FINITE p-GROUPS WITH CYCLIC SUBGROUPS OF INDEX p^2

Dedicated to Professor Manabu Harada on his 60th birthday

YASUSHI NINOMIYA

1. Intoduction. Let p be a prime number. It is trivial that a finite abelian p-group of order p^m and exponent p^{m-1} is of type (m-1,1). A complete list of nonabelian such p-groups is contained in Burnside's book [1]. For convenience, we here restate it.

The finite nonabelian p-groups of order p^m and exponent p^{m-1} are of the following types:

```
(a) p \ odd, \ m \geq 3:

M_m(p) = \langle a, b \mid a^{p^{m-1}} = 1, b^p = 1, b^{-1}ab = a^{1+p^{m-2}} \rangle;

(b) p = 2, \ m \geq 3: generalized quaternion group

Q_m = \langle a, b \mid a^{2^{m-1}} = 1, b^2 = a^{2^{m-2}}, b^{-1}ab = a^{-1} \rangle;

(c) p = 2, \ m \geq 3: dihedral group

D_m = \langle a, b \mid a^{2^{m-1}} = 1, b^2 = 1, b^{-1}ab = a^{-1} \rangle;

(d) p = 2, \ m \geq 4: quasi-dihedral group

M_m(2) = \langle a, b \mid a^{2^{m-1}} = 1, b^2 = 1, b^{-1}ab = a^{1+2^{m-2}} \rangle;

(e) p = 2, \ m \geq 4: semidihedral group

S_m = \langle a, b \mid a^{2^{m-1}} = 1, b^2 = 1, b^{-1}ab = a^{-1+2^{m-2}} \rangle.
```

 and to give one presentation by generators and defining relations for each isomorphism type of such groups. In what follows we denote by C_{p^k} the cyclic group of order p^k . Our result for the case p odd is as follows:

Theorem 1. Let p be an odd prime. The finite nonabelian p-groups of order p^m and exponent p^{m-2} are of the following types:

(a)
$$m \ge 3$$
:
$$G_1 = \langle a, b, c \mid a^{p^{m-2}} = 1, b^p = 1, c^p = 1, ab = ba, c^{-1}ac = ab,$$

$$bc = cb \rangle;$$
(b) $m \ge 4$:
$$G_2 = \langle a, b \mid a^{p^{m-2}} = 1, b^{p^2} = 1, b^{-1}ab = a^{1+p^{m-3}} \rangle;$$

$$G_3 = M_{m-1}(p) \times C_p;$$

$$G_4 = \langle a, b, c \mid a^{p^{m-2}} = 1, b^p = 1, c^p = 1, ab = ba, ac = ca,$$

$$c^{-1}bc = a^{p^{m-3}}b \rangle;$$

$$G_5 = \langle a, b, c \mid a^{p^{m-2}} = 1, b^p = 1, c^p = 1, ab = ba, c^{-1}ac = ab,$$

$$c^{-1}bc = a^{p^{m-3}}b \rangle;$$

$$G_6 = \langle a, b, c \mid a^{p^{m-2}} = 1, b^p = 1, c^p = 1, ab = ba, c^{-1}ac = ab,$$

$$c^{-1}bc = a^{r^{p^{m-3}}}b \rangle;$$

$$where \ r \ is \ a \ quadratic \ nonresidue \ mod \ p;$$

$$G_7 = \langle a, b, c \mid a^{p^{m-2}} = 1, b^p = 1, c^p = 1, b^{-1}ab = a^{1+p^{m-3}},$$

$$c^{-1}ac = ab, bc = cb \rangle;$$
(c) $m \ge 5$:
$$G_8 = \langle a, b \mid a^{p^{m-2}} = 1, b^{p^2} = 1, b^{-1}ab = a^{1+p^{m-4}} \rangle;$$

$$G_9 = \langle a, b \mid a^{p^{m-2}} = 1, b^{p^2} = 1, a^{-1}ba = b^{1+p} \rangle;$$
(d) $m \ge 6$:
$$G_{10} = \langle a, b \mid a^{p^{m-2}} = 1, a^{p^{m-3}} = b^{p^2}, a^{-1}ba = b^{1-p} \rangle;$$
(e) $m = 4$; $p = 3$:
$$G_{11} = \langle a, b, c \mid a^9 = 1, b^3 = 1, c^3 = a^3, ab = ba, c^{-1}ac = ab,$$

$$c^{-1}bc = a^6b \rangle.$$

Our result for finite nonabelian 2-groups is as follows:

Theorem 2. The finite nonabelian 2-groups of order 2^m and exponent 2^{m-2} are of the following types:

(a)
$$m \ge 4$$
:
 $G_1 = \langle a, b \mid a^{2^{m-2}} = 1, b^4 = 1, b^{-1}ab = a^{1+2^{m-3}} \rangle$;
 $G_2 = Q_{m-1} \times C_2$;
 $G_3 = D_{m-1} \times C_2$;

$$G_{4} = \langle a,b,c \mid a^{2^{m-2}} = 1,b^{2} = 1,c^{2} = 1,ab = ba,ac = ca, c^{-1}bc = a^{2^{m-3}}b\rangle;$$

$$G_{5} = \langle a,b,c \mid a^{2^{m-2}} = 1,b^{2} = 1,c^{2} = 1,ab = ba,c^{-1}ac = ab, bc = cb\rangle;$$

$$(b) \ m \geq 5:$$

$$G_{6} = \langle a,b \mid a^{2^{m-2}} = 1,b^{4} = 1,b^{-1}ab = a^{-1}\rangle;$$

$$G_{7} = \langle a,b \mid a^{2^{m-2}} = 1,b^{4} = 1,b^{-1}ab = a^{-1+2^{m-3}}\rangle;$$

$$G_{8} = \langle a,b \mid a^{2^{m-2}} = 1,b^{4} = 1,a^{-1}ba = a^{-1}\rangle;$$

$$G_{9} = \langle a,b \mid a^{2^{m-2}} = 1,b^{4} = 1,a^{-1}ba = b^{-1}\rangle;$$

$$G_{10} = M_{m-1}(2) \times C_{2};$$

$$G_{11} = S_{m-1} \times C_{2};$$

$$G_{12} = \langle a,b,c \mid a^{2^{m-2}} = 1,b^{2} = 1,c^{2} = 1,ab = ba,c^{-1}ac = a^{-1}, c^{-1}bc = a^{2^{m-3}}b\rangle;$$

$$G_{13} = \langle a,b,c \mid a^{2^{m-2}} = 1,b^{2} = 1,c^{2} = 1,ab = ba,c^{-1}ac = a^{-1}b, bc = cb\rangle;$$

$$G_{14} = \langle a,b,c \mid a^{2^{m-2}} = 1,b^{2} = 1,c^{2} = 1,a^{b-1}ab = a^{1+2^{m-3}}, bc = cb\rangle;$$

$$G_{15} = \langle a,b,c \mid a^{2^{m-2}} = 1,b^{2} = 1,c^{2} = 1,b^{-1}ab = a^{1+2^{m-3}}, bc = cb\rangle;$$

$$G_{16} = \langle a,b,c \mid a^{2^{m-2}} = 1,b^{2} = 1,c^{2} = 1,b^{-1}ab = a^{1+2^{m-3}}, c^{-1}ac = a^{-1}b\rangle;$$

$$G_{17} = \langle a,b,c \mid a^{2^{m-2}} = 1,b^{2} = 1,c^{2} = 1,b^{-1}ab = a^{1+2^{m-3}}, c^{-1}ac = a^{-1}b\rangle;$$

$$G_{18} = \langle a,b,c \mid a^{2^{m-2}} = 1,b^{2} = 1,c^{2} = 1,b^{-1}ab = a^{1+2^{m-3}}, c^{-1}ac = a^{-1}b\rangle;$$

$$G_{20} = \langle a,b \mid a^{2^{m-2}} = 1,b^{4} = 1,b^{-1}ab = a^{1+2^{m-4}}\rangle;$$

$$G_{21} = \langle a,b \mid a^{2^{m-2}} = 1,b^{4} = 1,b^{-1}ab = a^{1+2^{m-4}}\rangle;$$

$$G_{22} = \langle a,b,c \mid a^{2^{m-2}} = 1,b^{2} = 1,c^{2} = 1,ab = ba,c^{-1}ac = a^{1+2^{m-4}}b,c^{-1}ac = a^{2^{m-3}}b\rangle;$$

$$G_{23} = \langle a,b,c \mid a^{2^{m-2}} = 1,b^{2} = 1,c^{2} = 1,ab = ba,c^{-1}ac = a^{1+2^{m-4}}b,c^{-1}ac = a^{-1+2^{m-4}}b,c^{-1}ac = a^{-1+2^{m-4}}b,c^{-1$$

(d)
$$m = 5$$
:
 $G_{26} = \langle a, b, c \mid a^8 = 1, b^2 = 1, c^2 = a^4, b^{-1}ab = a^5, c^{-1}ac = ab,$
 $bc = cb \rangle.$

The proof of theorems 1 and 2 depends on Miller's idea on classifying the groups under consideration and Burnside's technique for choosing appropriate generators for each group, and it will be given in Sections 3 and 4.

