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THETA FUNCTIONS. I

Taxasnr TASAKA

In this series of the papers, we discuss in detail the properties of the

function
6(z,q) = Z z"
ned

and related functions. These functions are related by a labyrinth of formu-
lae [6]. We try not to be puzzled in this labyrinth. We also try to construct
the theory of elliptic functions by our function é(z, q).

We refer mainly to [3, Appendix] several formulae for this function
6(z,q) and the related functions. We quote from this appendix simply
by [T10], for example.

1. Jacobi’s theta functions and Dedekind’s eta function. For
a complex number 7 with Im 7 > 0, we put

(1.1) q=e""
then |g| < 1| and the function
(1.2) 0(z,q) = Ex"q"

is convergent for any z # 0.
In this paper, we denote by A the 24-th root of unity e?7#/24;

(1.3) /\:é((\/t:)+\/§)+i(\/_—\/§))

we have

L(VE+i), )\3=%(1+i)=\/z'_, M= 1(1+V31i)
((\/_—\/_ +i(V6+v2)), A=,

»l—wl

and so on.
Jacobi’s theta functions (theta zeros) are described in the following
way.
b3(r) =S q"  =6(1,9)
(14) 63(7) = T(-1)"q™ = 6(~1,9)
62(7) = 1 gD = g1/4 (g, q)
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Note that we denote ¢ = ™7 for a real number a.
Dedekind’s eta function n(7) is defined by

(L5) n(r) =g T (1 - )
n=1

This function has the expression

(1.6) () = ¢/ 0(~q,¢%)

[T23]. Between these functions stand the following fundamental formulae:

(L.7) O3(1)" = 62(7)* + O4(7)*
(1.8) 02(7) 03(7) 64(7) = 2(7)°
[T11 and A22]. We also consider the following functions
xo(7) = ¢/%6(q, ¢*)
1.9
(1.9) {XI(T) = ¢'/%6(—q,4%)

These functions are xo(7) = po(27) and x1(7) = p1(27) in the notation of
[3, A8]. These functions are related to 8,(7) in the following way. That is,
02(T) = 2X0(2T) [T3] and

2x0(7)? = 02(7) 03(7)
(1.10) 2x1(r)? = 02(7) 04(7)

2x0(7) x1(7) = 02(7) 64(27)
[T8-10]. Now it is easy to see that

03(7 + 1) = 84(7), 04(T + 1) = 83(7)
(1.11) O2(1 + 1) = A3 6,(7), n(r +1) = An(r)
Xo(T+1) = X2 x1(7), x1(r +1) = A3/2 x(7)

where A1/2 = ¢27i/48 Note that 8(—z, —¢) = 6(z, q).
The theta formula for §(z, q) is described in the following way;

(1.12) 8(e”,e®) = kB(e*,eP)

with
Kk = A~3eo?/48 ﬁ-

T
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where a and 3 are complex numbers with Re (3) < 0, and
36 = =2, a6 +v28=0

and /8/7i is assumed to be in the first quadrant of the complex
plane. [A23]
From this theta formula, it follows that

B3(~1/7) = A7 /T b3(7), n(—1/7) = A73/Tn(r)
(1.13) $ B4(=1/7) = A73/T 85(7), B2(—1/7) = A=2\/T b4(7)
Xo(=1/7) = A73/T]264(27), xa(=1/7) = A73V/T xa(r)

Note that the theta formulae for 8,(7) are obtained by direct use of the
formula (12), but for the functions 7(7) and x,(7), we need the following
lemma.

Lemma. It holds that

8(iz,q) = 8(—22,¢*) + izq8(-2%¢*, ¢*)
8(Cz.q) = 8(—2°,¢°) + Cxqb0(—2°¢%,¢°) + q(Cz)'0(~2¢7%, ¢°)
where (3 = —1.

Proof. A simple calculus shows this lemma.

