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AN INTEGRAL INVOLVING THE ERROR TERM OF
THE MEAN SQUARE OF THE RIEMANN ZETA-
FUNCTION IN THE CRITICAL STRIP

Isao KIUCHI

1. Introduction. Let s=0+41it(1/2< 0 < 1,1 > 0) be a complex
variable, {(s) the Riemann zeta-function, and define E(T) by

T 1 ) 2
E(T) = / (5 +it)| dt - Tlog T — (29 — 1 - log 2m)T
0 2
for T > 2, where «v is the Euler constant. The asymptotic formula

T ) B 3 3 o 2 _ 2C4(3/2)
[ B dt = aT? + 0@ 108’ T) (e = o)

was proved by Heath-Brown [1] who used Atkinson’s formula, and recently
the error term was improved to O(T log* T') by Preissmann [7] and, inde-
pendently, by Ivié [3]. Ivié¢ [2] proved another asymptotic formula involving
the square of E(t):

/OTE(t)2 |c(% tit) [ ar
= co(log (%) +2y - ;)T% +O(T1og®T), (1)

and the error term was improved to O(T log® T) by Ivié [3].
We define E,(T) by

E,(T) = /DT|c(a +it)2dt — ;T — ¢ T % (% <o< 1), (2)

where

e1 =((20) and ¢ = (2m)*7! %.

Matsumoto [4] proved that
T 5 1
/ E ()2 dt = c3T27% + Fo(T) (7 <0< g) 3)
2 2 4
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with ;
Fo(T)=0(T%+ °logT)

and

&3 = s (2r) 2 %”{f—%(g - 20) (5 +20).

Recently, Matsumoto and Meurman [5] improved this to
F,(T) = O(T).

Moreover, they [6] proved that
T 1
/ E3(t)*di = esT1og T + O(T(log T)?)
2 1

and

[;E,,(t)z dt = O(T) (% <o<l),

where
B2
! 3

(5)

(6)

It should be stressed that their results imply that the line ¢ = 3/4 has a
kind of critical property for the Riemann zeta-function, or at least for the

function E,(t).

The aim of this note is to evaluate the analogue of (1) in the critical

strip. We prove the following:

Theorem. We have

/ "B, (02 ¢(o + i) dt

5 7
'c1c3T§"*"’ +esT27% 4+ 0O(T) (% <o<
5
aesT2™% 4 0(T) (g <o
) 3 TlogT + O(T(1 T% =3
C4C(§) ogT + O(T(logT)?) (U—Z)’
3
LO(T) (Z< o<

A
|
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where ¢1, ¢3 and ¢4 are as above, and

2 w08 R(3/2)
= TR Py

The formula (7) and (8) suggests that the line ¢ = 5/8 may also have a
kind of critical property. In fact, if the estimate (4) would be best-possible,
as Matsumoto and Meurman have suggested in [5], the error estimates
O(T)in (7) and (8) would be best-possible. To clarify the situation on the
line ¢ = 7/8 may be difficult, but we remark that the constant ¢s has a
singularity at o = 7/8.

Cs

2 - 20)4(3 - 20) g(% +20).

2. Proof of (7)-(10). We define I, by

L= [ maerinta (3 <o<),

where T > 2,0 < H < T, and f(?) is a given function which is continuous
in [T,T + H]. If F’ = f, then from (2) it follows that

I, = F(Eo(T + H)) - F(E,(T))

T+H o
+ [ HE ) e + 201 - a)est "} (11)
Applying (11) with H = T, f(t) = t?, F(t) = t3/3, we have
_ Ll oma_ 1 3
I, = EEU(ZT) 3Eo(T)
2T
+/ E,(t)*{c1 + 2(1 — 0)cat’ % } dt.
T

By using E,(T) = O(TY(+49)(log T)4e-1/{4o+1}) (1/2 < o < 1) (see
[3, p.88]) and integrating by parts, we have

2T
/ E.(t)? [¢(o + it)|* dt
T

= (/OtEa(u)Z dU)(Cl +2(1 — 0)e t17%) ;T

~2¢y(1 - o)(1 - 20) /T?T( /OtEU(u)2 du)t= dt + O(T). (12)
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Substituting (3) and (4) into (12), we have

2T
/T E (£ [¢(o + it)[2 dt

= clc;g{(QT)%"z” - T%—%}
2(1 — o)(5 —40)

erea{(2T)3% — T34} (1 5)

7—-8 5<0<z2)
¥ ’ +o(r) ‘27 8
5 3

Hence, we obtain the assertions of (7) and (8). Similarly, from (5) and (12),
we have

f:TE%(t)? |c(g + it) |2 dt
= ¢4 c(%) (2T log(2T) — Tlog T} + O(T(log T) ).

Finally, from (6) and (12), we obtain, for 3/4 < 0 < 1,

2T
[ Eo0?1¢(o + i) dt = O(T).
T
The proofs of (9) and (10) are now completed as before.
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