## ANTI-INTEGRAL EXTENSIONS AND UNRAMIFIED EXTENSIONS

## MITSUO KANEMITSU and KEN-ICHI YOSHIDA

All rings considered in this paper are assumed to be commutative and have an identity.

We will study some properties of anti-integral extensions and unramified extensions.

Let R be a Noetherian integral domain and R[X] a polynomial ring. Let  $\alpha$  be an element of an algebraic field extension L of the quotient field K of R and let  $\Psi: R[X] \to R[\alpha]$  be the R-algebra homomorphism sending X to  $\alpha$ . Let  $\varphi_{\alpha}(X)$  be the monic minimal polynomial of  $\alpha$  over K with  $\deg \varphi_{\alpha}(X) = d$  and write

$$\varphi_{\alpha}(X) = X^d + \eta_1 X^{d-1} + \dots + \eta_d.$$

Let  $I_{\alpha}^* = \bigcap_{i=1}^d (R:R \eta_i)$ . For  $f(X) \in R[X]$ , let c(f(X)) denote the ideal generated by the coefficients of f(X). Let  $J_{\alpha} = c(I_{\alpha}^* \varphi_{\alpha}(X))$ , which is an ideal of R and contains  $I_{\alpha}^*$ . The element  $\alpha$  is called an *anti-integral element* of degree d over R if  $\text{Ker } \Psi = I_{\alpha}^* \varphi_{\alpha}(X) R[X]$ . When  $\alpha$  is an anti-integral element over R,  $R[\alpha]$  is called an *anti-integral extension* of R. In the case  $K(\alpha) = K$ , an anti-integral element  $\alpha$  is the same as an anti-integral element (i.e.,  $R = R[\alpha] \cap R[1/\alpha]$ ) defined in [5]. The element  $\alpha$  is called a super-primitive element of degree d over R if  $J_{\alpha} \not\subset \wp$  for all primes  $\wp$  of depth one.

1. Birational case. Let R be a Noetherian integral domain with the quotient field K and  $\alpha$  be a non-zero element of K.

Write  $A_1 = R[\alpha]$  (= A),  $A_2 = R[\alpha^{-1}]$ ,  $I_{\alpha} = \{r \in R \mid r\alpha \in R\}$  and  $J_{\alpha} = I_{\alpha} + \alpha I_{\alpha}$ . We recall that  $\alpha$  is an anti-integral element or that  $\alpha$  is anti-integral over R if  $A_1 \cap A_2 = R$ . When  $\alpha$  is anti-integral over R,  $R[\alpha]$  is said to be an anti-integral extension of R.

From now on, we assume that  $\alpha$  is anti-integral over R.

Let  $\varphi_{A_i/R}$ : Spec $(A_i) \to \operatorname{Spec}(R)$  be maps which satisfy the condition  $\varphi_{A_i/R}(P) = P \cap R$  for any  $P \in \operatorname{Spec}(A_i)$ . For any ideal N of R, we define

$$V(N) = \{ P \in \operatorname{Spec}(R) \mid P \supset N \}.$$

We write D(N) to denote the set  $\operatorname{Spec}(R)\backslash V(N)$ . Let  $\Delta_{A/R}=\{\wp\in\operatorname{Spec}(R)|\wp A=A\}$  and  $\Gamma_{J_\alpha}=\{\wp\in\operatorname{Spec}(R)|\wp+J_\alpha=R\}$ .

Proposition 1. The following results are satisfied.

- (1)  $\Delta_{A/R} = V(I_{\alpha}) \cap \Gamma_{J_{\alpha}}$ .
- (2)  $\operatorname{Im} \varphi_{A/R} = D(I_{\alpha}) \cup V(J_{\alpha})$ , where  $\varphi = \varphi_{A/R} : \operatorname{Spec}(A) \to \operatorname{Spec}(R)$  is a map such that  $\varphi_{A/R}(P) = P \cap R$  for any  $P \in \operatorname{Spec}(A)$ .
  - $(3) \ \Delta_{A_1/R} \cap \Delta_{A_2/R} = \phi.$
  - (4)  $\operatorname{Im} \varphi_{A_1/R} \cup \operatorname{Im} \varphi_{A_2/R} = \operatorname{Spec}(R)$ .
- Proof. (2) Suppose that  $\wp \in D(I_{\alpha}) \cup V(J_{\alpha})$ . When  $\wp \in V(J_{\alpha})$ , we claim that  $\wp \in \operatorname{Im} \varphi$ . By [2, Theorem 1.4(3)], we have that  $A/\wp A \cong (R/\wp)[T]$  where T is an indeterminate. Thus  $\wp A$  is a prime ideal of A and  $\wp A \cap R = \wp$ . Hence we have  $\wp \in \operatorname{Im} \varphi$ . In the case that  $\wp \in D(I_{\alpha})$ , it follows that  $A_{\wp} = R_{\wp}$ . Write  $\wp R_{\wp} \cap A = P$ . Then  $P \in \operatorname{Spec}(A)$  and  $P \cap R = \wp$ . Therefore we have that  $\wp \in \operatorname{Im} \varphi$ . Hence we proved that  $D(I_{\alpha}) \cup V(J_{\alpha}) \subset \operatorname{Im} \varphi$ . To prove the opposite inclusion, assume that  $\wp \notin D(I_{\alpha}) \cup V(J_{\alpha})$ . We claim that  $\wp \notin \operatorname{Im} \varphi$ . Suppose that  $\wp \in \operatorname{Im} \varphi$ . Then there exists a prime ideal P of A such that  $P \cap R = \wp$ . Since  $\wp \supset I_{\alpha}$  and  $\wp \not\supset J_{\alpha}$ , it follows that  $\wp \not\supset \alpha I_{\alpha}$ . Since  $P \supset \alpha I_{\alpha}$  and  $R \supset \alpha I_{\alpha}$ , we have that  $\wp \supset \alpha I_{\alpha}$ . This is a contradiction.
- (1) Let  $\wp \in V(I_{\alpha}) \cap \Gamma_{J_{\alpha}}$ . Suppose that  $\wp \notin \Delta_{A/R}$ . Since  $\wp A \neq A$ , there exists a prime ideal P of A such that  $P \cap R \supset \wp$ . Put  $q = P \cap R$ . Then  $q \in \operatorname{Im} \varphi$ . Since  $\wp \supset I_{\alpha}$ , we have that  $q = P \cap R \supset I_{\alpha} + \alpha I_{\alpha} = J_{\alpha}$ . Since  $\wp \in \Gamma_{J_{\alpha}}$ , it follows that  $\wp + J_{\alpha} = R$ . Therefore q = R. This is a contradiction. Hence  $\wp \in \Delta_{A/R}$ , that is,  $V(I_{\alpha}) \cap \Gamma_{J_{\alpha}} \subset \Delta_{A/R}$ .

