-integral
element (i.e., R = R[a] N R[1/a]) defined in [5]. The element « is called
a super-primitive element of degree d over R if J, ¢ p for all primes p of
depth one.

1. Birational case. Let R be a Noetherian integral domain with
the quotient field A" and a be a non-zero element of K.

Write A; = R[a] (= A), A2 = Rla™!], I, = {r € R| ra € R} and
Ja = Iy + al,. We recall that « is an anti-integral element or that « is
anti-integral over R if A; N A; = R. When « is anti-integral over R, R[a]
is said to be an anti-integral extension of R.

From now on, we assume that a is anti-integral over R.

Let ©4,/r:Spec(A;) — Spec(R) be maps which satisfy the condition
@a;/r(P) = PN R for any P € Spec(4;). For any ideal N of R, we define

V(N)={P €Spec(R)| PD N}.
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We write D(N) to denote the set Spec(R)\V(N). Let Ayp = {p €
Spec(R)| pA = A} and Ty, = {p € Spec(R)| p+ Jo» = R}.

Proposition 1. The following results are satisfied.

(1) Agyr=V({Is)NTy,.

(2) Impa/r = D(1a) UV (Ja), where ¢ = @4 p:Spec(A) — Spec(R)
is a map such that ¢4/r(P) = PN R for any P € Spec(A).

(3) Aay /RN AuyR =9

(4) Impa,/r UImepy, r = Spec(R).

Proof. (2) Suppose that p € D(I,)U V(J,). When p € V(J,), we
claim that p € Img. By [2, Theorem 1.4(3)], we have that A/pA X
(R/p)[T) where T is an indeterminate. Thus pA is a prime ideal of A
and pAN R = p. Hence we have p € Im¢. In the case that p € D(I,),
it follows that A, = R,. Write pR,N A = P. Then P € Spec(A) and
PN R = p. Therefore we have that o € Im¢p. Hence we proved that
D(I,)UV(Jy) C Imp. To prove the opposite inclusion, assume that
p &€ D(I,)UV(Jy). We claim that p ¢ Ime. Suppose that p € Ime.
Then there exists a prime ideal P of A such that PN R = p. Since p D I,
and p 2 Ja, it follows that p 2 al,. Since P D al, and R D al,, we
have that p D al,. This is a contradiction.

(1) Let p € V(Io) N Ty,. Suppose that p ¢ A, p. Since pA # A,
there exists a prime ideal P of A such that PN R D p. Put ¢ = PN R.
Then ¢ € Im¢. Since p D I, we have that g = PN R D I, + al, = J,.
Since p € T';,, it follows that p + Jo = R. Therefore ¢ = R. This is a
contradiction. Hence p € A4/p, that is, V(Ila) N Ty, C Ay/p.

To prove the opposite inclusion, assume that p € Ay/g. Suppose
that p ¢ V(I,). Then p € Imy by (2). This contradicts the fact that
p € Ag/r. Thus we proved that p € V(1,).

Next, suppose that p ¢ T';_, thatis, p+ Jo # R. Then, there exists a
prime ideal g of R such that p+J, C ¢g. So ¢ € Im¢p by (2). Therefore there
exists a prime ideal P of A such that PN R =¢gandso P D gA D pA = A.
This is a contradiction. Hence p € I'j,. This completes the proof of (1).

(3) By (1), we have that

Apa /RN Asyr=(VU)NTy )N (V(Ie=)NTy ).

Since al, = I -1, it follows that J,-1 = J,. Hence 'y, = I‘_]a_l.
Thus Ag,/r N Bayr = (VL) NV(ala)) N Ty, = ¢.
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(4) By (2), we have that
Impy, /rUImpa,/r = (D) UV (Ja)) U (D(Ia-1) U V(Jy-1))
= D(Ia)U D(Ia=1) UV (Ja)
= DIy + I,-1)UV(Js) = D(Ja) UV (Jy)
= Spec(R).

Proposition 2. It holds that Img 4, jgNIm e 4, g = D(al2)UV (o).