2. Preliminaries. Let G be a finite nonabelian p-group of order p^m end exponent p^{m-2} . Choose an element $a \in G$ of order p^{m-2} and suppose $C_G(a) \neq \langle a \rangle$. Then G possesses an abelian subgroup H of type (m-2,1) and has an element c such that $G = \langle H, c \rangle$ and $c^p \in H$. The action of c (by conjugation) on H follows the action of some element of order p lying in the automorphism group $A = \operatorname{Aut} H$ of H. Therefore, in order to determine the group G, we need to find all the elements of order p lying in A.

Suppose $m \geq 4$ and choose an element b of H such that $H = \langle a \rangle \times \langle b \rangle$, $b^p = 1$. Then every automorphism of H maps a and b to $a^i b^k$ $(1 \leq i \leq p^{m-2}, p \nmid i, 0 \leq k \leq p-1)$ and $a^{p^{m-3}l}b^j$ $(1 \leq j \leq p-1, 0 \leq l \leq p-1)$ respectively. Hence denoting this automorphism by $\varphi(i,j;k,l)$, we have

$$A = \{ \varphi(i,j;k,l) \, | \, 1 \leq i \leq p^{m-2}, \ p \nmid i, \ 1 \leq j \leq p-1, \ 0 \leq k,l \leq p-1 \}.$$

From this it follows that $|A| = p^{m-1}(p-1)^2$. To be explicit about the product of the antomorphisms of H, let $\varphi_1 = \varphi(i,j;k,l)$ and $\varphi_2 = \varphi(\alpha,\beta;\gamma,\delta)$ be two elements of A; then $\varphi_1\varphi_2$ is defined by putting $x(\varphi_1\varphi_2) = (x\varphi_1)\varphi_2$ for each element x of H. From this we have

$$(*) \quad \varphi(i,j;k,l)\,\varphi(\alpha,\beta;\gamma,\delta) = \varphi((i\alpha + p^{m-3}k\delta)^*, \overline{j\beta}; \overline{i\gamma + k\beta}, \overline{l\alpha + j\delta}),$$

where x^* (resp. \bar{x}) denotes the residue of x modulo p^{m-2} (resp. modulo p). Suppose now p is odd. The center Z(A) of A is given by

$$Z(A) = \{ \varphi(i, \bar{i}; 0, 0 \mid 1 \le i \le p^{m-2}, \ p \nmid i \}.$$

Hence $|Z(A)| = p^{m-3}(p-1)$ and a Sylow p-subgroup of Z(A) is cyclic. Because $|A/Z(A)| = p^2(p-1)$, by Sylow's theorem A/Z(A) is p-closed and hence A is p-closed. Now let P be a Sylow p-subgroup of A and

set $Q = P \cap Z(A)$ (= $\langle \varphi(1+p,1;0,0) \rangle$). We choose the following three elements of order p from A:

$$\xi_1 = \varphi(1,1;0,1), \quad \xi_2 = \varphi(1+p^{m-3},1;0,0), \quad \xi_3 = \varphi(1,1;1,0),$$

and set $M = \langle \xi_1, \xi_2, \xi_3 \rangle$. Then M is a nonabelian group of order p^3 and exponent p, and P is generated by M and Q. From this it follows that $M - \{1\}$ is the set of all the elements of order p in A.

We now find the conjugacy classes of the elements of order p lying in A.

Lemma 1. $\langle \xi_1, \xi_2 \rangle - \langle \xi_2 \rangle$ is a conjugacy class in A.

Proof. By making use of equation (*), we see that the centralizer $C_A(\xi_1)$ of ξ_1 in A is given by

$$C_A(\xi_1) = \{ \varphi(\alpha, \bar{\alpha}; 0, \delta) \mid 1 \le \alpha \le p^{m-2}, \ p \nmid \alpha, \ 0 \le \delta \le p-1 \}.$$

This shows that $|A:C_A(\xi_1)|=p(p-1)$. Further every element of $\langle \xi_1,\xi_2\rangle-\langle \xi_2\rangle$ is of the form $\xi_2^i\xi_1^j=\varphi(1+ip^{m-3},1;0,j)$ $(0\leq i\leq p-1,1\leq j\leq p-1)$. Now let k,l be integers with $0\leq k\leq p-1,1\leq l\leq p-1$. Then $\varphi(l,j;\overline{l-k},0)$ transforms (by conjugation) $\xi_2^i\xi_1^j$ into $\xi_2^k\xi_1^l$. Hence the result follows.

Lemma 2. $\langle \xi_2, \xi_3 \rangle - \langle \xi_2 \rangle$ is a conjugacy class in A.

Proof. We have $|A: C_A(\xi_3)| = p(p-1)$ because $C_A(\xi_3)$ is given by

$$C_A(\xi_3) = \{ \varphi(\alpha, \bar{\alpha}; \gamma, 0) \mid 1 \le \alpha \le p^{m-2}, \ p \nmid \alpha, \ 0 \le \gamma \le p-1 \}.$$

Every element of $\langle \xi_2, \xi_3 \rangle - \langle \xi_2 \rangle$ is of the form $\xi_2^i \xi_3^j = \varphi(1 + ip^{m-3}, 1; j, 0)$ $(0 \le i \le p-1, 1 \le j \le p-1)$, and the element $\varphi(j, l; 0, \overline{k-i})$ transforms $\xi_2^i \xi_3^j$ into $\xi_2^k \xi_3^l$. Hence the result follows.

Lemma 3. For any i, j with $1 \le i, j \le p-1$, $\xi_1^i \xi_3^j$ is conjugate to every element of $\langle \xi_2 \rangle \xi_1^i \xi_3^j$.

Proof. Let i' be an integer with $1 \le i' \le p-1$, $ii' \equiv 1 \pmod{p}$. Then $\varphi(1,1;\overline{-i'k},0)$ transforms $\xi_1^i \xi_3^j$ into $\xi_2^k \xi_1^i \xi_3^j$, and the result follows.

Lemma 4. Given an integer k with $1 \le k \le p-1$, let k' be an integer with $1 \le k' \le p-1$, $kk' \equiv 1 \pmod{p}$. Then for i, j with $1 \le i, j \le p-1$, $\xi_1^i \xi_3^j$ is conjugate to $\xi_1^{ki} \xi_3^{k'j}$.

Proof. Noting that $\varphi(1,k;0,0)^{-1} = \varphi(1,k';0,0)$, we obtain

$$\varphi(1,k;0,0)\cdot\xi_1^i\xi_3^j\cdot\varphi(1,k;0,0)^{-1}=\xi_1^{ki}\xi_3^{k'j},$$

and the result follows.

From Lemma 4, it follows that $\xi_1\xi_3$ is conjugate to $\xi_1^k\xi_3^{k'}$. But because $\xi_1^k\xi_3^{k'}\equiv (\xi_1^{k^2}\xi_3)^{k'}$ mod $\langle \xi_2\rangle$, by Lemma 3 $\xi_1\xi_3$ is conjugate to $(\xi_1^{k^2}\xi_3)^{k'}$. Now let r be a quadratic nonresidue mod p. Then $\xi_1^r\xi_3$ is conjugate to $(\xi_1^{k^2r}\xi_3)^{k'}$. This shows that for an integer z, $1\leq z\leq p-1$, if z is a quadratic residue mod p then the cyclic group $\langle \xi_1^z\xi_3\rangle$ contains an element which is conjugate to $\xi_1\xi_3$; and if z is a quadratic nonresidue mod p then the cyclic group $\langle \xi_1^z\xi_3\rangle$ contains an element which is conjugate to $\xi_1^r\xi_3$.