To prove the opposite inclusion, assume that  $\wp \in \Delta_{A/R}$ . Suppose that  $\wp \notin V(I_{\alpha})$ . Then  $\wp \in \operatorname{Im} \varphi$  by (2). This contradicts the fact that  $\wp \in \Delta_{A/R}$ . Thus we proved that  $\wp \in V(I_{\alpha})$ .

Next, suppose that  $\wp \notin \Gamma_{J_{\alpha}}$ , that is,  $\wp + J_{\alpha} \neq R$ . Then, there exists a prime ideal q of R such that  $\wp + J_{\alpha} \subset q$ . So  $q \in \operatorname{Im} \varphi$  by (2). Therefore there exists a prime ideal P of A such that  $P \cap R = q$  and so  $P \supset qA \supset \wp A = A$ . This is a contradiction. Hence  $\wp \in \Gamma_{J_{\alpha}}$ . This completes the proof of (1).

(3) By (1), we have that

$$\Delta_{A_1/R} \cap \Delta_{A_2/R} = (V(I_{\alpha}) \cap \Gamma_{J_{\alpha}}) \cap (V(I_{\alpha^{-1}}) \cap \Gamma_{J_{\alpha^{-1}}}).$$

Since  $\alpha I_{\alpha} = I_{\alpha^{-1}}$ , it follows that  $J_{\alpha^{-1}} = J_{\alpha}$ . Hence  $\Gamma_{J_{\alpha}} = \Gamma_{J_{\alpha^{-1}}}$ . Thus  $\Delta_{A_1/R} \cap \Delta_{A_2/R} = (V(I_{\alpha}) \cap V(\alpha I_{\alpha})) \cap \Gamma_{J_{\alpha}} = \phi$ .

(4) By (2), we have that

$$\begin{split} \operatorname{Im} \varphi_{A_1/R} \cup \operatorname{Im} \varphi_{A_2/R} &= (D(I_\alpha) \cup V(J_\alpha)) \cup (D(I_{\alpha^{-1}}) \cup V(J_{\alpha^{-1}})) \\ &= D(I_\alpha) \cup D(I_{\alpha^{-1}}) \cup V(J_\alpha) \\ &= D(I_\alpha + I_{\alpha^{-1}}) \cup V(J_\alpha) = D(J_\alpha) \cup V(J_\alpha) \\ &= \operatorname{Spec}(R). \end{split}$$

**Proposition 2.** It holds that  $\operatorname{Im} \varphi_{A_1/R} \cap \operatorname{Im} \varphi_{A_2/R} = D(\alpha I_{\alpha}^2) \cup V(J_{\alpha})$ .

*Proof.* By Proposition 1(2), we have that

$$\begin{split} \operatorname{Im} \varphi_{A_1/R} \cap \operatorname{Im} \varphi_{A_2/R} &= (D(I_{\alpha}) \cup V(J_{\alpha})) \cap (D(I_{\alpha^{-1}}) \cup V(J_{\alpha^{-1}})) \\ &= (D(I_{\alpha}) \cap D(I_{\alpha^{-1}})) \cup (D(I_{\alpha}) \cap V(J_{\alpha})) \\ & \cup ((V(J_{\alpha}) \cap D(I_{\alpha^{-1}})) \cup V(J_{\alpha}). \end{split}$$

It holds that

$$D(I_{\alpha}) \cap D(I_{\alpha^{-1}}) = D(I_{\alpha}I_{\alpha^{-1}}) = D(\alpha I_{\alpha}^2).$$

Since  $J_{\alpha} \supset I_{\alpha}$ , we have that  $D(I_{\alpha}) \cap V(J_{\alpha}) = \phi$ . Since  $D(I_{\alpha^{-1}}) \cap V(J_{\alpha}) = \phi$ , we get  $\operatorname{Im} \varphi_{A_1/R} \cap \operatorname{Im} \varphi_{A_2/R} = D(\alpha I_{\alpha}^2) \cup V(J_{\alpha})$ .

**Proposition 3.** It holds that  $\Delta_{A_1/R} \cup \Delta_{A_2/R} = V(\alpha I_{\alpha}^2) \cap \Gamma_{J_{\alpha}}$ .

Proof. It follows that

$$\begin{split} \Delta_{A_1/R} \cup \Delta_{A_2/R} &= (V(I_{\alpha}) \cap \Gamma_{J_{\alpha}}) \cup (V(I_{\alpha^{-1}}) \cap \Gamma_{J_{\alpha^{-1}}}) \\ &= (V(I_{\alpha}) \cup V(I_{\alpha^{-1}})) \cap \Gamma_{J_{\alpha}} \\ &= (V(I_{\alpha}) \cup V(\alpha I_{\alpha})) \cap \Gamma_{J_{\alpha}} = V(\alpha I_{\alpha}^2) \cap \Gamma_{J_{\alpha}}. \end{split}$$

**Proposition 4.** Let  $C = R[\alpha, \alpha^{-1}]$  and  $\psi: \operatorname{Spec}(C) \to \operatorname{Spec}(R)$  be a restriction mapping. Then we have that

$$\begin{split} \operatorname{Im} \psi &= (D(I_{\alpha}) \cap D(I_{\alpha^{-1}})) \cup V(J_{\alpha}) = D(\alpha I_{\alpha}^{2}) \cup V(J_{\alpha}) \\ &= \operatorname{Im} \varphi_{A_{1}/R} \cap \operatorname{Im} \varphi_{A_{2}/R}. \end{split}$$

