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Yasusui NINOMIYA

1. Intoduction. Let p be a prime number. It is trivial that a finite
abelian p-group of order p™ and exponent p™~! is of type (m — 1,1).
A complete list of nonabelian such p-groups is contained in Burnside’s
book [1]. For convenience, we here restate it.

The finite nonabelian p-groups of order p™ and ezponent p™~! are of
the following types:

(a) p odd, m > 3:

Mn(p) = (a,b] a®™ 7 =1, = 1,b7ab = a2+?" ),
(b) p =2, m > 3: generalized quaternion group

Qm = {a,b] a® " = 1,2 =a®" " b~ lab = a~);
(¢) p =2, m > 3: dihedral group

Dy = (a,b|a?" 7 = 1,02 = 1,b"tab = a~1);
(d) p= 2, m > 4: quasi-dihedral group

Mp(2) = (a,b] a®™ = 1,02 = 1,b7"ab = a1+2"7%);
(e) p = 2, m > 4: semidihedral group

Sm = (a,b] @™ = 1,b? =1,b7lab = a 12777,

1

A finite abelian p-group of order p™ and exponent p™~2 is of type
(m —2,2) or (m —2,1,1). A complete list of finite nonabelian p-groups
of order p™ which contain cyclic normal subgroups of order p™~2 is also
given in [1], and defining relations for those groups are given explicitly.
But it contains two clerical errors for the case p = 2 (see Remark 3 below).
The classification of groups G of order p™ and exponent p™~2 which do
not possess cyclic normal subgroups of order p™~2 has been discussed by
Miller [2,3](see also [4]), to be more precise, the case where the centralizer
Cg(a) of an element a of G of order p™~2 properly contains (a) has been
discussed in [2]; while the case where Cg(a) = (a) has been discussed in [3].
However it dose not seem to be easy to read defining relations for those
groups. The object of the present paper is to provide the classification up
to isomorphism of nonabelian p-groups of order p™ and exponent p™ 2
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and to give one presentation by generators and defining relations for each
isomorphism type of such groups. In what follows we denote by Cpx the
cyclic group of order p*. Our result for the case p odd is as follows:

Theorem 1. Let p be an odd prime. The finite nonabelian p-groups
of order p™ and exponent p™~? are of the following types:
(a) m > 3:
G1 = (a,b,c]| a?" "t = 1,6 = 1,c? = 1,ab = ba,c lac = ab,

be = cb);
(b)y m > 4:
Gy ={a,b|a?™ " = 1,07" = 1,b"Yab = al*?"");
G3 = Mm-_1(p) x Cp;
G4 = (a,b,c| a7 = 1,0 = 1,¢P = 1,ab = ba,ac = ca,
¢ be = a?" 7 bY;
Gs = (a,b,c| a?" " = 1, = 1,¢? = 1,ab = ba,c"lac = ab,

¢ be = P bY;
Gs = (a,b,c]| a?™ > = 1,bP = 1,¢? = 1,ab = ba,c"lac = ab,
¢ lbe = a™

m-3
b),
where T is a quadratic nonresidue mod p;

G7 = {a,b,c| a?" "

m-—3

=1, =1,c? = 1,b71ab = al*tP" ",
¢ lac = ab,bc = cb);

(c) m>5:

Gs = {a,b| @®™ ™ = 1,6 = 1,b1ab = a!+?" "),

Gy = {a,b| " = 1,° =1,a Yba = b7y,
(d) m > 6:

G]o = (a,b| (lpm_2 = l,a”m_
(eym=4p=3:

Gi1 = (a,b,e| a® = 1,63 = 1,¢® = a3,ab = ba,c"lac = ab,
¢~ Ybe = abb).