As stated before, G contains an element c such that $G = \langle H, c \rangle$ and $c^p \in H$, and the action of c on H follows that of some element φ of order p in A. Now let G' be another p-group of order p^m which contains $H = \langle a, b \rangle$. Choose an element c' of G' so that $G' = \langle H, c' \rangle$ and $c'^p \in H$. Assume that the action of c' on H follows that of φ' in A. Then it is easy to see that if either φ' is conjugate to φ or φ' is contained in $\langle \varphi \rangle$, G' is isomorphic to G. Summarizing above, we have the following:

Proposition 1. Under the above notation, we can assume that the action of c on H is given by one of the following elements in A:

$$\begin{array}{lll} \xi_1=\varphi(1,1;0,1), & \xi_2=\varphi(1+p^{m-3},1;0,0), & \xi_3=\varphi(1,1;1,0), \\ \xi_1\xi_3=\varphi(1,1;1,1), & \xi_1^r\xi_3=\varphi(1,1;1,r), \end{array}$$

where r is a quadratic nonresidue mod p.

We next consider the case p = 2. In this case, A is given by

$$A = \{ \varphi(i, 1; k, l) \mid 1 \le i \le 2^{m-2}, \ 2 \nmid i, \ 0 \le k, l \le 1 \},\$$

and so $|A| = 2^{m-1}$. We now find all the involutions in A. By (*), we see that $\varphi(i,1;k,l)$ is an involution if and only if $i^2 + 2^{m-3}kl \equiv 1 \pmod{2^{m-2}}$. From this we obtain the following:

Lemma 5. When p = 2, all the involutions in A are as follows:

- (1) m = 4: $\varphi(1, 1; 0, 1)$, $\varphi(1, 1; 1, 0)$, $\varphi(3, 1; k, l)$;
- (2) m = 5: $\varphi(1,1;0,1)$, $\varphi(1,1;1,0)$, $\varphi(3,1;k,l)$, $\varphi(5,1;k,l)$, $\varphi(7,1;k,l)$;

(3)
$$m \ge 6$$
: $\varphi(1,1;0,1)$, $\varphi(1,1;1,0)$, $\varphi(\pm 1 + 2^{m-3},1;k,l)$, $\varphi(-1 + 2^{m-2},1;k,l)$, $\varphi(\pm 1 + 2^{m-4},1;1,1)$, $\varphi(\pm 1 + 3 \cdot 2^{m-4},1;1,1)$; where $(k,l) = (0,0)$, $(0,1)$ or $(1,0)$.

Since $Z(A)=\{\varphi(i,1;0,0)\mid 1\leq i\leq 2^{m-2},2\nmid i\}$ is of order 2^{m-3} , $|A:Z(A)|=2^2$. Hence the conjugacy class of each noncentral involution consists of two elements. One can see that for $(k,l)=(0,1), (1,0), \varphi(1+2^{m-3},1;k,l)$ is conjugate to $\varphi(1,1;k,l)$ $(m\geq 4)$ and $\varphi(-1+2^{m-3},1;k,l)$ is conjugate to $\varphi(-1+2^{m-2},1;k,l)$ $(m\geq 5)$ and $\varphi(\pm 1+3\cdot 2^{m-4},1;1,1)$ is conjugate to $\varphi(\pm 1+2^{m-4},1;1,1)$ $(m\geq 6)$. Therefore we obtain the following result corresponding to Proposition 1.

Proposition 2. When p = 2, we can assume that the action of c on H is given by one of the following elements in A:

- (1) m = 4: $\varphi(3, 1; 0, 0)$, $\varphi(1, 1; k, l)$;
- (2) m = 5: $\varphi(i, 1; 0, 0)$, (i = 3, 5, 7), $\varphi(1, 1; k, l)$, $\varphi(7, 1; k, l)$;
- (3) $m \ge 6$: $\varphi(i,1;0,0)$, $(i = \pm 1 + 2^{m-3}, -1 + 2^{m-2})$, $\varphi(1,1;k,l)$, $\varphi(-1 + 2^{m-2}, 1; k, l)$, $\varphi(\pm 1 + 2^{m-4}, 1; 1, 1)$; where (k,l) = (0,1) or (1,0).
- 3. Proof of Theorem 1. This section will be devoted to the proof of Theorem 1. Throughout this section, let p be an odd prime and G a finite nonabelian p-group of order p^m and exponent p^{m-2} . If m=3, as G is of exponent p, by $[1, \S 112]$ we have

Proposition 3. If m = 3 then G is isomorphic to G_1 .

Suppose $m \geq 4$ and let a be an element of G of order p^{m-2} . We first consider the case that $C_G(a) \neq \langle a \rangle$.

Proposition 4. Suppose $C_G(a) \neq \langle a \rangle$. Then G is isomorphic to one of the groups: $G_1, G_2, G_3, G_4, G_5, G_6, G_9$ and G_{11} .

Proof. Let b be an element of order p such that $H = \langle a, b \rangle$ is an abelian subgroup of G of type (m-2,1), and choose $c \in G$ so that $G = \langle H, c \rangle$. Then the action of c on H follows the action of one of the automorphisms listed in Proposition 1. We consider four separate cases, depending on the action of c.

Case 1. Suppose that the action of c on H is given by ξ_1 . Then $C_G(a) = G$ and $c^{-1}bc = a^{p^{m-3}}b$. As $G/\langle a \rangle$ is not a cyclic group, $\langle a,c \rangle$ is an abelian group of type (m-2,1). Hence we can assume $c^p = 1$. This shows that $G \simeq G_4$.

Case 2. Suppose that the action of c on H is given by ξ_2 . We show that $G \simeq G_2$ or G_3 . By our assumption, we have

$$c^{-1}ac = a^{1+p^{m-3}}, \quad c^{-1}bc = b.$$

Assume first that $G/\langle a \rangle$ is not cyclic. Then $\langle a,c \rangle$ is a nonabelian p-group of order p^{m-1} and exponent p^{m-2} . Hence $\langle a,c \rangle \simeq M_{m-1}(p)$, and consequently $G \simeq G_3$. We next assume that $G/\langle a \rangle$ is a cyclic group. Then we can choose c so that $c^{p^2} \in \langle a \rangle$ and $c^p \notin \langle a \rangle$. Then $c^{p^2} = a^{\alpha p^2}$ for some α , and consequently $a^{-\alpha}c$ is of order p^2 . Hence by choosing $\{a, a^{-\alpha}c\}$ as a generator of G, we have $G \simeq G_2$.

Case 3. Suppose that the action of c on H is given by ξ_3 . We show that $G \simeq G_1$ or G_9 . Because

$$c^{-1}ac = ab$$
, $c^{-1}bc = b$,

 $G/\langle b \rangle$ is an abelian group of type (m-2,1), and so we can assume that $c^p \in \langle b \rangle$. If $c^p = 1$, $G \simeq G_1$. On the other hand, if $c^p = b^\beta \neq 1$, by choosing $\{a^\beta b, b^\beta, c\}$ as a generator of G, we see that G has a presentation

$$\langle a, b, c \mid a^{p^{m-2}} = b^p = 1, c^p = b, ab = ba, c^{-1}ac = ab \rangle.$$

This shows that G is generated by $A=a^{-1}$ and B=c. Because A and B satisfy the relation:

$$A^{p^{m-2}} = B^{p^2} = 1$$
, $A^{-1}BA = B^{1+p}$,

we have $G \simeq G_9$ in this case. Further if m = 4 then clearly $G_9 \simeq G_2$.