*Proof.* By Proposition 2, we enough prove that

$$\operatorname{Im} \psi = (D(I_{\alpha}) \cap D(I_{\alpha^{-1}})) \cup V(J_{\alpha}).$$

Let  $\wp$  be an element of  $D(I_{\alpha}) \cap D(I_{\alpha^{-1}})$ . Then it follows that  $I_{\alpha} \not\subset \wp$  and  $\alpha I_{\alpha} \not\subset \wp$ . Hence  $C_{\wp} = R_{\wp}$ . Put  $\wp C_{\wp} \cap C = P$ . Then  $P \cap R = \wp$ . Hence  $\wp \in \operatorname{Im} \psi$ . Hence we proved that  $D(I_{\alpha}) \cap D(I_{\alpha^{-1}}) \subset \operatorname{Im} \psi$ . Next, we claim that

$$V(J_{\alpha})\subset \operatorname{Im}\psi$$
.

Let  $\wp \in V(J_{\alpha})$ . Since  $\wp \supset J_{\alpha}$ , it follows that  $\wp \supset I_{\alpha}$  and  $\wp \supset I_{\alpha^{-1}} = \alpha I_{\alpha}$ . Suppose that  $\alpha \in P = \wp A$ . As the same as the proof of Proposition 1(2), we have that  $P \neq A$  and  $A/\wp A \cong (R/\wp)[T]$  where T is an indeterminate. Write  $\alpha = a_0 + a_1 \alpha + \cdots + a_n \alpha^n$  (each  $a_i \in \wp$ ). Since  $P \cap R = \wp$  and  $\wp \supset \alpha A \cap R$ , we have that  $\bar{\alpha} = \bar{0}$  where  $\bar{\alpha}$  denotes the image of  $\alpha$  in  $A/\wp A$ . On the other hand, we have that  $\bar{\alpha} = T$ . This is a contradiction. Therefore  $P \not\ni \alpha$ . Thus PC is a prime ideal of C and  $PC \cap R = \wp$ . Hence  $\wp \in \text{Im } \psi$ . Thus we proved that  $(D(I_{\alpha}) \cap D(I_{\alpha^{-1}})) \cup V(J_{\alpha}) \subset \text{Im } \psi$ .

To prove the opposite inclusion, assume  $\wp \in \operatorname{Im} \psi$ . Suppose that  $\wp \notin V(J_{\alpha})$ . By

$$\operatorname{Spec}(C) \longrightarrow \operatorname{Spec}(A_1) \longrightarrow \operatorname{Spec}(R),$$

we have that  $\wp \in \operatorname{Im} \varphi_{A_1/R} = D(I_\alpha) \cup V(J_\alpha)$ . On the other hand, by

$$\operatorname{Spec}(C) \longrightarrow \operatorname{Spec}(A_2) \longrightarrow \operatorname{Spec}(R),$$

we have that  $\wp \in \operatorname{Im} \varphi_{A_2/R} = D(I_{\alpha^{-1}}) \cup V(J_{\alpha^{-1}}) = D(I_{\alpha^{-1}}) \cup V(J_{\alpha})$ . Since  $\wp \notin V(J_{\alpha})$ , we get that  $\wp \in D(I_{\alpha}) \cap D(I_{\alpha^{-1}})$ . Thus the proof is complete.

Theorem 5. Assume that  $\alpha$  is an anti-integral element over R. Write  $C = R[\alpha, \alpha^{-1}], A_1 = R[\alpha]$  and  $A_2 = R[\alpha^{-1}]$ . It holds that  $\Delta_{C/R} = \Delta_{A_1/R} \cup \Delta_{A_2/R} = V(\alpha I_{\alpha}^2) \cap \Gamma_{J_{\alpha}}$ .

*Proof.* It is sufficient to prove the first equality. We recall that  $\varphi_i$ : Spec $(A_i) \to \operatorname{Spec}(R)$  are restriction mappings. Evidently,  $\Delta_{C/R} \supset \Delta_{A_1/R} \cup \Delta_{A_2/R}$ . Let  $\wp \in \Delta_{C/R}$ . Suppose that  $\wp \notin \Delta_{A_1/R} \cup \Delta_{A_2/R}$ . By Proposition 3, we have that  $\alpha I_{\alpha}^2 = (I_{\alpha})(\alpha I_{\alpha}) \not\subset \wp$  or  $\wp + J_{\alpha} \neq R$ .

Case 1).  $\wp \not\supset I_{\alpha}$  and  $\wp \not\supset \alpha I_{\alpha}$ . Then  $C_{\wp} = R_{\wp}$ . Since  $\wp C = C$ , we have that  $\wp R_{\wp} = R_{\wp}$ . This is a contradiction.

Case 2).  $\wp + J_{\alpha} \neq R$ .

There exists a prime ideal q of R such that  $q \supset \wp + J_{\alpha}$ . Then qA is a prime ideal of A and  $\alpha \notin qA$  from the proof of Proposition 4. We recall

that  $C = A[\alpha^{-1}]$ . Therefore (qA)C = qC is a prime ideal of C and  $C/qC \cong (R/q)[T,T^{-1}]$ . But, since  $\wp \in \Delta_{C/R}$ , we have that  $C = \wp C \subset qC \neq C$ . This is a contradiction. Hence  $\wp \in \Delta_{A_1/R} \cup \Delta_{A_2/R}$ .

**Remark.**  $\wp C = C \ (\wp \in \operatorname{Spec}(R))$  if and only if  $\wp + J_{\alpha} = R$  and  $I_{\alpha} \subset \wp$  or  $I_{\alpha^{-1}} \subset \wp$ .

**2.** High degree extensions of rings. Let R be a Noetherian domain with the quotient field K and L be a finite algebraic extension field of K such that [L:K]=d. Let  $\alpha \in L$  and  $A=R[\alpha]$ . Let L be the quotient field of A.