Proof. By Proposition 1(2), we have that

Imga, /rNImea,r = (D(1a) UV (Ja)) N (D(Iy-1) U V(Jy-1))
= (D(Ia) N D(I4-1)) U (D(1a) NV (Ja))
U((V(Ja) N D(Iy-1)) UV (Ja).

It holds that
D(Io) N D(Iy-1) = D(Ial4—1) = D(al?).
Since Jy D I,, we have that D(I,)NV (Js) = ¢. Since D(I,1)NV(J,) =
¢, we get Impy g NImey, g = D(al2)UV(J,).
Proposition 3. It holds that Ay, /rU Ay,/p = V(al2)NnTy,.
Proof. 1t follows that
AparYU AL R=(VIa)NT)U(V(Ie-)NTy )
= (V) UV(s-))NTy,
=(V(I)UV(al,))NTy, =V(al?)nTy,.

Proposition 4. Let C = R[a,a™'] and v:Spec(C) — Spec(R) be a
restriction mapping. Then we have that

Imy = (D(Ia) N D(I,-1)) UV (Ja) = D(al?) UV (J,)
=Imey, /rNImey, /g
Proof. By Proposition 2, we enough prove that

Im$ = (D(Ia) N D(Iy-1)) UV (Ja)-
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Let g be an element of D(I,) N D(I,-1). Then it follows that I, ¢ p
and al, ¢ p. Hence Cp, = R,. Put pC,NC = P. Then PN R = p.
Hence p € Im¢. Hence we proved that D(I,)N D(I,-1) C Imt. Next, we
claim that

V(Jo) C Imdp.

Let p € V(Jy). Since p D J,, it follows that ¢ D I, and p D
I,-» = al,. Suppose that @« € P = pA. As the same as the proof of
Proposition 1(2), we have that P # A and A/pA = (R/p)[T] where T is an
indeterminate. Write a = ap+aja+---+a,a™ (each a; € p). Since PNR =
p and p D aA N R, we have that @ = 0 where & denotes the image of a
in A/pA. On the other hand, we have that @ = T. This is a contradiction.
Therefore P # a. Thus PC is a prime ideal of C and PC N R = p. Hence
p € Ime. Thus we proved that (D(I5) N D(I,-1)) UV (Jy) C Imap.

To prove the opposite inclusion, assume p € Imw. Suppose that
o ¢ V(Ja) By

Spec(C') — Spec(A;) — Spec(R),
we have that p € Impy, /g = D(Ja) UV (Js). On the other hand, by
Spec(C) — Spec(Az) — Spec(R),

we have that p € Impa,,p = D(I4-1)UV (Jq-1) = D(Io-1)UV(Ja). Since
p ¢ V(Ja), we get that p € D(Io)N D(I,-1). Thus the proof is complete.

Theorem 5. Assume that « is an anti-integral element over R.
Write C = R[a,a”'],A; = R[a] and A, = R[a~']. It holds that
Ac/r = Aa,JRU A4 r =V(alZ)NTy,.

Proof. It is sufficient to prove the first equality. We recall that
@it Spec(A;) — Spec(R) are restriction mappings. Evidently, Ag/g D
Ap/JrRYU Ay, r. Let p € Agyr. Suppose that p ¢ Aa/rUAygyre By
Proposition 3, we have that af2 = (I,)(als) ¢ p or p+ Jo # R.

Case 1). © 2 Iy and p p al,. Then Cp = R,. Since pC = C, we
have that pR, = R,,. This is a contradiction.

Case 2). p+J4 #R.

There exists a prime ideal ¢ of R such that ¢ D p + J,. Then gA is
a prime ideal of A and a ¢ gA from the proof of Proposition 4. We recall



ANTIIINTEGRAL EXTENSIONS AND UNRAMIFIED EXTENSIONS 55

that C = A[a~!]. Therefore (¢A)C = ¢C is a prime ideal of C and C/qC =
(R/q)[T,T~']. But, since p € Ag/g, we have that C = pC C ¢C # C.
This is a contradiction. Hence p € Ay ;g U Ay, p-

Remark. pC = C (p € Spec(R)) if and only if p + J, = R and
I, Cporl,1Cp.

