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ON COMMUTATIVE GROUP ALGEBRAS. II

To the memory of Professor Hisao Tominaga

Kaort MOTOSE

In this paper, using commutative group algebras, we shall give an alter-
native proof of theorem about the prime decomposition of the Gauss sum
which was essentially used in the proof of Stickelberger relation (see [1,2]).
Moreover, in commutative group algebras, we shall obtain a formula for
the evaluation of the quadratic Gauss sum.

Let A = CF be the set of all mappings from a finite field F = F, of
order ¢ to the complex number field C. Then we define the convolution
product in A by the following

(fxg)e)= X fla)g(b)
a,beF

at+b=c

for f,g € A and ¢ € F. This product together with the usual sum and the
scalar product gives the structure of a commutative algebra. When there
is no danger of confusion, we shall write fg instead of f * g.

Let « = u, be the characteristic function of a € F, namely, u, is
defined by the following

ug(a) =1 and wu.(b) =0 if b# a.

Then we have the following equation.
Uty = Ugyp and f= > fla)u, for fe A.
a€F

Thus {u,| a € F} forms a basis of the group algebra A of the additive
group of F over C.

We denote by Fr= Hom( F™*,C~) the set of all group homomorphisms
from F* to C*, by xI"l nth power of x € F* with respect to the convolution
product and by € the trivial homomorphism from F* to C*. We set €(0) =
1 and x(0) = 0 for x # e € F*.

1. The Stickelberger relation. Let m be a natural number, let p
be a prime do not divide m, let f be the order of p mod m, and ¢ = p/.
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Moreover let O be the ring of algebraic integers in Q({,—1) and let P be a
prime ideal containing p, where (;_; is a primitive ¢ — 1th root of 1. Then
it is well known that g is the order of a finite field F = O/P.

We consider the Gauss sum g, = ) ¢cr x“(a)(,tf(a) where x is a gen-
erator of F* and tr(a) is the trace of a. Let P be the ideal generated by P
and {1 - Czlfl 0 < k < p} in the ring of algebraic integers O of Q({(5-1)p)-
It is easy to see P is the prime ideal generated by P and 1 — (,. We set
a” =bo+b +---+bs_, for a positive integer a = by +byp+---+ bf_lpf‘l
where 0 < a < g and 0 < b, < p.

The next follows essentially from [3, Proposition 3.2] and this was used
essentially for the Stickelberger relation (see [1,2]).

Theorem 1. ordp(g,) = @* for 0 < a < g, namely, P*" divides
exactly g,.

Proof. Let v be a natural homomorphism from OF to (O/P)F and let
J be the ideal generated by P and {ug — u, | @ € F}. Since v(x*)lPl = 0
for x* # 1, we obtain that »(x°) is contained in »(J), the radical of
the group algebra (O/P), and so x° € J. [2, Proposition 3.2] together
with this implies that yx® € J* for the Jacobi sum v € O \ P. The
character ug — C;r(ﬂ) induces the epimorphism ¢: OF — O with ¢(J) = P
and ¢(7x®) = v¢a. Thus we have ordp(g,) > a@*. On the other hand,
ordp(ga) + ordp(gg—1-a) = f(p — 1) = a* + (¢ — 1 — a)* follows from
x**X® = x%(—1)(quo — €) (see [4]) and ordp(p) = p — 1. This completes
our proof.

Remark. [3, Proposition 3.3] shows that {x®| a* = k} forms a basis
of Y(JT)Y*¥/v(T)*t! and so ord 7(x®) = a*, namely, a* is the maximum
integer s such that x* € J°.

2. Quadratic characters. In the remainder of this paper, we shall
consider the quadratic character. The next is necessary for Theorem 4.

Proposition 2. Let n be the element of order 2 in F‘E‘

(1) detfugp-1]ap = (€ —uo)* [Ixze X where [[* means the product of all
nontrivial multiplicative characters with respect to the convolution product.