When  $A = R[\alpha]$  is an unramified extension of R, we call  $\alpha$  an unramified element over R. Let S be an R-algebra of finite type. We recall that S is an unramified over R if and only if the differential module  $\Omega_R(S) = (0)$  (cf. [1]).

Let  $\varphi_{\alpha}(X) = X^d + \eta_1 X^{d-1} + \cdots + \eta_d \in K[X]$  be the monic minimal polynomial of  $\alpha$  over K.

Write  $I_{\alpha}^* = \bigcap_{1}^{d} I_{\eta_{i}}$ ,  $J_{\alpha} = c(\varphi_{\alpha}(X)I_{\alpha}^{*})$ ,  $\tilde{I}_{\alpha} = I_{\alpha}^{*}(1, \eta_{1}, \dots, \eta_{d-1})$  and  $\tilde{J}_{\alpha} = \eta_{d}I_{\alpha}^{*}$ , where  $c(\varphi_{\alpha}(X)I_{\alpha}^{*})$  denotes the ideal generated by the coefficients of all polynomials in  $\varphi_{\alpha}(X)I_{\alpha}^{*}$ . Note that  $J_{\alpha} = \tilde{I}_{\alpha} + \tilde{J}_{\alpha}$ .

Let  $\psi: R[X] \to R[\alpha]$  be the canonical homomorphism such that  $\psi(X) = \alpha$  and  $\psi(a) = a$  for any  $a \in R$ .  $\alpha$  is called an *anti-integral element* of degree d over R if  $\operatorname{Ker} \psi = I_{\alpha}^* \varphi_{\alpha}(X) R[X]$ . When  $\alpha$  is an anti-integral element, we say that  $R[\alpha]$  is an *anti-integral extension* of R.

In the rest of this section, we assume that  $\alpha$  is an anti-integral element of degree d over R.

**Proposition 6.**  $\tilde{I}_{\alpha} = R$  if and only if the following two conditions hold.

- (1) A is a flat R-module.
- (2)  $\varphi: \operatorname{Spec}(A) \to \operatorname{Spec}(R)$  is surjective.

*Proof.* ( $\iff$ ) Suppose that  $\tilde{I}_{\alpha} \neq R$ . Then there exists a prime ideal  $\wp$  of R such that  $\wp \supset \tilde{I}_{\alpha}$ . Since  $\wp$  is surjective, there exists a prime ideal P of A such that  $P \cap R = \wp$ . Thus  $\tilde{I}_{\alpha}A \subset P$ .

We claim that  $\tilde{I}_{\alpha}A = A$ . Let a be any element of  $I_{\alpha}^*$ . Since  $\varphi_{\alpha}(\alpha) = 0$ , we have that  $a\alpha^d + (a\eta_1)\alpha^{d-1} + \cdots + (a\eta_{d-1})\alpha = -a\eta_d \in \tilde{I}_{\alpha}A$ . Hence

 $\tilde{I}_{\alpha}A\supset \tilde{I}_{\alpha}A+I_{\alpha}^{*}\eta_{d}\supset \tilde{I}_{\alpha}+\tilde{J}_{\alpha}=J_{\alpha}.$  Since A is R-flat, we have that  $J_{\alpha}=R$  by [4, Theorem 1.8 or Theorem 3.4] and so  $\tilde{I}_{\alpha}A\supset J_{\alpha}A=A$ . Therefore  $\tilde{I}_{\alpha}A=A$ . Hence P=A. This is a contradiction. Thus  $\tilde{I}_{\alpha}=R$ .

 $(\Longrightarrow)$  If  $\tilde{I}_{\alpha}=R$ , then  $J_{\alpha}=R$ . By [4, Theorem 1.8 or Theorem 3.4], we have that A is R-flat. Now, by the following Theorem 7(1),  $\operatorname{Im}\varphi=D(\tilde{I}_{\alpha})\cup V(J_{\alpha})$ , we have that  $\operatorname{Im}\varphi=\operatorname{Spec}(R)$ . Hence  $\varphi$  is surjective.

**Theorem 7.** Assume that  $\alpha$  is an anti-integral element of degree d over R. Then we have the following results.

- (1)  $\operatorname{Im} \varphi = D(\tilde{I}_{\alpha}) \cup V(\tilde{J}_{\alpha}) = D(\tilde{I}_{\alpha}) \cup V(J_{\alpha}).$
- (2)  $\Delta_{A/R} = V(\tilde{I}_{\alpha}) \cap \Gamma_{\tilde{J}_{\alpha}} = V(\tilde{I}_{\alpha}) \cap \Gamma_{J_{\alpha}}.$

Proof. First, we shall prove (1). Let  $\wp \in D(\tilde{I}_{\alpha})$  and  $\Psi: R[X] \to A = R[\alpha]$  be the canonical map. Then  $A_{\wp} = R_{\wp}[X]/(\operatorname{Ker}\Psi)R_{\wp}[X]$  and  $A_{\wp}/\wp A_{\wp} \cong (R_{\wp}/\wp R_{\wp})[X]/(\overline{\operatorname{Ker}\Psi})(R_{\wp}/\wp R_{\wp})[X]$ , where  $\overline{\operatorname{Ker}\Psi}$  denotes the image of  $\operatorname{Ker}\Psi$  in  $(R_{\wp}/\wp R_{\wp})[X]$ . Since  $\wp \not\supset \tilde{I}_{\alpha}$ ,  $\overline{(\operatorname{Ker}\Psi)}$  is not a constant. Thus  $\wp A_{\wp} \neq A_{\wp}$ . Let  $\tilde{P}$  be a prime divisor of  $\wp A_{\wp}$ . Put  $\tilde{P} \cap A = P$ . Then  $\tilde{P} \cap R_{\wp} = \wp R_{\wp}$  and so  $P \cap R = \wp$ . Hence  $\wp \in \operatorname{Im} \varphi$ .