2. High degree extensions of rings. Let R be a Noetherian do-
main with the quotient field A" and L be a finite algebraic extension field
of K such that [L: K] = d. Let @ € L and A = R[e]. Let L be the quotient
field of A.

When A = R[a] is an unramified extension of R, we call a an unrami-
fied element over R. Let S be an R-algebra of finite type. We recall that §
is an unramified over R if and only if the differential module Qr(S) = (0)
(cf. [1]).

Let 0o (X) = X¢+ mX% ' +... 4+ ny € K[X] be the monic minimal
polynomial of a over K.

Write IZ: = ntli ITh" JO! = c(cpa(X)I;), jor = 12(1a771a---771d—1) and
Jy = ngl%, where ¢(po(X)I:) denotes the ideal generated by the coeffi-
cients of all polynomials in @4(X)I%. Note that Jo = I, + J,.

Let ¥:R[X] — R[a] be the canonical homomorphism such that
¥Y(X) = a and ¢(a) = a for any a € R. « is called an anti-integral element
of degree d over R if Keryy = I,(X)R[X]. When « is an anti-integral
element, we say that R[a] is an anti-integral extension of R.

In the rest of this section, we assume that « is an anti-integral element
of degree d over R.

Proposition 6. I, = R if and only if the following two conditions
hold.
(1) A is a flat R-module.

(2) @:Spec(A) — Spec(R) is surjective.

Proof. (<=) Suppose that I, # R. Then there exists a prime ideal
p of R such that p D I,. Since ¢ is surjective, there exists a prime ideal
P of A such that PN R = p. Thus [,A C P.

We claim that I,A = A. Let a be any element of I*. Since ¢o(a) = 0,
we have that aa® + (am)a?™! 4+ -+ + (ane_1)a = —ang € I,A. Hence
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.faA.‘Z) faA+I;nd > I, +Jy = Jo. Since A is R-flat, we have that J, = R
by [4, Theorem 1.8 or Theorem 3.4] and so [,A O J,A = A. Therefore
I,A = A. Hence P = A. This is a contradiction. Thus [, = R.

(=) If I, = R, then J, = R. By [4, Theorem 1.8 or Theorem 3.4],
we have that A is R-flat. Now, by the following Theorem 7(1), Im¢ =
D(I,) U V(J,), we have that Img = Spec(R). Hence ¢ is surjective.

Theorem 7. Assume that o is an anti-integral element of degree d
over R. Then we have the following results.

(1) Img = D(I,) UV (Jy) = D(I,) UV (Jy).

(2) Ay =V()NT; =V(Ia)NTy,.

Proof. First, we shall prove (1). Let p € D(I,) and ¥:R[X] —

A = R[a] be the canonical map. Then A, = RW[X]/(Ker\II)Rp[X] and

Ap/pAy = (Ro/pR,)[X]/(KerU)(Ry/pRy)[X], where Ker¥ denotes the
image of Ker¥ in (Ry,/pRy)[X]. Since p 2 I, (Ker¥) is not a constant.
Thus pA, # Ap. Let P be a prime divisor of pAg. Put PnA=P. Then
Pr‘lRp— PR, and so PN R = p. Hence p € Imy.

Next, let p D Jy = naI*. We recall that if p 2 I, then p € Imep.
So, we suppose that p D I,. Then p D J,. It follows that A/pA =
(R/9)[T), where T is an indeterminate. Since pR[X] D Ker¥, P = pA €
Spec(A) and PN R = p, we have that ¢ € Imp. Thus we proved that
D(I,)UV(Ja) C D(I4)UV(Js) C Img. To prove the opposite inclusion,
assume that p ¢ D([,) UV (Jy). We claim that p ¢ Ime. Suppose that
g € Im¢. There exists a prime ideal P of A such that PN R = p. Since
© B Jo = ngl%, there exists some element a € I* such that ang ¢ p. Since
oD I, > a,amn,...,an4—, it follows that P 5 (aad + anlad‘l + -+
ang—1a) = —ang. So g 3 —any. This is a contradiction. We have that
p ¢ Ime. Hence we have that Imp = D(I4) UV (Jy).