Case 4. Suppose that the action of c on H is given by $\xi_1\xi_3$ or $\xi_1^r\xi_3$. We show that $G \simeq G_5$ for the former case and $G \simeq G_6$ or G_{11} for the latter case. By our assumption,

$$c^{-1}ac = ab$$
, $c^{-1}bc = a^{\delta p^{m-3}}b$,

where

$$\delta = \begin{cases} 1 & \text{if the action of } c \text{ is given by } \xi_1 \xi_3, \\ r & \text{if the action of } c \text{ is given by } \xi_1^r \xi_3. \end{cases}$$

From this it follows that $c^p \in Z(G) = \langle a^p \rangle$. Furthermore, because $G/\langle a^{p^{m-3}},b \rangle$ is an abelian group of type (m-3,1), we can assume that $c^p \equiv 1 \pmod{\langle a^{p^{m-3}},b \rangle}$, and so $c^p = 1$ or $a^{\alpha p^{m-3}}$ for some α , $0 < \alpha < p$. If $c^p = 1$ then $G \simeq G_5$ or G_6 . So we assume that there is no element of order p outside $\langle a,b \rangle$. Then noting that $c^{-k}a^xc^k = a^yb^{xk}$, where

$$y = x \left(1 + \frac{\delta k(k-1)}{2} p^{m-3} \right),$$

we obtain $(a^x c)^p = a^z$, where

$$z = \alpha p^{m-3} + x \left(p + \frac{\delta(p+1)(p-1)}{6} p^{m-2} \right).$$

Hence, if p > 3 then $(a^x c)^p = a^{\alpha p^{m-3} + xp}$, and so $(a^{-\alpha p^{m-4}} c)^p = 1$, which contradicts our assumption. This contradiction shows that p = 3. We then have $(a^x c)^3 = a^z$, where

$$z = 3^{m-3}\alpha + (3 + 3^{m-3}\delta)x.$$

Hence if m > 4, $(a^{-3^{m-4}\alpha}c)^3 = 1$, which contradicts our assumption again. Therefore only the case p = 3, m = 4 is remained. In this case, $c^3 = a^3$ or a^6 and $c^{-1}bc = a^3b$ or a^6b . But if $c^{-1}bc = a^3b$, $(a^ic)^3 = 1$, where

$$i = \begin{cases} 1 & \text{if } c^3 = a^3, \\ 2 & \text{if } c^3 = a^6 \end{cases}$$

This is not the case. Hence $c^{-1}bc = a^6b$, and so if $c^3 = a^3$, $G \simeq G_{11}$; and if $c^3 = a^6$, by choosing $\{a^2, b^2, c\}$ as a generator of G, we get $G \simeq G_{11}$ again. Thus we complete the proof of Proposition 4.

We next consider the case where G has no element of order p^{m-2} whose centralizer is of order greater than p^{m-2} .

Proposition 5. Suppose that G has no element of order p^{m-2} whose centralizer is of order greater than p^{m-2} . If $\langle a \rangle$ is normal in G then G is isomorphic to G_8 ; while if G has no normal cyclic subgroup of order p^{m-2} then G is isomorphic to G_7 or G_{10} .

Proof. Suppose first that $\langle a \rangle$ is normal in G. Since $C_G(a) = \langle a \rangle$, $G/\langle a \rangle$ is contained isomorphically in Aut $\langle a \rangle$. Hence $G/\langle a \rangle$ is cyclic and $|\operatorname{Aut}\langle a \rangle|$ is divisible by $|G/\langle a \rangle| = p^2$, which implies that $m \geq 5$. Let b be an

element of G such that $G = \langle a, b \rangle$. Then we may assume that the action of b on $\langle a \rangle$ is given by $b^{-1}ab = a^{1+p^{m-4}}$ (see [1, §100]). As $b^{p^2} \in Z(G) = \langle a^{p^2} \rangle$ we may set $b^{p^2} = a^{\alpha p^2}$. But then $(a^{-\alpha}b)^{p^2} = 1$. Therefore, by choosing $\{a, a^{-\alpha}b\}$ as a generator of G, we have $G \simeq G_8$.

Suppose next that G has no normal cyclic subgroup of order p^{m-2} . Let H be a maximal subgroup of G containing a. Then H is a nonabelian group of order p^{m-1} and exponent p^{m-2} . Therefore $H \simeq M_{m-1}(p)$. We choose c in G - H so that $G = \langle H, c \rangle$. Now set

$$H = \langle a, b \mid a^{p^{m-2}} = 1, b^p = 1, b^{-1}ab = a^{1+p^{m-3}} \rangle.$$

We first consider the case $m \geq 5$ and set $\overline{G} = G/\langle a^{p^{m-3}} \rangle$. Then $\overline{H} = \langle \overline{a} \rangle \times \langle \overline{b} \rangle$ is an abelian group of type (m-3,1) and the action of \overline{c} on \overline{H} is given by an automorphism of \overline{H} of order p. Such an automorphism is already given in the paragraph preceding Lemma 1. But because $\langle a \rangle$ is not normal, the automorphism is given by $\varphi(1+ip^{m-4},1;j,k)$ with $j \neq 0$. Further we claim that k must be 0. Indeed, as $c^{-1}bc \equiv a^{kp^{m-4}}b$ $(\text{mod } \langle a^{p^{m-3}} \rangle)$, if $k \neq 0$ we would have $|c^{-1}bc| > p$, which is impossible. Therefore the automorphism is given by $\varphi(1+ip^{m-4},1;j,0)$ with $j\neq 0$. We distinguish two cases.

Case 1. Suppose that the action of \bar{c} on \bar{H} is given by $\varphi(1,1;j,0)$. We show that $G \simeq G_7$ in this case. By our assumption we have

$$c^{-1}ac = a^{1+\alpha p^{m-3}}b^j, \quad c^{-1}bc = a^{\beta p^{m-3}}b,$$

where $0 < \alpha, \beta < p - 1$. We first note that we can assume $\beta = 0$. Indeed, by setting $u = a^{\beta}c$, we have $u^{-1}bu = b$. We therefore have the following possibilities:

- (i) $c^{-1}ac = ab$, $c^{-1}bc = b$, (ii) $c^{-1}ac = ab^{j}$, $c^{-1}bc = b$, (iii) $c^{-1}ac = a^{1+\alpha p^{m-3}}b$, $c^{-1}bc = b$,
- (iv) $c^{-1}ac = a^{1+\alpha p^{m-3}}b^j$, $c^{-1}bc = b$,

where $1 \le \alpha \le p-1$, $1 < j \le p-1$. We now set

$$v = \left\{ egin{aligned} c^{j'} & ext{for case (ii),} \ b^{-lpha}c & ext{for case (iii),} \ b^{-j'lpha}c^{j'} & ext{for case (iv),} \end{aligned}
ight.$$

where $jj' \equiv 1 \pmod{p}$. We then have $v^{-1}av = ab$. This shows that we can assume that the action of c on H is given by (i). Then $c^p \in Z(G) = \langle a^p \rangle$. As $C_G(c) \neq \langle c \rangle$, our assumption forces c to be of order at most p^{m-3} . Hence $c^p = a^{\gamma p^2}$ for some γ , and consequently $(a^{-\gamma p}c)^p = 1$. Therefore by choosing $\{a, b, a^{-\gamma p}c\}$ as a generator of G, we have $G \simeq G_7$ $(m \ge 5)$.