For the even unimodular lattice Fs of 8-dimension, its theta function
E4(7) has the expression

(1.14) Eq(1) = %(03(7)8 +62(7)° + 04(T)8)

which is a modular form of weight 4 as easily seen from (11) and (13).
Also the discriminant A(7) of elliptic curve has the expression

(1.15) A(r) = n(r)** = ¢" TI(1 - ¢*")*

which is a modular form of weight 12. From (8), it follows
1 8

(1.16) A(r) = (592(7)03(1)94&))

These functions E4(7) and A(7) generate the ring of all modular forms
for the group SL(2,Z) in the sense of [1, p.164]. Putting

(1.17) Ay(r) = %(03(7-)8 _ E4(r)) =924 92(7-)4 94(7-)4
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we see that A4(7) is a modular form of weight 4 for the group

(o) (01))

This can be expressed as Ay(7) = x1(7)® by (10). Also #3(7)? is a “modular
form” of weight 1 for I'y. The ring of all “modular forms” of integral weight
for I'p in the sense of [1, p.164] is generated by 83(7)? and A4(7). By infinite
product expansions of 8,(7) [A19-21], or by that of x1(7), we have

(L18)  Ayr) = () = g[I(A - g™ - ™)

The group Ty is of index 3 in the group SL(2.Z) having the representatives
(1 0) (1 O) (l —1)
01/ \11/7 \1 0/°

2. The modular functions of theta type. From the functions
8,(7) and (1), we define

a(r) = 63(7)/n(T)
(2.1) B(7) = 04(7)/83(T)
Y(1) = 62(7)/63(7)

These functions are real-valued and positive on the imaginary axis of the
upper half plane. If we put 7 = it with real ¢ such that ¢ > 0, then g = e™™*
and we can evaluate 6,(it) and 7(it) approximately. The function 3(it) is
monotone increasing with ¢ and the function y(?t) is monotone decreasing
with t. We have 8(io0) = 1, y(ic0) = 0, 3(i0) = 0 and 4(¢0) = 1, and
also a(ioo) = +o00 and «(i0) = +oc. These can be read off from the
following fundamental formulae

(22) B+ =1

(2.3) a(r)?8(r)y(r) = 2

which follow from (1.7) and (1.8) of the preceding section. From (3), it
follows that
B(r) y(r)* = 2/a(r)"?
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Thus we have

B, 4t = -1—(a6 + Val? = 64)

2a8

and

1
F. 7" = 55 (VoS +8£ Vo —3)

By the preceding remark, we have

(2.4) 3(r) = -:-2%(\/016 + 8+ Vab — 8)

(2.5) ()2 = %(\/aﬁ-}—S— \/&6—8)

where \/a(7)® £ 8 are assumed to be positive on the imaginary axis with
t> 1.
From (1.11), it follows that

a(r +1) = A1a(r) ()
(2.6) B(r+1)=1/8(r)

(T + 1) = Xy(r)/8(r)
and that

a(t +2) = A 2a(1)
(2.7) B(r+2)=5(r)

7(m+2) = A%y(7)
From (1.13), it follows that

a(~1/7) = a(r)
(2:8) B(-1/7) =1(r)
¥=1/7) = 8(r)

From these, we can deduce that a(7), 8(7) and 5(7) are modular
functions belonging to the respective congruence subgroups of SL(2,Z).
We will call these functions the modular functions of theta type.

For 7 = i, we have (i) = v(7) by (8). So

(2.9) Bi) = (i) =27/
by (2), and also a(7)® = 23/2, Thus

(2.10) a(i) = 2'/2
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So 7 = i is the zero point of y/a(7)® — 8, and the sign of this function
should be changed to negative one for ¢t < 1.
From (10), it follows that

n(é) = 2712 63()

and the value 83(7) is calculated from the complete elliptic integral for the
modulus k(i) = ()% For the meaning of k(1) = 7(7)?, see below (the
formula (13)). As k(:)? = 1/2, the value (r/2)85(:)? is equal to the integral

. 1 dz
K :/
° (1-2?)(1-}2?)
The fact that K = (x/2)83(7)? is shown in the standard book of the

elliptic function theory [6], or will be explained in the subsequent paper.
The above mentioned integral K is related to

r(1/4)*

w_/ \/1——@-4 4\/_

in the following way. Putting 7 = ¢ 4+ 1, from (6), it follows that
a(i+1)=A"12Y4 Bli+1) =24, 4(+1)= A

As y(i + 1)* = —1, we have w = (7/2)63(i + 1)? = (x/2)84(3)?. Thus
w = (7/2)8(i)%6s( )2 = (1/4/2)K, and we have

(2.11) n(i) = T(1/4)/(275/4).