We claim that D(ia) UV(Js) = D(Ia) UV (Js). Clearly, it follows
that D(J,) U V(Jy) D D(I4) U V(Js). To prove the opposite inclusion,
assume that p ¢ D(I )UV(Ja). Then p D I, and p % J,. Suppose that
p € V(Ja)U D(I,). Then p D J, + Ia = Ju. This is a contradiction.
Therefore we have that o ¢ V(J,)U D(I,). Thus we complete the proof
of the claim.

(2). Letpe V'(fa)ﬂFja. Suppose that p ¢ A4 p. Then there exists
a prime ideal P of A such that P D pA. Put PN R = ¢q. Then we have
that ¢ D p and ¢ € Imp. Since a,an,...,an4_y € I, C p C P, for any
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a € I, we have that
ac® + ama®™' + .-+ ang_10 = —ang € PN R = gq.

Consequently, we have that J, C g. Since p € I‘J-Q, it follows that ¢ D
Jx + 9 = R. This is a contradiction. Therefore we proved that V(I,) N
Fja C AA/R- i

Conversely, we shall prove that Ay/p C V(ly) N Fj. Letp ¢
V()N I'j . Then p 2 Ioorp+Jy, 2R Ifp 5 I, then p € Ime
by Theorem 7(1). Therefore there exists a prime ideal P of A such that
PN R = p. Suppose that p € Ay/g. Then P O pA = A. This is a
contradiction. Thus p ¢ Ay/g.

Next, if p + Jo # R, then there exists a prime ideal ¢ of R such that
o+ Jo C q. Since g € Imgy by (1), it follows that ¢4 # A. Since p C ¢,
we have that pA # A. So we get p ¢ Ay/g. Hence we complete the
proof of Ay g = V(Io)NTj; . At last, we shall prove that V([,)NT; =
V(Ia)NTy,. Clearly, we have that V(Io)NT'; C V(I,)NT,,. So we shall
prove that V(I,)N Ty, C V(I,)n Ij. Letpe V(I,)NT,,. Suppose
that p ¢ V(I,) N I'j . Then p+ Jo # R. Also there exists a prime ideal
q of R such that ¢ O p + J,. Since ¢ D J, and @+ Jo = R, we have that
¢ D p+ Jo = R. This is a contradiction. Hence p € V([,)NT; . This
completes the proof.

We consider unramified extensions of rings.

Theorem 8. Let a be an anti-integral element of degree d over R,
Put A = R[a]. Let po(X) = X4 m X4 4.4 5y be the monic minimal
polynomial of « over K. Put I7 = &, I,. Then the following conditions
are equivalent.

(1) Qr(4) = (0).

(2) Lipa(a)A = A

Proof. Let 0 — N — R[X] - A = R[X]/N — 0 be an exact

sequence. From this exact sequence, we get the following exact sequence:
N/N? — AQpgx) R[X]dX = A— Qp(4) —0,

where p: N/N? — A ®px) R[X]dX is a map such that p(z mod N?) =
dprix)/rt ® 1 for ¢ € N. Note that A @px) Qr(R[X]) = A. Since N =
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I3oo(X)R[X], it follows that Imp = It¢l(a)A. Hence Qgr(A) = (0) if
and only if I3l (a)A = A.

Example. Let &k be a field with characteristic # 2 and let R =
k[X2,1/X?) be a subring of k[X,1/X]. Put A = R[X]. Then K = k(X?)
is the quotient field of R and L = k(X) is the quotient field of A. Put
a = X. Then po(Y) = Y2 — X2 € R[Y] is the monic minimal polynomial
of a over K. Since @ (Y) =2Y, ¢, (X) = 2X is a unit of A = k[X,1/X].
Hence A is an unramified over R (cf. [3, Theorem 10.0.1]).