Case 2. Suppose that the action of \bar{c} on \bar{H} is given by $\varphi(1+ip^{m-4},1;j,0), i\neq 0$. We show that $G\simeq G_{10}$. By our assumption,

$$c^{-1}ac = a^{1+(i+kp)p^{m-4}}b^j, \quad c^{-1}bc = a^{lp^{m-3}}b,$$

where $0 \le k, l \le p-1$. Setting $u = a^l c$, we get $u^{-1}bu = b$, and so we can assume l = 0. We therefore have the following possibilities:

(i)
$$c^{-1}ac = a^{1+p^{m-4}}b$$
, $c^{-1}bc = b$,

(ii)
$$c^{-1}ac = a^{1+p^{m-4}}b^j$$
, $c^{-1}bc = b$,

(iii)
$$c^{-1}ac = a^{1+\alpha p^{m-4}}b$$
, $c^{-1}bc = b$,

(iv)
$$c^{-1}ac = a^{1+\alpha p^{m-1}}b^j$$
, $c^{-1}bc = b$,

where $1 < \alpha \le p^2 - 1$, $p \nmid \alpha$, $1 < j \le p - 1$. Let α' be an integer with $\alpha \alpha' \equiv 1 \pmod{p^2}$ and 2' an integer with $22' \equiv 1 \pmod{p}$. Set

$$v = \begin{cases} b^{2'(\alpha-1)}c^{\alpha'} & \text{if } m = 5, \\ c^{\alpha'} & \text{if } m > 6. \end{cases}$$

Then

$$v^{-1}av = \begin{cases} a^{1+p^{m-4}}b^{\alpha'} & \text{for case (iii),} \\ a^{1+p^{m-4}}b^{\alpha'j} & \text{for case (iv).} \end{cases}$$

This shows that we can assume that the action of c on H is given by (i) or (ii). Suppose that case (ii) holds and let j' be an integer with $jj' \equiv 1 \pmod{p}$. Then setting

$$A=a^{j'}, \quad B=a^xb,$$

where $x = 2'(3j' + 1)p^{m-3}$, we get

$$B^{-1}AB = A^{1+p^{m-3}}, \quad c^{-1}Ac = A^{1+p^{m-4}}B, \quad c^{-1}Bc = B.$$

This shows that the group given by (ii) is isomorphic to the group given by (i), and consequently we can assume that the action of c on H is given by (i). We then have

$$c^{-p}ac^p = a^{1+p^{m-3}} = b^{-1}ab,$$

which implies that $c^p \equiv b \pmod{Z(G)}$. But $Z(G) = \langle a^{p^2} \rangle$, and hence we may set $c^p = a^{\gamma p^2} b$. Then $(a^{-\gamma p} c)^p = b$. Thus, by choosing $\{a, b, a^{-\gamma p} c\}$ as a generator of G, we see that G has a presentation

$$\langle a,b,c\rangle,\ a^{p^{m-2}}=b^p=1,\ c^p=b,\ b^{-1}ab=a^{1+p^{m-3}},\ c^{-1}ac=a^{1+p^{m-4}}b.$$

This shows that G is generated by A=a and $B=a^{p^{m-5}}c$. But, because B^p is a generator of the commutator subgroup of G, $\langle B \rangle$ is normal in G. Therefore, if m=5, G has a cyclic normal subgroup of order p^3 $(=p^{m-2})$, which contradicts our assumption. Thus we have $m \geq 6$. Because A and B satisfy the relation:

$$A^{p^{m-2}} = 1$$
, $A^{p^{m-3}} = B^{p^2}$, $A^{-1}BA = B^{1-p}$,

we get $G \simeq G_{10}$.

In final, we show that if m=4 then $G\simeq G_7$. Since c^p is of order at most p, we may set $c^p=a^{\alpha p}b^{\beta}$. If $\beta\neq 0$ then a^p is not contained in $\langle c\rangle$. But, because $\langle a^p\rangle$ is the center of $\langle a,b\rangle$ and its order is p, a^p is a central element of G. Therefore it is contained in $C_G(c)$. Because c is of order p^2 , this contradicts our assumption. Thus we have $\beta=0$. Set $\overline{G}=G/\langle a^p\rangle$. Then, because $\langle a\rangle$ is not normal in G, we see that \overline{G} is a nonabelian group of order p^3 and exponent p. Hence by $[1, \S 112]$, we can assume that

$$ac \equiv cab, \quad bc \equiv cb, \pmod{\langle a^p \rangle}.$$

Then the action of c on $\langle a, b \rangle$ is given by

$$c^{-1}ac = a^{1+\gamma p}b, \quad c^{-1}bc = a^{\delta p}b.$$

Hence, setting $u = a^{\delta}b^{-\gamma}c$, we have $u^{-1}bu = b$. This shows that $C_G(u) \neq \langle u \rangle$. Therefore by our assumption u is of order p. Then, because $u^{-1}au = ab$, by choosing $\{a, b, u\}$ as a generator of G, we have $G \simeq G_7$. Thus we complete the proof of Proposition 5, and so Theorem 1 is proved.

Remark 1. We show that none of the groups listed in Theorem 1 are isomorphic. We use the following notation: Given a finite p-group G, $\Phi(G)$ is a Frattini subgroup of G. We set $p^{d(G)} = |G/\Phi(G)|$. $\gamma_2(G)$ is the commutator subgroup of G and $\overline{G} = G/\gamma_2(G)$. The group generated by $\{x^p \mid x \in G\}$ is denoted by G^p .

- (1) $d(G_3) = d(G_4) = 3$ and $d(G_i) = 2$ for $i \neq 3, 4$.
- (2) $Z(G_3) \simeq C_{p^{m-3}} \times C_p$ and $Z(G_4) \simeq C_{p^{m-2}}$.
- (3) $[G_1:G_1^p]=p^3$ and $\gamma_2(G_5)\simeq\gamma_2(G_6)\simeq\gamma_2(G_7)\simeq\gamma_2(G_{11})\simeq C_p\times C_p$. This implies that the groups G_i (i=1,5,6,7,11) are nonmetacyclic. While, evidently G_2 , G_8 , G_9 and G_{10} are metacyclic.
- $(4) \ \overline{G}_2 \simeq C_{p^{m-3}} \times C_{p^2}, \ \overline{G}_8 \simeq C_{p^{m-4}} \times C_{p^2}, \ \overline{G}_9 \simeq C_{p^{m-2}} \times C_p \ \text{and} \ \overline{G}_{10} \simeq C_{p^{m-3}} \times C_p.$

- (5) $\overline{G}_1 \simeq C_{p^{m-2}} \times C_p$ and $\overline{G}_5 \simeq \overline{G}_6 \simeq \overline{G}_7 \simeq C_{p^{m-3}} \times C_p$.
- (6) $C_{G_5}(\gamma_2(G_5)) = C_{G_6}(\gamma_2(G_6)) = \langle a, b \rangle$ and $C_{G_7}(\gamma_2(G_7)) = \langle a^p, b, c \rangle$.
- (7) For any $u \in C_{G_5}(\Phi(G_5)) \Phi(G_5) = \langle a,b \rangle \langle a^p,b \rangle$ and $x \in G_5 C_{G_5}(\Phi(G_5)) = G_5 \langle a,b \rangle$, $[[u,x],x] = u^{qp^{m-3}}$, where q is some quadratic residue mod p. On the other hand, for $a \in C_{G_6}(\Phi(G_6)) \Phi(G_6) = \langle a,b \rangle \langle a^p,b \rangle$ and $c \in G_6 C_{G_6}(\Phi(G_6)) = G_6 \langle a,b \rangle$, $[[a,c],c] = a^{rp^{m-3}}$.

These seven claims imply that none of the groups G_1, \ldots, G_{10} are isomorphic. Because $\gamma_2(G_1) \simeq C_p$, by (1) and (3) it suffices to show that none of the groups G_5 , G_6 , G_7 with p=3, m=4 are isomorphic to G_{11} . Because $C_{G_{11}}(\gamma_2(G_{11})) = \langle a,b \rangle$, (6) implies that G_7 is not isomorphic to G_{11} . Further $G_{11} - C_{G_{11}}(\gamma_2(G_{11}))$ contains no element of order 3, but for i=5,6, $G_i - C_{G_i}(\gamma_2(G_i))$ contains an element of order p for any prime p. Hence neither G_5 nor G_6 is isomorphic to G_{11} .

4. Proof of Theorem 2. This section will be devoted to the proof of Theorem 2. Throughout this section, let G be a nonabelian 2-group of order 2^m and exponent 2^{m-2} , and let a be an element of G of order 2^{m-2} .

Proposition 6. Suppose $C_G(a) \neq \langle a \rangle$. Then G is isomorphic to one of the groups $G_1, G_2, \ldots, G_{14}, G_{22}$ and G_{23} .

Proof. Let b be an element of order 2 such that $H = \langle a, b \rangle$ is an abelian subgroup of G of type (m-2,1) and choose $c \in G$ so that $G = \langle H, c \rangle$. Then the action of c on H follows the action of one of the automorphisms listed in Proposition 2. We consider nine separate cases, depending on the action of c.