P =P a~lba = b1P);

Our result for finite nonabelian 2-groups is as follows:

Theorem 2. The finite nonabelian 2-groups of order 2™ and ezpo-
nent 2™~ 2 are of the following types:
(a) m > 4:
Gy = {(a,b] a7 =1, =1,b"tab= a1+2m_3);
G2 = Qm-1 X Co;
G3 = Dm—l X Cg;



(b)

(c)
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Gy = (a,bc|a®* =1, = 1,¢® = 1,ab = ba,ac = ca,
clbe = a?" 7' b);
=1,b>=1,¢* = 1,ab = ba,c tac = ab,
bc = cb);

om -2

Gs = (a,b,c|a

Ge =

Gy =
Gro = Mp_1(2) x Co;
G11 = Sm-1 x Cz;
Gi2 = (a,b,c| a®™ " =1,02=1,¢> = 1,ab = ba,c"lac = a7,
c~lbe = a?"7°b);
Gi3 = (a,b,c| a?" 7 = 1,62 = 1,¢® = 1,ab = ba, ¢ tac = a~ b,
, be = cb);
Gis = (a,b,c]|a®™ " = 1,02 =1, = a®" ", ab = ba,
¢ lac = a71b,bc = cb);
Gis = (a,b,c| a®™ > = 1,62 = 1,¢% = 1,b"lab = o!+2"°,
¢ lac = a 277 e = cb);
Gys = {(a,b,c| a?™ " = 1,02 =1,¢% = 1,b"ab = al+2"~°,
¢ lae = a= 1+ 7% c=lpe = 0" Cb);
Gi7={a,b,c|a?" " = 1,62 =1,¢? = 1,b"lab = a!+?"°,
¢ lac = ab,be = cb);
Gia = {a,b,c| a®™ " = 1,02 =1,¢2 = b,b~'ab = al*2™"°,
. ¢ lac = a7 1b);
m > 6:
G = {a,b] a®™ " = 1,04 = 1,b7Yab = a!+2"7*);
Gao = {a,b| a7 = 1,60 = 1,b"1ab = a‘1+2m_4);
Go1 = {a,b] a?™ 7 = 1,a®" " = b4, a7 Yba = b~1);
Gz = {a,b,c]| a®™ ™ =1,b2=1,¢% = 1,ab = ba,c"lac = al+2"
¢ lbe = a?" 7 bY;
Gas = {a,b,c|a?™ > =1,02=1,¢% = 1,ab = ba,
clac = a 2" e lbe = 0¥ b
Gas = {(a,b,c| a7 =1,02=1,¢ = 1,b"'ab = al+2m 77,
clac = a7 12" p be = cb);
Gas = (a,b,c| a2 = L,62=1,¢2 = azm_a,b"lab = a1+2m—3,
clac = a 142" be = cb);
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(d) m = 5:
Gas = (a,b,c| a® = 1,02 = 1,c? = a*,b7Yab = a%,c ac = ab,
be = cb).

The proof of theorems 1 and 2 depends on Miller’s idea on classify-
ing the groups under consideration and Burnside’s technique for choosing
appropriate generators for each group, and it will be given in Sections 3
and 4.

2. Preliminaries. Let G be a finite nonabelian p-group of order p™
end exponent p™~2. Choose an element a € G of order p™~% and suppose
Cg(a) # (a). Then G possesses an abelian subgroup H of type (m — 2,1)
and has an element ¢ such that G = (H,¢) and ¢® € H. The action of
¢ (by conjugation) on H follows the action of some element of order p
lying in the automorphism group A = Aut H of H. Threrfore, in order to
determine the group G, we need to find all the elements of order p lying
in A.

Suppose m > 4 and choose an element b of H such that H = (a) x (b),
b» = 1. Then every automorphism of H maps a and b to ¢'b* (1 < i <
PP pti, 0<k<p-Danda®™ W (1<j<p-1,0<I<p-1)
respectively. Hence denoting this automorphism by (3, j; k,1), we have

A={p(i,5ik, D1 <i<p™ 2, pti, 1<j<p-1,0<kI<p-1}.
From this it follows that |A| = p™~1(p—1)2. To be explicit about the prod-
uct of the antomorphisms of H, let ¢ = ¢(7,7;k,1) and ¢2 = @(a,5;7,6)
be two elements of A; then ¢y¢, is defined by putting z(¢1¢2) = (zp1)e2
for each element = of H. From this we have

(*) @i gsk, 1) @(a, B;7,8) = o((io + p™3k6)*, jB; iy + kB, la + 78 ),

where z* (resp. Z) denotes the residue of 2 modulo p™~2 (resp. modulo p).
Suppose now p is odd. The center Z(A) of A is given by

Z(A) = {p(5,50,0] 1 < i < ™72, pii}.
Hence |Z(A)| = p™3(p — 1) and a Sylow p-subgroup of Z(A4) is cyclic.