Next, let  $\wp \supset \tilde{J}_{\alpha} = \eta_d I_{\alpha}^*$ . We recall that if  $\wp \not\supset \tilde{I}_{\alpha}$  then  $\wp \in \operatorname{Im} \varphi$ . So, we suppose that  $\wp \supset \tilde{I}_{\alpha}$ . Then  $\wp \supset J_{\alpha}$ . It follows that  $A/\wp A \cong (R/\wp)[T]$ , where T is an indeterminate. Since  $\wp R[X] \supset \operatorname{Ker} \Psi$ ,  $P = \wp A \in \operatorname{Spec}(A)$  and  $P \cap R = \wp$ , we have that  $\wp \in \operatorname{Im} \varphi$ . Thus we proved that  $D(\tilde{I}_{\alpha}) \cup V(J_{\alpha}) \subset D(\tilde{I}_{\alpha}) \cup V(\tilde{J}_{\alpha}) \subset \operatorname{Im} \varphi$ . To prove the opposite inclusion, assume that  $\wp \notin D(\tilde{I}_{\alpha}) \cup V(\tilde{J}_{\alpha})$ . We claim that  $\wp \notin \operatorname{Im} \varphi$ . Suppose that  $\wp \in \operatorname{Im} \varphi$ . There exists a prime ideal P of A such that  $P \cap R = \wp$ . Since  $\wp \not\supset \tilde{J}_{\alpha} = \eta_d I_{\alpha}^*$ , there exists some element  $a \in I_{\alpha}^*$  such that  $a\eta_d \notin \wp$ . Since  $\wp \supset \tilde{I}_{\alpha} \ni a, a\eta_1, \ldots, a\eta_{d-1}$ , it follows that  $P \ni (a\alpha^d + a\eta_1\alpha^{d-1} + \cdots + a\eta_{d-1}\alpha) = -a\eta_d$ . So  $\wp \ni -a\eta_d$ . This is a contradiction. We have that  $\wp \notin \operatorname{Im} \varphi$ . Hence we have that  $\operatorname{Im} \varphi = D(\tilde{I}_{\alpha}) \cup V(\tilde{J}_{\alpha})$ .

We claim that  $D(\tilde{I}_{\alpha}) \cup V(\tilde{J}_{\alpha}) = D(\tilde{I}_{\alpha}) \cup V(J_{\alpha})$ . Clearly, it follows that  $D(\tilde{I}_{\alpha}) \cup V(\tilde{J}_{\alpha}) \supset D(\tilde{I}_{\alpha}) \cup V(J_{\alpha})$ . To prove the opposite inclusion, assume that  $\wp \notin D(\tilde{I}_{\alpha}) \cup V(J_{\alpha})$ . Then  $\wp \supset \tilde{I}_{\alpha}$  and  $\wp \not\supset J_{\alpha}$ . Suppose that  $\wp \in V(\tilde{J}_{\alpha}) \cup D(\tilde{I}_{\alpha})$ . Then  $\wp \supset \tilde{J}_{\alpha} + \tilde{I}_{\alpha} = J_{\alpha}$ . This is a contradiction. Therefore we have that  $\wp \notin V(\tilde{J}_{\alpha}) \cup D(\tilde{I}_{\alpha})$ . Thus we complete the proof of the claim.

(2). Let  $\wp \in V(\tilde{I}_{\alpha}) \cap \Gamma_{\tilde{J}_{\alpha}}$ . Suppose that  $\wp \notin \Delta_{A/R}$ . Then there exists a prime ideal P of A such that  $P \supset \wp A$ . Put  $P \cap R = q$ . Then we have that  $q \supset \wp$  and  $q \in \operatorname{Im} \varphi$ . Since  $a, a\eta_1, \ldots, a\eta_{d-1} \in \tilde{I}_{\alpha} \subset \wp \subset P$ , for any

 $a \in I_{\alpha}^*$ , we have that

$$a\alpha^d + a\eta_1\alpha^{d-1} + \dots + a\eta_{d-1}\alpha = -a\eta_d \in P \cap R = q.$$

Consequently, we have that  $\tilde{J}_{\alpha} \subset q$ . Since  $\wp \in \Gamma_{\tilde{J}_{\alpha}}$ , it follows that  $q \supset \tilde{J}_{\alpha} + \wp = R$ . This is a contradiction. Therefore we proved that  $V(\tilde{I}_{\alpha}) \cap \Gamma_{\tilde{J}_{\alpha}} \subset \Delta_{A/R}$ .

Conversely, we shall prove that  $\Delta_{A/R} \subset V(\tilde{I}_{\alpha}) \cap \Gamma_{\tilde{J}_{\alpha}}$ . Let  $\wp \notin V(\tilde{I}_{\alpha}) \cap \Gamma_{\tilde{J}_{\alpha}}$ . Then  $\wp \not\supset \tilde{I}_{\alpha}$  or  $\wp + \tilde{J}_{\alpha} \neq R$ . If  $\wp \not\supset \tilde{I}_{\alpha}$ , then  $\wp \in \operatorname{Im} \varphi$  by Theorem 7(1). Therefore there exists a prime ideal P of A such that  $P \cap R = \wp$ . Suppose that  $\wp \in \Delta_{A/R}$ . Then  $P \supset \wp A = A$ . This is a contradiction. Thus  $\wp \notin \Delta_{A/R}$ .

Next, if  $\wp + \tilde{J}_{\alpha} \neq R$ , then there exists a prime ideal q of R such that  $\wp + \tilde{J}_{\alpha} \subset q$ . Since  $q \in \operatorname{Im} \varphi$  by (1), it follows that  $qA \neq A$ . Since  $\wp \subset q$ , we have that  $\wp A \neq A$ . So we get  $\wp \notin \Delta_{A/R}$ . Hence we complete the proof of  $\Delta_{A/R} = V(\tilde{I}_{\alpha}) \cap \Gamma_{\tilde{J}_{\alpha}}$ . At last, we shall prove that  $V(\tilde{I}_{\alpha}) \cap \Gamma_{\tilde{J}_{\alpha}} = V(\tilde{I}_{\alpha}) \cap \Gamma_{J_{\alpha}}$ . Clearly, we have that  $V(\tilde{I}_{\alpha}) \cap \Gamma_{\tilde{J}_{\alpha}} \subset V(\tilde{I}_{\alpha}) \cap \Gamma_{J_{\alpha}}$ . So we shall prove that  $V(\tilde{I}_{\alpha}) \cap \Gamma_{J_{\alpha}} \subset V(\tilde{I}_{\alpha}) \cap \Gamma_{J_{\alpha}}$ . Let  $\wp \in V(\tilde{I}_{\alpha}) \cap \Gamma_{J_{\alpha}}$ . Suppose that  $\wp \notin V(\tilde{I}_{\alpha}) \cap \Gamma_{\tilde{J}_{\alpha}}$ . Then  $\wp + \tilde{J}_{\alpha} \neq R$ . Also there exists a prime ideal q of R such that  $q \supset \wp + \tilde{J}_{\alpha}$ . Since  $q \supset J_{\alpha}$  and  $\wp + J_{\alpha} = R$ , we have that  $q \supset \wp + J_{\alpha} = R$ . This is a contradiction. Hence  $\wp \in V(\tilde{I}_{\alpha}) \cap \Gamma_{\tilde{J}_{\alpha}}$ . This completes the proof.