Remark. If A is unramified over R, then I, A = IA = A. In fact,
since IX¢! (a)A C I*A and Iz C I,, it follows that I*A = I,A = A.

Theorem 9. Under the assumption in Theorem 8, if Qr(A) = (0),
then A is a flat R-module.

Proof. Suppose that A is not a flat R-module. Then there exists a
prime ideal p of R such that g D ¢(I}@a(X)) by [4, Theorem 1.8]. Since
pR[X] D Iva(X)R[X] = N, we have that A/pA = (R/p)[X]. Hence
pA € Spec(A). From an exact sequence 0 — pA — A — A/pA — 0,
we have the following exact sequence. pA/p*A — Qp(A) ®a A/pA —
Qrjp(A/pA) — 0. But Qr(A) = (0), and so Qpry,,(A/pA) = (0). Also,
since A/pA = (R/p)[X], we have that Qp/.(A/pA) = ((R/p)[X])dX #
(0). This is a contradiction. Hence A is a flat R-module.

Remark. Although A is a flat R-module, A is not necessarily un-
ramified over R. For example, let R = k[X?] be a subring of ¥[X] where
k denotes a field with characteristic # 2. Set A = R[X] = k[X]. Since
Qr(A) = A/XA # (0), we have that A is not an unramified extension
over R.

Proposition 10. Under the assumption in Theorem 8, it follows
that V(Anngp(Qr(A))) D V(Ja), where Anng(Qr(A)) denotes the annihi-
lator ideal of Qr(A).

Proof. Assume that p ¢ V(Anng(f2r(A))). So there exists an ele-
ment s € Anng(fr(A)) such that s ¢ p. Therefore sQr(A) = (0) and so
Qr,(Ap) = (0). Note that A, = Ry[a]. Using Theorem 9, it follows that
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A, is a flat R,-module. From this fact and [4, Theorem 1.8], we obtain
that p B Jo. Therefore p ¢ V(J4).

Proposition 11. The element « is an anti-integral element of degree
d over R if and only if a is an anti-integral element of degree d over R,
for any p € Spec(R).

Proof. Let 0 — N — R[X] — A = R[a] — 0 be an exact sequence.

(=>) N is an ideal generated by some polynomials of degree d, where
d = [L: K. Also,

0— Ny, — R,[X]— A, = Ry[a] — 0

is an exact sequence. Hence N, is also an ideal generated by some polyno-
mials of degree d. Thus « is an anti-integral element of degree d over R,,.

(<) Put B = Jopa(X)R[X]. Then B C N. And N = B if and only
if a is anti-integral over R. By the assumption, we have that N, = B, for
any p € Spec(R). Hence we get N = B.

Theorem 12. In special case, if o be an element of K then the
Jollowing (1)-(iv) are equivalent.

(i) I.A = A.
(ii) A is a flat R-module.
(iii) JoA = A.

(iv) A is an unramified extension of R.

Proof. Using the fact that I,A = JoA and [5, Proposition 2.7], the
equivalence of (i), (ii) and (iii) are already proved. Also, it proved that (iv)
implies (ii) from Theorem 9. Now, we claim that (ii) implies (iv). Since
d = 1, we have that J,¢l (a)A = J,A where ¢o(X) = X —a. Since Ais a
flat R-module, it follows that J, = R. So we get that J,A = A. Therefore
we have that [,¢)(a)A = Jap,(a)A = A. Using Theorem 8, we see that
Qr(A) = (0). Hence A is an unramified extension of R.

Remark. In Theorem 12, a simple birational anti-integral extension
is flat if and only if it is an unramified extension, but, in case of a non-
birational extension, flatness is not equivalent to unramifiedness (cf. Re-
mark of Theorem 9).
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Remark. Let po(X) = X%+ ;X9 ! +---4 ny be the monic min-
imal polynomial of a over &', where d = [L: K| > 1. Then ¢/ (a)A C
I,A. For, I¢/(e)A = I*(da®! +(d - Dma®2 + -+ + n4_1)A C
I“(1,m1,...,m4-1)A C I,A. From Theorem 8, if Qr(A) = (0), then
I,A = A. As an example of I*¢/ (o) # I, A, we give the following ex-
ample. Put ¢u(X) = X2 —a € R[X] where a is not a unit of R. Then
Il (a0)A = 204 # A and I,A = A (We assume that 2 is not a unit of A).