Case 1. Suppose that the action of c on H is given by $\varphi(1,1;0,1)$. Then by making use of a similar argument as in Case 1 of the proof of Proposition 4, we have $G \simeq G_4$.

Case 2. Suppose that the action of c on H is given by $\varphi(1 + 2^{m-3}, 1; 0, 0)$. We show that G is isomorphic to $G_2(m = 4)$ or $G_3(m = 4)$ or G_1 or G_{10} . By our assumption, we have

$$c^{-1}ac = a^{1+2^{m-3}}, \quad c^{-1}bc = b.$$

Suppose first that $G/\langle a \rangle$ is not cyclic. Then $\langle a,c \rangle$ is a nonabelian 2-group of order 2^{m-1} and exponent 2^{m-2} . Hence if $m \geq 5$, $\langle a,c \rangle \simeq M_{m-1}(2)$, and if m=4, $\langle a,c \rangle \simeq Q_3$ or D_3 , and correspondingly $G \simeq G_{10}$ or $G \simeq G_2$

(m=4) or $G \simeq G_3$ (m=4). On other hand, if $G/\langle a \rangle$ is cyclic then we may set $c^4 = a^{4\alpha}$. But then, because $(a^{-\alpha}c)^4 = 1$, by choosing $\{a, a^{-\alpha}c\}$ as a generator of G, we have $G \simeq G_1$.

Case 3. Suppose that the action of c on H is given by $\varphi(1,1;1,0)$. Then by making use of a similar argument as in Case 3 of the proof of Proposition 4, we have $G \simeq G_5$ or G_9 ; and $G_9 \simeq G_1$ provided m = 4.

Case 4. Suppose that $m \geq 5$ and the action of c on H is given by $\varphi(-1+2^{m-2},1;0,0)$. Then

$$c^{-1}ac = a^{-1}, \quad c^{-1}bc = b.$$

From this we have $Z(G) = \langle a^{2^{m-3}}, b \rangle$. As $c^2 \in Z(G)$, $c^2 = 1$, $a^{2^{m-3}}$, b or $a^{2^{m-3}}b$. If $c^2 = 1$ (resp. $a^{2^{m-3}}$), then $G \simeq G_3$ (resp. G_2). On the other hand, if $c^2 = b$ or $a^{2^{m-2}}b$ then by choosing $\{a, c\}$ as a generator of G, we have $G \simeq G_6$.

Case 5. Suppose that $m \geq 5$ and the action of c on H is given by $\varphi(-1+2^{m-2},1;0,0)$. Then

$$c^{-1}ac = a^{-1+2^{m-3}}, \quad c^{-1}bc = b.$$

From this it follows that $G/\langle b \rangle \simeq S_{m-1}$, and so we can assume that $c^2 = 1$ or b. We therefore have $G \simeq G_{11}$ or G_7 .

Case 6. Suppose that $m \geq 5$ and the action of c on H is given by $\varphi(-1+2^{m-2},1;0,1)$. Because

$$c^{-1}ac = a^{-1}, \quad c^{-1}bc = a^{2^{m-3}}b,$$

 $c^2 \in Z(G) = \langle a^{2^{m-4}}b \rangle$ and consequently $c^2 = 1$, $a^{2^{m-3}}$, $a^{2^{m-4}}b$ or $a^{3 \cdot 2^{m-4}}b$. If $c^2 = a^{2^{m-3}}$ then $(abc)^2 = 1$. This shows that if $c^2 = 1$ or $a^{2^{m-3}}$ then $G \simeq G_{12}$. On the other hand, if $c^2 = a^{2^{m-4}}b$ or $a^{3 \cdot 2^{m-4}}b$ then by choosing $\{a,c\}$ as a generator of G, we have $G \simeq G_8$.

Case 7. Suppose that $m \geq 5$ and the action of c on H is given by $\varphi(-1+2^{m-2},1;1,0)$. Then

$$c^{-1}ac = a^{-1}b, \quad c^{-1}bc = b.$$

Since $c^2 \in Z(G)$, $c^2 = 1$, $a^{2^{m-3}}$, b or $a^{2^{m-3}}b$. If $c^2 = b$ (resp. $a^{2^{m-3}}b$), $(ac)^2 = 1$ (resp. $a^{2^{m-3}}$). Hence we can assume that $c^2 = 1$ or $a^{2^{m-3}}$, and consequently we have $G \simeq G_{13}$ or G_{14} .

Case 8. Suppose that $m \ge 6$ and the action of c on H is given by $\varphi(1+2^{m-4},1;1,1)$. Because

$$c^{-1}ac = a^{1+2^{m-4}}b, \quad c^{-1}bc = a^{2^{m-3}}b,$$

 $G/\langle a^{2^{m-4}}b\rangle$ is an abelian group of type (m-3,1), and so we can assume that $c^2\in\langle a^{2^{m-4}}b\rangle$. Therefore, noting that $c^2\in Z(G)=\langle a^2b\rangle$, we obtain $c^2=1$ or $a^{2^{m-3}}$. If $c^2=a^{2^{m-3}}$ then $(bc)^2=1$. This shows that we can assume $c^2=1$, and consequently we have $G\simeq G_{22}$.

Case 9. Suppose that $m \ge 6$ and the action of c on H is given by $\varphi(-1+2^{m-4},1;1,1)$. Then

$$c^{-1}ac = a^{-1+2^{m-4}}b$$
, $c^{-1}bc = a^{2^{m-3}}b$.

From this we have $Z(G)=\langle a^{2^{m-4}}b\rangle$. As $c^2\in Z(G)$, it holds that $c^2=1$, $a^{2^{m-3}}$, $a^{2^{m-4}}b$ or $a^{3\cdot 2^{m-4}}b$. But then $(a^kc)^2=1$, where

$$k = \begin{cases} 2 & \text{if } c^2 = a^{2^{m-3}}, \\ 3 & \text{if } c^2 = a^{2^{m-4}}b, \\ 1 & \text{if } c^2 = a^{3 \cdot 2^{m-4}}b, \end{cases}$$

and consequently we can assume that $c^2=1,$ and so $G\simeq G_{23}.$

We next consider the case where G has no element of order 2^{m-2} whose centralizer is of order greater than 2^{m-2} .

Proposition 7. Suppose that G has no element of order 2^{m-2} whose centralizer is of order greater than 2^{m-2} . If $\langle a \rangle$ is normal in G then G is isomorphic to one of the groups G_{15} , G_{16} , G_{19} and G_{20} ; while if G has no normal cyclic subgroup of order 2^{m-2} then G is isomorphic to one of the groups G_{17} , G_{18} , G_{21} , G_{24} , G_{25} and G_{26} .

Proof. Suppose first that $\langle a \rangle$ is normal in G. We distinguish two cases.

Case 1. $G/\langle a \rangle$ is cyclic. We show that $G \simeq G_{19}$ or G_{20} . Since $G/\langle a \rangle$ is contained isomorphically in $\operatorname{Aut}\langle a \rangle$, we have $m \geq 6$. We can choose an element b of G so that $G = \langle a,b \rangle$, $b^4 \in \langle a \rangle$, and we can assume that the action of b on $\langle a \rangle$ is given by $b^{-1}ab = a^{1+2^{m-4}}$ or $a^{-1+2^{m-4}}$ (see $[1, \S 100]$). Suppose first $b^{-1}ab = a^{1+2^{m-4}}$. We may set $b^4 = a^{4\alpha}$. Then for an integer k with $\alpha + (1+2^{m-5})k \equiv 0 \pmod{2^{m-4}}$, we have $(a^kb)^4 = 1$. Suppose

16

next $b^{-1}ab = a^{-1+2^{m-4}}$. Then $b^4 \in Z(G) = \langle a^{2^{m-3}} \rangle$. If $b^4 = a^{2^{m-3}}$ then $(ab)^4 = 1$. Therefore we can assume that $b^4 = 1$ in either case. Thus we have $G \simeq G_{19}$ or G_{20} .