We consider unramified extensions of rings.

**Theorem 8.** Let  $\alpha$  be an anti-integral element of degree d over R. Put  $A = R[\alpha]$ . Let  $\varphi_{\alpha}(X) = X^d + \eta_1 X^{d-1} + \cdots + \eta_d$  be the monic minimal polynomial of  $\alpha$  over K. Put  $I_{\alpha}^* = \bigcap_{i=1}^d I_{\eta_i}$ . Then the following conditions are equivalent.

- (1)  $\Omega_R(A) = (0)$ .
- (2)  $I_{\alpha}^* \varphi_{\alpha}'(\alpha) A = A$ .

*Proof.* Let  $0 \to N \to R[X] \to A = R[X]/N \to 0$  be an exact sequence. From this exact sequence, we get the following exact sequence:

$$N/N^2 \longrightarrow A \bigotimes_{R[X]} R[X] dX \cong A \longrightarrow \Omega_R(A) \longrightarrow 0,$$

where  $\rho: N/N^2 \to A \otimes_{R[X]} R[X]dX$  is a map such that  $\rho(x \mod N^2) = d_{R[X]/R}x \otimes 1$  for  $x \in N$ . Note that  $A \otimes_{R[X]} \Omega_R(R[X]) \cong A$ . Since N = A

 $I_{\alpha}^*\varphi_{\alpha}(X)R[X]$ , it follows that  $\operatorname{Im}\rho=I_{\alpha}^*\varphi_{\alpha}'(\alpha)A$ . Hence  $\Omega_R(A)=(0)$  if and only if  $I_{\alpha}^*\varphi_{\alpha}'(\alpha)A=A$ .

**Example.** Let k be a field with characteristic  $\neq 2$  and let  $R = k[X^2, 1/X^2]$  be a subring of k[X, 1/X]. Put A = R[X]. Then  $K = k(X^2)$  is the quotient field of R and L = k(X) is the quotient field of A. Put  $\alpha = X$ . Then  $\varphi_{\alpha}(Y) = Y^2 - X^2 \in R[Y]$  is the monic minimal polynomial of  $\alpha$  over K. Since  $\varphi'_{\alpha}(Y) = 2Y$ ,  $\varphi'_{\alpha}(X) = 2X$  is a unit of A = k[X, 1/X]. Hence A is an unramified over R (cf. [3, Theorem 10.0.1]).

**Remark.** If A is unramified over R, then  $\tilde{I}_{\alpha}A = I_{\alpha}^*A = A$ . In fact, since  $I_{\alpha}^*\varphi'_{\alpha}(\alpha)A \subset I_{\alpha}^*A$  and  $I_{\alpha}^* \subset \tilde{I}_{\alpha}$ , it follows that  $I_{\alpha}^*A = \tilde{I}_{\alpha}A = A$ .

**Theorem 9.** Under the assumption in Theorem 8, if  $\Omega_R(A) = (0)$ , then A is a flat R-module.

*Proof.* Suppose that A is not a flat R-module. Then there exists a prime ideal  $\wp$  of R such that  $\wp \supset c(I_{\alpha}^*\varphi_{\alpha}(X))$  by [4, Theorem 1.8]. Since  $\wp R[X] \supset I_{\alpha}^*\varphi_{\alpha}(X)R[X] = N$ , we have that  $A/\wp A \cong (R/\wp)[X]$ . Hence  $\wp A \in \operatorname{Spec}(A)$ . From an exact sequence  $0 \to \wp A \to A \to A/\wp A \to 0$ , we have the following exact sequence.  $\wp A/\wp^2 A \to \Omega_R(A) \otimes_A A/\wp A \to \Omega_{R/\wp}(A/\wp A) \to 0$ . But  $\Omega_R(A) = (0)$ , and so  $\Omega_{R/\wp}(A/\wp A) = (0)$ . Also, since  $A/\wp A \cong (R/\wp)[X]$ , we have that  $\Omega_{R/\wp}(A/\wp A) = ((R/\wp)[X])dX \neq (0)$ . This is a contradiction. Hence A is a flat R-module.

**Remark.** Although A is a flat R-module, A is not necessarily unramified over R. For example, let  $R = k[X^2]$  be a subring of k[X] where k denotes a field with characteristic  $\neq 2$ . Set A = R[X] = k[X]. Since  $\Omega_R(A) = A/XA \neq (0)$ , we have that A is not an unramified extension over R.

**Proposition 10.** Under the assumption in Theorem 8, it follows that  $V(\operatorname{Ann}_R(\Omega_R(A))) \supset V(J_\alpha)$ , where  $\operatorname{Ann}_R(\Omega_R(A))$  denotes the annihilator ideal of  $\Omega_R(A)$ .

*Proof.* Assume that  $\wp \notin V(\operatorname{Ann}_R(\Omega_R(A)))$ . So there exists an element  $s \in \operatorname{Ann}_R(\Omega_R(A))$  such that  $s \notin \wp$ . Therefore  $s\Omega_R(A) = (0)$  and so  $\Omega_{R_p}(A_\wp) = (0)$ . Note that  $A_\wp = R_\wp[\alpha]$ . Using Theorem 9, it follows that

 $A_{\wp}$  is a flat  $R_{\wp}$ -module. From this fact and [4, Theorem 1.8], we obtain that  $\wp \not\supset J_{\alpha}$ . Therefore  $\wp \notin V(J_{\alpha})$ .