Because |A/Z(A)| = p*(p — 1), by Sylow’s theorem A/Z(A) is p-closed
and hence A is p-closed. Now let P be a Sylow p-subgroup of A and
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set @ = PN Z(A) (= (¢(1+ p,1;0,0))). We choose the following three
elements of order p from A:

61 = ‘19(171»() 1)- 62 = (,9(1 +pm—3’1;0’0)’ 63 = 90(1, 1;1,0)5

and set M = {&,£2,&3). Then M is a nonabelian group of order p® and
exponent p, and P is generated by M and Q. From this it follows that
M — {1} is the set of all the elements of order p in A.

We now find the conjugacy classes of the elements of order p lying
in A.

Lemma 1. {&,&) — (&) is e conjugacy class in A.

Proof. By making use of equation (%), we see that the centralizer
Ca(&) of & in A is given by

Ca(&1) = {¢(a,d0,8)| 1<a<p™? pta, 0<§<p—1}

This shows that [A:Ca(&)| = p(p—1). Further every element of (&, &) —
(£2) is of the form £56] = o(1+ip™3,1;0,5) (0 < i < p—1,1<j < p-1).
Now let k, ! be integers with 0 < k¥ < p-1,1 <1/ < p—1. Then
(1,737 — k,0) transforms (by conjugation) fgf{ into £5¢1. Hence the result
follows.

Lemma 2. (&,&) — (&2) is a conjugacy class in A,
Proof. We have |A: C4(&3)] = p(p — 1) because C4(&3) is given by

Ca(s) = {¢(c,@7,0)| 1<a<p™ 2% pta, 0<y<p—1}

Every element of (£;,&3) — (€2) is of the form f{,{g = (1 +ip™3,1;5,0)
(0<i<p-1,1<j<p-1), and the element ©(4,/;0,k — i) transforms
€563 into €55, Hence the result follows.

Lemma 3. Foranyi, jwithl <i,j<p-1, E{fg s conjugate to
every element of (£,)€165.

Proof. Let i’ be an integer with 1 < ¢/ < p—1, ii’ = 1 (mod p). Then
©(1,1; 'k, 0) transforms &}&} into €5€1€3, and the result follows.

Lemma 4. Given an integer k with 1 < k < p— 1, let k' be an
integer with 1 < k' < p—1, kk' =1 (modp). Then for i, j with 1 < i,
j<p—1, €L} is conjugate to £Fel
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Proof. Noting that ¢(1,4;0,0)"! = ¢(1,k’;0,0), we obtain
@(1,k;0,0) - €164 - 0(1,k;0,0)™" = gfigs
and the result follows.

From Lemma 4, it follows that £;£3 is conjugate to E{‘E{;’. But because
ghek = (6{‘253)"' mod (£2), by Lemma 3 &3 is conjugate to (Ef2§3)k'. Now
let r be a quadratic nonresidue mod p. Then £7&; is conjugate to (E{‘2’£3)k'.
This shows that for an integer 2z, 1 < z < p— 1, if z is a quadratic residue
mod p then the cyclic group (£§€3) contains an element which is conjugate
to £1€3; and if z is a quadratic nonresidue mod p then the cyclic group
(€ &3) contains an element which is conjugate to £]&3.

As stated before, G contains an element ¢ such that G = (H,c) and
¢? € H, and the action of ¢ on H follows that of some element ¢ of order p
in A. Now let G’ be another p-group of order p™ which contains H = (a,b).
Choose an element ¢’ of G’ so that G’ = (H,¢') and ¢” € H. Assume that
the action of ¢’ on H follows that of ¢ in A. Then it is easy to see that
if either ¢’ is conjugate to ¢ or ¢’ is contained in (g}, G’ is isomorphic to
G. Summarizing above, we have the following:

Proposition 1. Under the above notation, we can assume that the
action of ¢ on H is given by one of the following elements in A:

El =(,9(1,1;0,1), £2 =¢(1+pm_3e1;090)9 63':99(111:170)'
6153 :¢(1~1;171)7 6;‘{3:9")(191:1,?)5

where T is a quadratic nonresidue mod p.