We discuss the relations between the classical modular functions and
our functions «(7), 8(7) and y(7).
Weber defined the functions

fr) =TI+ 2771
(2.12) fi(r) = ¢ VHTI(1 - 1)
fa(r) = V242 TI(1 + ¢*)

(5]. Seeing the infinite product expansion of €,(7) [A18-21], we have
a(r) = f(7)%, ea(7) = a(7)B(7) = f1(7)? and az(7) = a(7)Y(T) = fa(T)%.
Note that a1(7) = 04(7)/n(7) and ay(r) = 02(7)/n(7). Thus our functions
are the squares of Weber’s functions. The merits of our functions would
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be that we can apply the formulae for the theta functions to our functions
directly.
For the modulus k = k(7) of the elliptic integral of the first kind

/2 dz

o V(1 -22)(1-k2z%)
we have

(2.13) k(T) = 82(7)*/63(7)* = 4(7)?

[6]. For the complementary modulus &'(7) = /1 — k(7)2, we have
(2.14) K'(r) = 84(7)2/63(7)? = B(r)?

We will discuss these relations by constructing the Jacobi’s elliptic func-
tions newly in the subsequent paper.
Weierstrass’ lambda function A(7) is defined as

A7) = k(r)2 = (R(n)/5(n)°

This function is a modular function for the group I'(2), where I'(2) = {A €
SL(2,Z):A=FE (mod 2)}. From the above one, it follows

(2.15) A(r) = y(1) =1 - B(r)*
and A(7)(1 = A(7)) = B(r)*y(7)* = 16/a(r)'2. Thus
(2.16) A(T)? = A7) +1 = (a(n)'? - 16)/a(r)12
On the other hand,
#-rt+l=1-p8%"= %(1 + 8% + %) = Es(7)/85(7)®
so we have
(2.17) A(T)E = A(T) + 1 = E4(7)/83(7)®

The absolute invariant J(7) which is a modular function for SL(2,Z)
is expressed as

4
27

J(7) = — (A2 - A+ 13/(A(1 - A))?
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Putting j(r) = 123J(7) = 1728 J(7), it follows that

(2.18) i(r) = (a(r)? = 16)°/a(r)? = Eq(r)?/A(r)

where A(7) = n(7)?*. This function has the following g-expansion;

(2.19) J(r)=q2 + 744+ ) cng™

by (18), with ¢; = 196884, ¢, = 21493760, ... .
From the theory of p-function, the invariant J(7) is defined as

(2.20) I(r) = g3/(93 — 27 93)
where the function p satisfies the equation
2=40°—gap—g3

We will explain the meaning of this definition from our view point in the
subsequent paper.
Weber also defined the function v;(7) and ~v3(7) by

72(r) = i(r)P, y(r) =\/i(r) - 123

where these functions should be positive on the upper part of the imaginary
axis [5]. For these functions, we have

(2.21) 7(r) = (a(r)'? = 16) fa(r)" = Es(7)/n(r)®

(2.22) 1(r) = (a(r)? +8) (B()* - 1(r)*)

Proof. The formula (21) is clear. By the calculus

12 12 _ 3 12 _
%”‘123):(& 1216> _1-2(‘1 1216>_16

=(X+2%X-4)
with X = (a!? — 16)/12, we have

«

6 _a12+8 al? — 64
V12 %(r)=—7 12
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From (4) and (5), it follows that 3% — 7% = Val? — 64/a®.

On the analogy of (18), we define

(2.23) J1(r) = 83(7)*/ Ay(7) = (f=l's(f)/.xl(f))8

which is a modular function for I'yp by (1.11) and (1.13). This function has
the following ¢-expansion;

(2.24) AT) = +244) bag”

with by = 276, by = 2048, ....
As 03(1)® = E4(7) + 16x1(7)8. we have ji1(7) = a(7)!2. This can be
written in the following very interesting formula;

12

(2.25) (6s)a(0)” = (s(r)/n(r))

But this is a puzzling formula. The appearance of 64(27) in (1.10)
and (1.13) would explain this situation.
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