**Proposition 11.** The element  $\alpha$  is an anti-integral element of degree d over R if and only if  $\alpha$  is an anti-integral element of degree d over  $R_{\wp}$  for any  $\wp \in \operatorname{Spec}(R)$ .

*Proof.* Let  $0 \to N \to R[X] \to A = R[\alpha] \to 0$  be an exact sequence.

 $(\Longrightarrow)$  N is an ideal generated by some polynomials of degree d, where d=[L:K]. Also,

$$0 \longrightarrow N_{\wp} \longrightarrow R_{\wp}[X] \longrightarrow A_{\wp} = R_{\wp}[\alpha] \longrightarrow 0$$

is an exact sequence. Hence  $N_{\wp}$  is also an ideal generated by some polynomials of degree d. Thus  $\alpha$  is an anti-integral element of degree d over  $R_{\wp}$ .

 $(\Leftarrow)$  Put  $B = J_{\alpha}\varphi_{\alpha}(X)R[X]$ . Then  $B \subset N$ . And N = B if and only if  $\alpha$  is anti-integral over R. By the assumption, we have that  $N_{\wp} = B_{\wp}$  for any  $\wp \in \operatorname{Spec}(R)$ . Hence we get N = B.

**Theorem 12.** In special case, if  $\alpha$  be an element of K then the following (i)-(iv) are equivalent.

- (i)  $I_{\alpha}A = A$ .
- (ii) A is a flat R-module.
- (iii)  $J_{\alpha}A = A$ .
- (iv) A is an unramified extension of R.

Proof. Using the fact that  $I_{\alpha}A = J_{\alpha}A$  and [5, Proposition 2.7], the equivalence of (i), (ii) and (iii) are already proved. Also, it proved that (iv) implies (ii) from Theorem 9. Now, we claim that (ii) implies (iv). Since d=1, we have that  $J_{\alpha}\varphi'_{\alpha}(\alpha)A = J_{\alpha}A$  where  $\varphi_{\alpha}(X) = X - \alpha$ . Since A is a flat R-module, it follows that  $J_{\alpha} = R$ . So we get that  $J_{\alpha}A = A$ . Therefore we have that  $I_{\alpha}\varphi'_{\alpha}(\alpha)A = J_{\alpha}\varphi'_{\alpha}(\alpha)A = A$ . Using Theorem 8, we see that  $\Omega_{R}(A) = (0)$ . Hence A is an unramified extension of R.

Remark. In Theorem 12, a simple birational anti-integral extension is flat if and only if it is an unramified extension, but, in case of a non-birational extension, flatness is not equivalent to unramifiedness (cf. Remark of Theorem 9).

Remark. Let  $\varphi_{\alpha}(X) = X^d + \eta_1 X^{d-1} + \cdots + \eta_d$  be the monic minimal polynomial of  $\alpha$  over K, where d = [L:K] > 1. Then  $I_{\alpha}^* \varphi_{\alpha}'(\alpha) A \subset \tilde{I}_{\alpha} A$ . For,  $I_{\alpha}^* \varphi_{\alpha}'(\alpha) A = I_{\alpha}^* (d\alpha^{d-1} + (d-1)\eta_1\alpha^{d-2} + \cdots + \eta_{d-1}) A \subset I_{\alpha}^* (1, \eta_1, \ldots, \eta_{d-1}) A \subset \tilde{I}_{\alpha} A$ . From Theorem 8, if  $\Omega_R(A) = (0)$ , then  $\tilde{I}_{\alpha} A = A$ . As an example of  $I_{\alpha}^* \varphi_{\alpha}'(\alpha) \neq \tilde{I}_{\alpha} A$ , we give the following example. Put  $\varphi_{\alpha}(X) = X^2 - a \in R[X]$  where a is not a unit of R. Then  $I_{\alpha}^* \varphi_{\alpha}'(\alpha) A = 2\alpha A \neq A$  and  $\tilde{I}_{\alpha} A = A$  (We assume that 2 is not a unit of A).

**Proposition 13.** Let  $A = R[\alpha]$  be an unramified extension of R and let  $\varphi: \operatorname{Spec}(A) \to \operatorname{Spec}(R)$  be a restriction map. Then  $\varphi$  is surjective if and only if  $\tilde{I}_{\alpha} = R$ .

*Proof.* ( $\iff$ ) From Theorem 7, we know that  $\operatorname{Im} \varphi = D(\tilde{I}_{\alpha}) \cup V(J_{\alpha})$ . So  $\operatorname{Im} \varphi = \operatorname{Spec}(R)$  by assumption. Hence  $\varphi$  is surjective.

 $(\Longrightarrow)$  Suppose that  $\tilde{I}_{\alpha} \neq R$ . There exists a prime ideal  $\wp$  of R such that  $\tilde{I}_{\alpha} \subset \wp$ . Since  $\wp$  is surjective, there exists a prime ideal P of A such that  $P \cap R = \wp$ . Thus  $\tilde{I}_{\alpha}A \subset P$ . But A is an unramified extension over R,  $\tilde{I}_{\alpha}A = A$  from Theorem 8 and Remark. Hence A = P, contradicting. Therefore  $\tilde{I}_{\alpha} = R$ .

**Remark.** When  $\varphi$  is surjective, NA = A if and only if N = R for an ideal N of R.

**Lemma 14.** Let A be a ring extension of R and N be an ideal of R. Let  $N = q_1 \cap q_2 \cap ... \cap q_n$  be a primary decomposition of N, where  $\sqrt{q_i} = \wp_i$  for  $1 \le i \le n$ . Then NA = A if and only if  $\wp_i A = A$  for  $1 \le i \le n$ .

*Proof.* ( $\Longrightarrow$ ) Since  $NA \subset \wp_i A$ , we have  $\wp_i A = A$ .