Propositipn 13. Let A = R|a| be an unramified extension of R and
let @:Spec(A) — Spec(R) be a restriction map. Then ¢ is surjective if
and only if I, = R.

Proof. («<=) From Theorem 7, we know that Imy = D(I,) UV (J4).
So Imy = Spec(R) by assumption. Hence ¢ is surjective.

(=>) Suppose that I, # R. There exists a prime ideal p of R such
that I, C p. Since ¢ is surjective, there exists a prime ideal P of A such
that PN R = p. Thus [,A C P. But A is an unramified extension over
R, I,A = A from Theorem 8 and Remark. Hence A = P, contradicting,.
Therefore I, = R.

Remark. When ¢ is surjective, VA = A if and only if N = R for
an ideal N of R.

Lemma 14. Let A be a ring extension of R and N be an ideal of R.
Let N = q1Ng2N...N¢q, be a primary decomposition of N, where \/q; = p;
for1<i<n. Then NA=A ifand only if p;A=A for1 <i: < n.

Proof. (=) Since NA C p;A, we have ;A = A.

(<=) From p;A = A, we have that 1 = " a;5a;; (ai; € i, aij € A).
Clearly, it can be assumed that a;; € ¢;. Then 1 = [];(3 a;;a:5) € NA
and so NA = A.

Theorem 15. Let « be an anti-integral element of degree d over R.
A is a flat R-module if and only if [.A = A.

Proof. Let Is=qNg@N---Ngy (v/@ = pi) be a primary decompo-
sition of 1.
(=>) From Theorem 7(2), A /p = V(Iy) N I'j , where J, = Ixna
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and J, = I, + Jo. Since A is R-flat, it follows that J, = R from [4,
Theorem 1.8 or Proposition 2.6]. Since I, C p;, we get that p; € V(I,)
and p; € T'; . Therefore p; € V(I)n I =As/randsop;A=A. From
Lemma 14, we have faA = A.

(<=) Since I,A = A, it follows that p; A = A from Proposition 14.
So pi € Ay = V(fo,) NT; . Since p; + Js = R, we have that J, =
Js 4+ I, = R. Hence A is a flat R-module.

We recall that o is an unramified element over R if R[a] is an unram-
ified extension of R.

Theorem 16. Let aj,a9,...,a, be unramified elements over R.
Then R[ai,og,. ..,y is an unramified extension over R,

Proof. Clearly, it can be assumed that n = 2. Let B = R[oq], C' =
Rlag] and A = Blay] = Rlay,a;3]. Then we have the following exact
sequence:

Qr(B)®pA — Qr(A) — Qp(A) — 0.

Since B and €' are unramified extensions over R, we see that Qg(B) = (0)
and Qgr(C') = (0). So it suffices to show that Qg(4) = (0). Since C is an
unramified over R, it follows that B®g C is an unramified over B. that is,
Qp(BRRC) = (0). From the exact sequence 0 — N — BQRC — A — 0,
and the fact that Qp(A) = Qp(B ®@r C)/QN) where Q(N) denotes the
submodule generated by {da|a € N}, we get that Qg(A) = (0). Thus we
have that Qr(A) = (0). The proof is complete.

Remark. Let a be an element of the quotient field of R. Let A =
R[a] be an anti-integral extension of R. Then A is a flat R-module if and
only if A, = R, or A, = R,[1/a](Vp € Spec(R)) for some element a € R.

Proof. (<) It is trivial.

(=) In the case p 2 I, it follows that A, = R,. In the remaining
case, since Jo = Iy + al, = R, we have that p 2 al,. And so there exists
an element a of I, such that ao ¢ p. Put b = aa. Then A, = Ry[a] =
R,[1/a].
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