(2) detfugplap = (= 1)~ 1/8qa=3/2y where q is odd.
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Proof. (1) The matrix equation
[X(0)]x.altab-11a[0(d™ )]0 = diag(q - 12 x(a)ua]
follows from the equation
2 x(a)ugp-1 60671 = (Z x(@b™ yugs—s ) x(0)6(57)
= (Sx®0™)) Tx(a)ua = buala = DT x(@)t

where x,0 € F/’;* and a,b run over F;. We obtain the formula (1) from the
orthogonality relations.
(2) It is easy to see

g=3
detugp-1]ap = (—1) 2 det[tgp)ap

because the permutation b — b~! on F7 is the product of cyclic permuta-

tions (b,b7!), namely, b — b~ = [T5241(b,07"). The next equations show
the formula (2). These follow from x*¥ = x(—1)(quo — €) (see [4]).

(e —uo) * H*X—(G—HO)*U* [T"x *X
x# x2#e

=3 %5 7-3 {g=3)(g-1)
=-nx(qu-9 2 (-1 =-¢7(-1) 5 n

3. Quadratic characters for odd primes. In the remainder of
this paper, we assume ¢ is an odd prime. First, We shall prove that

Lemma 3.
g—1
a™ = g
IT (w0 — uT) = quo — €.
n=1
Proof. Let 0y,0%,...,04—1 be the elementary symmetric functions

of uy,uz...,uq-1, let 5 = ZaEF‘ ut and let B = Zq_l( 1)fo; where
0o = Up. Then Og-1=1Ug, St =81 =€—1ug forall 1 <t <ygq,

]:[ (vo—ul)=B, and Be=0 from u.e=c¢e.
=1
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These equations together with Newton’s formula
=2 k 1
Z (F1 sk + (1) (g~ 1)ogr = 0
=0
imply our formula.
The next is useful to the evaluation of the Gauss sum and to sugges-

tions of the Stickelberger relation.

Theorem 4. Let n be the element of order 2 in FE“ Then we have
(1) p= u(q -1)(q-1)/16 H(‘! 1)/2(uU — u?),

1 n -
(2) n= (-1 DR — 07, where v = ugg4ny2.

Proof. (2) follows from (1) and v? = u; as in the following.

(g2 —1 g—1 Y (" .
n=v H (=")@" —2v7")
-1 "‘—1 (¢-1)(s-1) 5~
=)y T e 5 (v
g—1 n=1

-1 "3
= (-0 f (" -0

(1) It is easy to see our assertion for ¢ = 3. We set ¢ > 3 and

u = uy. Then our result follows from the next equations in virtue of
Proposition 2(2), Lemma 3 and 3(¢? — 1)(g— 1) = (¢*> — 1)(¢— 3) mod 164.
g?=1 ¢-3
Tt 4 q 2 n -2 m |
— H (,um _ un) —- H H (—u")(uu _ um—n+l)
g—1>m>n>1 m=1n=1
(q—l)(q—‘Zl q(q—l)(q—‘l) -2 m et
=(-1) u IT II (uo—u )
m=1n=1
g—-m-—1

- (-0 n{nuo—u) I <uo—u}nuo—u)

=0T T B o) T w0 ) T o - )
m=1 ~n=1 1 n=1

n=

2-1 (¢°=1)(g=1) [ q-1 =3
:iq4 o 16 {H(uo—u }2 ﬁ(uo—u)

n=1 =1

-1 g-3 (¢-1)(g-1) -
=3 4 q 2 u 16 'H(Uo_un)-
n=1
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4. The quadratic Gauss sums for odd primes. In this section,
using the last theorem, we shall determine the quadratic Gauss sums for
odd primes g. First we need the following

Lemma 5. ]_[i_"z_ll)/2 2sin(kw/n) = \/n, where n is odd.
Proof. Setting z = 1 in the equation
n—1 k fue)
2"l 41= H(x—a2 ), where c=en,
k=1

we have our assertion from the next

n—1 n!n-—l! n-—1 s
n= H(_ak)(ak_a—k):(_l)n—la B in-—l H 2 sin (lt_ﬂ')
k=1 k=1 n

We set p = ¢™/7 and g = Ez;i n(k)p*. Then considering the linear
representation u, — p?* (v — —p) of G, Theorem 4(2) together with
Lemma 5 implies

=17 4 \/(7

since (¢ + 7)/2=(q - 1)/2 mod 4.
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