 $(\Leftarrow)$  From  $\wp_i A = A$ , we have that  $1 = \sum a_{ij} \alpha_{ij}$   $(a_{ij} \in \wp_i, \alpha_{ij} \in A)$ . Clearly, it can be assumed that  $a_{ij} \in q_i$ . Then  $1 = \prod_i (\sum a_{ij} \alpha_{ij}) \in NA$  and so NA = A.

**Theorem 15.** Let  $\alpha$  be an anti-integral element of degree d over R. A is a flat R-module if and only if  $\tilde{I}_{\alpha}A = A$ .

*Proof.* Let  $\tilde{I}_{\alpha} = q_1 \cap q_2 \cap \cdots \cap q_n$   $(\sqrt{q_i} = \wp_i)$  be a primary decomposition of  $\tilde{I}_{\alpha}$ .

 $(\Longrightarrow)$  From Theorem 7(2),  $\Delta_{A/R} = V(\tilde{I}_{\alpha}) \cap \Gamma_{\tilde{J}_{\alpha}}$ , where  $\tilde{J}_{\alpha} = I_{\alpha}^* \eta_d$ 

and  $J_{\alpha} = \tilde{I}_{\alpha} + \tilde{J}_{\alpha}$ . Since A is R-flat, it follows that  $J_{\alpha} = R$  from [4, Theorem 1.8 or Proposition 2.6]. Since  $\tilde{I}_{\alpha} \subset \wp_i$ , we get that  $\wp_i \in V(\tilde{I}_{\alpha})$  and  $\wp_i \in \Gamma_{\tilde{J}_{\alpha}}$ . Therefore  $\wp_i \in V(\tilde{I}_{\alpha}) \cap \Gamma_{\tilde{J}_{\alpha}} = \Delta_{A/R}$  and so  $\wp_i A = A$ . From Lemma 14, we have  $\tilde{I}_{\alpha} A = A$ .

( $\Leftarrow$ ) Since  $\tilde{I}_{\alpha}A = A$ , it follows that  $\wp_i A = A$  from Proposition 14. So  $\wp_i \in \Delta_{A/R} = V(\tilde{I}_{\alpha}) \cap \Gamma_{\tilde{J}_{\alpha}}$ . Since  $\wp_i + \tilde{J}_{\alpha} = R$ , we have that  $J_{\alpha} = \tilde{J}_{\alpha} + \tilde{I}_{\alpha} = R$ . Hence A is a flat R-module.

We recall that  $\alpha$  is an unramified element over R if  $R[\alpha]$  is an unramified extension of R.

**Theorem 16.** Let  $\alpha_1, \alpha_2, ..., \alpha_n$  be unramified elements over R. Then  $R[\alpha_1, \alpha_2, ..., \alpha_n]$  is an unramified extension over R.

*Proof.* Clearly, it can be assumed that n=2. Let  $B=R[\alpha_1]$ ,  $C=R[\alpha_2]$  and  $A=B[\alpha_2]=R[\alpha_1,\alpha_2]$ . Then we have the following exact sequence:

$$\Omega_R(B) \bigotimes_R A \longrightarrow \Omega_R(A) \longrightarrow \Omega_B(A) \longrightarrow 0.$$

Since B and C are unramified extensions over R, we see that  $\Omega_R(B)=(0)$  and  $\Omega_R(C)=(0)$ . So it suffices to show that  $\Omega_B(A)=(0)$ . Since C is an unramified over R, it follows that  $B\otimes_R C$  is an unramified over B, that is,  $\Omega_B(B\otimes_R C)=(0)$ . From the exact sequence  $0\to N\to B\otimes_R C\to A\to 0$ , and the fact that  $\Omega_B(A)=\Omega_B(B\otimes_R C)/\Omega(N)$  where  $\Omega(N)$  denotes the submodule generated by  $\{da\mid a\in N\}$ , we get that  $\Omega_B(A)=(0)$ . Thus we have that  $\Omega_R(A)=(0)$ . The proof is complete.

**Remark.** Let  $\alpha$  be an element of the quotient field of R. Let  $A = R[\alpha]$  be an anti-integral extension of R. Then A is a flat R-module if and only if  $A_{\wp} = R_{\wp}$  or  $A_{\wp} = R_{\wp}[1/a](\forall \wp \in \operatorname{Spec}(R))$  for some element  $a \in R$ .

*Proof.*  $(\Leftarrow)$  It is trivial.

 $(\Longrightarrow)$  In the case  $\wp \not\supset I_{\alpha}$ , it follows that  $A_{\wp} = R_{\wp}$ . In the remaining case, since  $J_{\alpha} = I_{\alpha} + \alpha I_{\alpha} = R$ , we have that  $\wp \not\supset \alpha I_{\alpha}$ . And so there exists an element a of  $I_{\alpha}$  such that  $a\alpha \notin \wp$ . Put  $b = a\alpha$ . Then  $A_{\wp} = R_{\wp}[\alpha] = R_{\wp}[1/a]$ .

## REFERENCES

- [1] M. KANEMITSU and K. YOSHIDA: Unramified extensions and birational integral extensions, Kobe J. Math. 1 (1984), 167-175.
- [2] M. KANEMITSU and K. YOSHIDA: The behaviour of ideals in simple birational extensions of rings, Bull. Aichi Univ. Educ. 41 (1992), 1-6.
- [3] M. NAGATA: The Theory of Commutative Rings, 1974, Kinokuniya (In Japanese).
- [4] S. ODA, J. SATO and K. YOSHIDA: High degree anti-integral extensions of Noetherian domains, Osaka J. Math. 30 (1993), 119-135.
- [5] S. Oda and K. Yoshida: Anti-integral extensions of Noetherian domains, Kobe J. Math. 5 (1988), 43-56.

M. KANEMITSU
DEPARTMENT OF MATHEMATICS
AICHI UNIVERSITY OF EDUCATION
IGAYA-CHO, KARIYA-SHI, 448 JAPAN

K. Yoshida
Department of Applied Mathematics
Okayama University of Science
Ridai-cho, Okayama-shi, 700 Japan

(Received January 25, 1993)