Case 2. $G/\langle a \rangle$ is not cyclic. We show that $G \simeq G_{15}$ or G_{16} . Since $G/\langle a \rangle$ is an abelian group of type (1,1) we have $m \geq 5$ and we can choose elements b and c of G so that

$$G = \langle a, b, c \rangle, \quad b^2, c^2 \in \langle a \rangle, \quad bc \equiv cb \; (\text{mod} \langle a \rangle).$$

Now set $b^{-1}ab = a^i$, $c^{-1}ac = a^j$. If i = j then $bc^{-1} \in C_G(a) = \langle a \rangle$, which contradicts our assumption. Hence $i \neq j$. Assume i = -1. Then $j = 1 + 2^{m-3}$ or $-1 + 2^{m-3}$, and

$$(bc)^{-1}a(bc) = \begin{cases} a^{-1+2^{m-3}} & \text{if } j = 1+2^{m-3}, \\ a^{1+2^{m-3}} & \text{if } j = -1+2^{m-3}. \end{cases}$$

The above implies that by replacing b and c with suitable elements of G if necessary, we can assume that $i=1+2^{m-3}$, $j=-1+2^{m-3}$ and $b^2=c^2=1$. We then have $(bc)^{-1}a(bc)=a^{-1}$, and so $\langle a,bc\rangle\simeq D_{m-1}$ or Q_{m-1} . Therefore $(bc)^2=1$ or $a^{2^{m-3}}$, which implies that $c^{-1}bc=b$ or $a^{2^{m-3}}b$. Thus $G\simeq G_{15}$ or G_{16} in this case.

Suppose next that G has no normal cyclic subgroup of order 2^{m-2} . Let H be a maximal subgroup of G containing a. Then H is a nonabelian group of order 2^{m-1} and exponent 2^{m-2} . We first show that $m \geq 5$. So suppose m=4. Then $H\simeq Q_3$ or D_3 . But, because $\langle a\rangle$ is not normal in G, H is isomorphic to Q_3 and $G/\langle a^2\rangle$ is nonabelian. Therefore we can choose an element u of G so that $u^2\in H-\langle a^2\rangle$. But then u is of order 8, which contradicts our assumption. This contradiction shows that $m\geq 5$. If $H\simeq Q_{m-1}$, D_{m-1} or S_{m-1} then $\langle a\rangle$ is a characteristic subgroup of H, and so $\langle a\rangle$ is normal in G, which is not the case. Hence $H\simeq M_{m-1}(2)$. Set

$$H = \langle a, b \mid a^{2^{m-2}} = 1, b^2 = 1, b^{-1}ab = a^{1+2^{m-3}} \rangle,$$

 $G = \langle H, c \rangle, \ \overline{G} = G/\langle a^{2^{m-3}} \rangle.$

Then $\overline{H} = H/\langle a^{2^{m-3}} \rangle$ is an abelian group of type (m-3,1) and $\overline{G} = \langle \overline{H}, \overline{c} \rangle$. Therefore the action of \overline{c} on \overline{H} is given by an automorphism of \overline{H} of order 2. Such an automorphism is already given in Lemma 5. But, because $\langle a \rangle$ is not normal, the automorphism is given by $\varphi(i,1;1,l)$. Further \overline{b} must be transformed into \bar{b} by this automorphism, and so l=0. Therefore the automorphisms are as follows:

$$m = 5: \quad \varphi(1, 1; 1, 0), \ \varphi(3, 1; 1, 0);$$

$$m \ge 6: \quad \varphi(1, 1; 1, 0), \ \varphi(-1 + 2^{m-3}, 1; 1, 0), \ \varphi(\pm 1 + 2^{m-4}, 1; 1, 0).$$

We consider four separate cases, depending on the action of \bar{c} .

Case 1. Suppose that $m \geq 5$ and the action of \bar{c} on H is given by $\varphi(1,1;1,0)$. We show that $G \simeq G_{17}$ or G_{26} . By our assumptoin we have the following possibilities:

(i)
$$c^{-1}ac = ab$$
, $c^{-1}bc = b$,

(ii)
$$c^{-1}ac = a^{1+2^{m-3}}b, c^{-1}bc = b,$$

(i)
$$c^{-1}ac = ab$$
, $c^{-1}bc = b$,
(ii) $c^{-1}ac = a^{1+2^{m-3}}b$, $c^{-1}bc = b$,
(iii) $c^{-1}ac = ab$, $c^{-1}bc = a^{2^{m-3}}b$,
(iv) $c^{-1}ac = a^{1+2^{m-3}}b$, $c^{-1}bc = a^{2^{m-3}}b$.

(iv)
$$c^{-1}ac = a^{1+2^{m-3}}b$$
, $c^{-1}bc = a^{2^{m-3}}b$.

If $c^{-1}bc = a^{2^{m-3}}b$, setting u = ac, we have $u^{-1}bu = b$. This shows that it will suffice to consider cases (i) and (ii). But if (ii) holds then, setting v =bc, we have $v^{-1}av = ab$, and consequently we can assume that the action of c on H is given by (i). Then as $c^2 \in Z(G) = \langle a^4 \rangle$, we may set $c^2 = a^{4\alpha}$. If $m \ge 6$, $(a^{-(2+2^{m-4})\alpha}c)^2 = 1$. Hence, by choosing $\{a, b, a^{-(2+2^{m-4})\alpha}c\}$ as a generator of G, we have $G \simeq G_{17}$ in this case. On the other hand, if $m = 5, c^2 = 1 \text{ or } a^4, \text{ and so } G \simeq G_{17} \text{ or } G_{26}.$

Case 2. Suppose that $m \geq 5$ and the action of \bar{c} on \bar{H} is given by $\varphi(-1+2^{m-3},1;1,0)$. Then by a similar argument as in case 1, we can assume that the action of c on H is given by

$$c^{-1}ac = a^{-1}b, \quad c^{-1}bc = b.$$

Then $c^{-2}ac^2 = b^{-1}ab$, which implies that $c^2 \equiv b \pmod{Z(G)}$. But, because $Z(G) = \langle a^{2^{m-3}} \rangle$, we have $c^2 = b$ or $a^{2^{m-3}}b$. If $c^2 = a^{2^{m-3}}b$ then $(a^2c)^2 = b$. This shows that we can assume $c^2 = b$, and hence $G \simeq G_{18}$.

Case 3. Suppose that $m \geq 6$ and the action of \bar{c} on \bar{H} is given by $\varphi(1+2^{m-4},1;1,0)$. Then by a similar argument as in Case 1, we can assume that the action of c on H is given by

$$c^{-1}ac = a^{1+2^{m-4}}b, \quad c^{-1}bc = b.$$

Then $c^{-2}ac^2 = b^{-1}ab$, which implies that $c^2 \equiv b \pmod{Z(G)}$. But, because $Z(G) = \langle a^2 \rangle$, we may set $c^2 = a^{2\alpha}b$. If α is odd then c is of order 2^{m-2} and $C_G(c) \neq \langle c \rangle$. This is not the case. Hence α is even. We then have $(a^{-\alpha}c)^2 = b$, which shows that we can assume $c^2 = b$. Thus G has a presentation

$$\langle a,b,c\rangle,\ a^{2^{m-2}}=b^2=1,\ c^2=b,\ b^{-1}ab=a^{1+2^{m-3}},\ c^{-1}ac=a^{1+2^{m-4}}b.$$

Now set $B = a^{2^{m-5}}c$. Then G is generated by a and B, and these elements satisfy the relation:

$$a^{2^{m-3}} = B^4, \quad a^{-1}Ba = B^{-1}.$$

Thus we get $G \simeq G_{21}$.

Case 4. Suppose that $m \geq 6$ and the action of \bar{c} on \bar{H} is given by $\varphi(-1+2^{m-4},1;1,0)$. By a similar argument as in Case 1, we can assume that the action of c on H is given by

$$c^{-1}ac = a^{-1+2^{m-4}}b, \quad c^{-1}bc = b.$$

Then $c^2 \in Z(G) = \langle a^{2^{m-3}} \rangle$, and so $c^2 = 1$ or $a^{2^{m-3}}$. Hence $G \simeq G_{24}$ or G_{25} . This completes the proof of Proposition 7, and so Theorem 2 is proved.

Remark 2. We show that none of the groups listed in Theorem 2 are isomorphic. Given a finite 2-group G, we denote by I(G) the set of all the involutions in G, and by i(G) the number of elements in I(G). The class of G is denoted by cl(G). The other notation we use here is given in Remark 1.