We next consider the case p = 2. In this case, A is given by
A={e(i,1;k,)]1<i<2™2, 244, 0< k1 <1},

and so |A| = 2™, We now find all the involutions in A. By (%), we see
that ¢(i,1;k,1) is an involution if and only if i2 +2™~3k{ = 1 (mod 2™~?).
From this we obtain the following:

Lemma 5. When p = 2, all the involutions in A are as follows:
(1) m = 4: (1,1;0,1), ©(1,151,0), (3,15 k,1);
(2) m = 5: ¢(1,1;0,1), ¢(1,151,0), ¢(3,15k,1), ¥(5,1;k,1),

@(7, Lk, 1);
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(3) m > 6: ¢(1,1:0,1), ¢(1,1;1,0), p(£1 + 2m=3 1:k,1),
e(=1 4272 1;k,0), (£l +2m74,1;1,1),
P(£1+3-2m711;1,1)

where (k,1) = (0,0), (0,1) or (1,0).

Since Z(A) = {p(4,1;0,0)| 1 < i < 2™2,2 § i} is of order 2™73,
|A: Z(A)| = 22. Hence the conjugacy class of each noncentral involution
consists of two elements. One can see that for (k,!) = (0,1), (1,0), ¢(1 +
2m=3 1:k,1) is conjugate to ¢(1,1;k,1) (m > 4) and (=1 + 2™3,1;k,1)
is conjugate to o(—1+2™72,1;k,1) (m > 5) and ¢(£1 +3-2™"%1;1,1)
is conjugate to @(£1 + 2™ %1;1,1) (m > 6). Therefore we obtain the
following result correspondmg to Proposition 1.

Proposition 2. When p = 2, we can assume that the action of ¢ on
H is given by one of the following elements in A:
(1) m = 4: ©(3,1;0,0), (1,15 k,1);
(2) m = 5: ¢(4,1;0,0), (: = 3,5,7), w(1,1; k1), (7,1 k,0);
(3) m > 6: (i,1;0,0), (i = £1+ 2™~ 3 —142™72), (1, 15k,1),
o(—14 2™ 2 1;k,1), (&1 +2m 41:1,1);
where (k,1) = (0,1) or (1,0).

3. Proof of Theorem 1. This section will be devoted to the proof
of Theorem 1. Throughout this section, let p be an odd prime and G a
finite nonabelian p-group of order p™ and exponent p™ 2. If m = 3, as G
is of exponent p, by [1, §112] we have

Proposition 3. Ifm = 3 then G is isomorphic to Gi.

Suppose m > 4 and let a be an element of G of order p™~2. We first
consider the case that Cg(a) # {(a).

Proposition 4. Suppose Cg(a) # (a). Then G is isomorphic to one
of the groups: G1,G2,G3,G4,G5,Ge,Gg and Gy;.

Proof. Let b be an element of order p such that H# = (a,b) is an
abelian subgroup of G of type (m — 2,1), and choose ¢ € G so that
G = (H,c). Then the action of ¢ on H follows the action of one of the
automorphisms listed in Proposition 1. We consider four separate cases,
depending on the action of c.
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Case 1. Suppose that the action of ¢ on H is given by £;. Then
Cgla) = G and ¢~ lbe = a?™ b, As G/{a) is not a cyclic group, (a,c) is
an abelian group of type (m — 2,1). Hence we can assume c? = 1. This
shows that G ~ G 4.

Case 2. Suppose that the action of ¢ on H is given by &. We show
that G ~ G or G3. By our assumption, we have

_ m-a  _
clac=aTP" 7, ¢ lbe =b.

Assume first that G/(a) is not cyclic. Then (a,c) is a nonabelian p-group
of order p™~! and exponent p™~2. Hence (a,c) ~ M,,_1(p), and conse-
quently G ~ G3. We next assume that G/(a) is a cyclic group. Then we
can choose ¢ so that ¢?* € (a) and ¢® ¢ (a). Then ¢?* = a®” for some a,
and consequently a~%c is of order p?. Hence by choosing {a,a"%c} as a
generator of G, we have G ~ G,.