- (1) $d(G_i) = 2$ or 3; and $d(G_i) = 3$ only when i = 2, 3, 4, 10, 11, 12, 15 or 16.
- (2) $cl(G_4) = cl(G_{10}) = 2$; and $cl(G_i) = m 2$ for i = 2, 3, 11, 12, 15 and 16.
 - (3) $Z(G_4) \simeq C_{2^{m-2}}$ and $Z(G_{10}) \simeq C_{2^{m-3}} \times C_2$.
- (4) $Z(G_2) \simeq Z(G_3) \simeq Z(G_{11}) \simeq C_2 \times C_2$; $Z(G_{12}) \simeq C_4$ and $Z(G_{15}) \simeq Z(G_{16}) \simeq C_2$.
 - (5) $\langle I(G_2) \rangle = Z(G_2), \langle I(G_3) \rangle = G_3 \text{ and } \langle I(G_{11}) \rangle \simeq D_{m-2} \times C_2.$
 - (6) $i(G_{15}) = 2^{m-2} + 2^{m-3} + 3$ and $i(G_{16}) = 2^{m-3} + 3$.

The above implies that when $m \neq 4$ none of the groups generated by exactly three elements are isomorphic. Let m = 4. Then G_2 , G_3 and G_4

are the groups generated by exactly three elements and all of them are of class 2. But by (3), (4) and (5) none of them are isomorphic.

- $(7) \ \gamma_2(G_{17}) \simeq \gamma_2(G_{26}) \simeq C_2 \times C_2$; and for each $i \in \{5, 13, 14, 18, 22, 23, 24, 25\}, \ \gamma_2(G_i)$ is a cyclic group whose generator is not the square of an element of G. This implies that the groups G_i (i = 5, 13, 14, 17, 18, 22, 23, 24, 25, 26) are nonmetacyclic. While evidently G_i (i = 1, 6, 7, 8, 9, 19, 20, 21) are metacyclic.
- (8) $\operatorname{cl}(G_1) = \operatorname{cl}(G_9) = \operatorname{cl}(G_{19}) = 2$; $\operatorname{cl}(G_{21}) = 3$; and $\operatorname{cl}(G_6) = \operatorname{cl}(G_7) = \operatorname{cl}(G_8) = \operatorname{cl}(G_{20}) = m 2 \ (\geq 3)$.
- (9) $\gamma_2(G_1)\simeq\gamma_2(G_9)\simeq C_2$ and $\gamma_2(G_{19})\simeq C_4;$ $\overline{G}_1\simeq C_{2^{m-3}}\times C_4$ and $\overline{G}_9\simeq C_{2^{m-2}}\times C_2$.

(10)
$$Z(G_6) \simeq Z(G_7) \simeq C_2 \times C_2$$
, $Z(G_8) \simeq C_4$ and $Z(G_{20}) \simeq C_2$;
 $\langle x^2 \mid x \in G_6 - C_{G_6}(\gamma_2(G_6)) \rangle = \langle b^2 \rangle \simeq C_2$,
 $\langle x^2 \mid x \in G_7 - C_{G_7}(\gamma_2(G_7)) \rangle = \langle a^{2^{m-3}}, b^2 \rangle \simeq C_2 \times C_2$.

- (11) $\operatorname{cl}(G_5) = 2$, $\operatorname{cl}(G_{17}) = \operatorname{cl}(G_{22}) = \operatorname{cl}(G_{26}) = 3$ and $\operatorname{cl}(G_i) = m 2$ (≥ 3) for i = 13, 14, 18, 23, 24 and 25.
 - (12) $\gamma_2(G_{17}) \simeq C_2 \times C_2$ and $\gamma_2(G_{22}) \simeq C_4$.
- (13) $Z(G_{13}) \simeq Z(G_{14}) \simeq C_2 \times C_2$, $Z(G_{18}) \simeq Z(G_{24}) \simeq Z(G_{25}) \simeq C_2$ and $Z(G_{23}) \simeq C_4$.
- $(14) \ i(G_{13}) = i(G_{24}) = 2^{m-2} + 3; \ i(G_{14}) = i(G_{25}) = 3 \ \text{and} \ i(G_{18}) = 2^{m-3} + 3.$
- (7) through (14) imply that when $m \neq 5$ none of the groups generated by exactly two elements are isomorphic. Now let m = 5. Then G_i (i = 6,7,8,13,14,17,18,26) are the groups of order 2^5 which are generated by exactly two elements and of class 3. But $\gamma_2(G_{17}) \simeq \gamma_2(G_{26}) \simeq C_2 \times C_2$ and $\gamma_2(G_i) \simeq C_{2^{m-3}}$ for the other i. Hence by (7), (10), (13) and (14) it suffices to show that G_{17} with m = 5 is not isomorphic to G_{26} . This follows at once from the fact that $i(G_{26}) = 3$ and $i(G_{17}) = 11$ provided m = 5.
- Remark 3. Burnside [1] has given all the types of the groups of exponent p^{m-2} under the assumption that the groups have cyclic normal subgroups of order p^{m-2} . But, when p=2 there are two clerical errors: one group is omitted and two groups which are isomorphic are listed as distinct groups.
 - (1) Suppose that m > 5, $C_G(a) \neq \langle a \rangle$ and $G/\langle a \rangle$ is cyclic. As for such

groups, the following five distinct types are given in pp.138-139:

$$\langle a, b \mid a^{2^{m-2}} = 1, b^4 = 1, b^{-1}ab = a^{\alpha} \rangle,$$

where $\alpha = -1, \pm 1 + 2^{m-3}, \pm 1 + 2^{m-4}$. But there is one more type, that is, the group G_8 in Theorem 2 should be added in the list.

(2) The groups of type (xi) and (xii) in p.139 are isomorphic. These groups are given by

$$G_{xi} = \langle a, b, c \mid a^{2^{m-2}} = 1, b^2 = 1, c^2 = 1, ab = ba,$$

$$c^{-1}ac = a^{-1}, c^{-1}bc = a^{2^{m-3}}b\rangle;$$

$$G_{xii} = \langle a, b, c \mid a^{2^{m-2}} = 1, b^2 = 1, c^2 = 1, ab = ba,$$

$$c^{-1}ac = a^{-1+2^{m-3}}, c^{-1}bc = a^{2^{m-3}}b\rangle.$$

 G_{xii} is generated by $A=ab,\ b$ and c; and these elements satisfy the following relation:

$$c^{-1}Ac = A^{-1}, \quad c^{-1}bc = A^{2^{m-3}}b.$$

This shows that $G_{xii} \simeq G_{xi}$.

Remark 4. By using our results, we can calculate the nilpotency indices of the radicals J(kG) of the group algebras kG over a field k of characteristic p for p-groups G with cyclic subgroups of index p^2 , and consequently we can characterize the p-groups G of order p^m such that the nilpotency indices of J(kG) are greater than or equal to p^{m-2} (see [5]).

REFERENCES

- [1] W. BURNSIDE: Theory of Groups of Finite Order, 2nd edition, Cambridge Univ. Press, Cambridge, 1911.
- [2] G. A. MILLER: Determination of all the groups of order p^m which contain the abelian group of type (m-2,1), p being any prime, Trans. Amer. Math. Soc. 2 (1901), 259-272.
- [3] G. A. MILLER: On the groups of order p^m which contain operators of order p^{m-2} , Trans. Amer. Math. Soc. 3 (1902), 383-387.
- [4] G. A. MILLER: Notes and errata, Trans. Amer. Math. Soc. 3 (1902), 499-500.
- [5] Y. NINOMIYA: Nilpotency indices of the radicals of p-group algebras, Proc. Edinburgh Math. Soc. 37 (1994), to appear.

DEPARTMENT OF MATHEMATICS
FACULTY OF LIBERAL ARTS
SHINSHU UNIVERSITY
MATSUMOTO 390, JAPAN

(Received November 11, 1992)

CURRENT ADDRESS:
DEPARTMENT OF MATHEMATICAL SCIENCES
FACULTY OF SCIENCE
SHINSHU UNIVERSITY
MATSUMOTO 390, JAPAN

E-mail address: ysninom@gipac.shinshu-u.ac.jp