Case 3. Suppose that the action of ¢ on H is given by £5. We show
that G ~ G, or Ggy. Because

¢ lac=ab, ¢ lbe=0b,

G/(b) is an abelian group of type (m — 2,1), and so we can assume that
c? € (b). f ¢ = 1, G ~ G;. On the other hand, if ¢ = b% # 1, by choosing
{aﬁb,bs,c} as a generator of (G, we see that G has a presentation

{a,b,c| a7 =B =1, = bab = ba,c ac = ab).

This shows that G is generated by A = a=! and B = ¢. Because A and B
satisfy the relation:

AP" TP = BP* =1, A"'BA = B't?
we have G ~ Gy in this case. Further if m = 4 then clearly Gg ~ Gs.

Case 4. Suppose that the action of ¢ on H is given by £1£3 or £7&s.
We show that G ~ G for the former case and G ~ Gg or GG1; for the latter
case. By our assumption,

_ _ m—3
clac=ab, ¢ b =a®" b,

where . ) . .
5= { 1 if the action of ¢ is given by & &3,

r if the action of ¢ is given by £[€s.
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From this it follows that ¢» € Z(G) = (aP). Furthermore, because
G/(apm_3,b) is an abelian group of type (m — 3,1), we can asssume that
¢® =1 (mod (a?",b)), and so ¢® = 1 or ¢®®" " for some a, 0 < & < p.
If ¢» = 1 then G ~ G5 or Gg. So we assume that there is no element of
order p outside (a,b). Then noting that ¢=*a%cF = a¥b%*, where

y= :I:(l + wpmﬁ%)’

we obtain (a®c)? = o, where

+ﬂp+U@—Uﬁ%ﬂ.

z:ap""B-l—a:(p 5

Hence, if p > 3 then (a®c)? = a®®" 27 and so (a=*?" "¢)P = 1, which
contradicts our assumption. This contradiction shows that p = 3. We
then have (a%c)® = a?, where

z=3"3a+ 3+ 3"‘_36)3:.

Hence if m > 4, (a=3"*%¢)3 = 1, which contradicts our assumption again.
Therefore only the case p = 3, m = 4 is remained. In this case, ¢ = a® or
a® and ¢~be = ab or a®b. But if ¢~lbe = a3b, (a’c)® = 1, where

i:{lu&:&
2 ifc® =ab.

This is not the case. Hence ¢ !bc = a®b, and so if ¢3 = a3, G ~ Gy;; and if
¢3 = a8, by choosing {a?,b%, ¢} as a generator of G, we get G ~ G, again.
Thus we complete the proof of Proposition 4.

We next consider the case where G has no element of order p™ 2 whose
centralizer is of order greater than p™~2.

Proposition 5. Suppose that G has no element of order p™~? whose
centralizer is of order greater than p™~2. If (a} is normal in G then G is
isomorphic to Gg; while if G has no normal cyclic subgroup of order p™ 2
then G is isomorphic to G or Gg.

Proof. Suppose first that (a) is normal in G. Since Cg(a) = (a),
G/(a) is contained isomorphically in Aut(a). Hence G/{a) is cyclic and
Aut(a)]| is divisible by |G/(a)| = p?, which implies that m > 5. Let bbe an
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element of G such that G = (a,b). Then we may assume that the action of
bon (a) is given by b~lab = a'+P" ™" (see [1, §100]). As 6" € Z(G) = (a?”)
we may set 5" = a°?’. But then (a=*b)P* = 1. Therefore, by choosing
{a,a™?b} as a generator of G, we have G ~ Gjg.

Suppose next that G has no normal cyclic subgroup of order p™~2.
Let H be a maximal subgroup of G containing a. Then H is a nonabelian
group of order p™~! and exponent p™~2. Therefore H ~ M, _1(p). We
~ choose ¢ in G — H so that G = (H,c). Now set

= (a,b] a®" " = 1,b° = 1,b7lab = a'+P" ),

We first consider the case m > 5 and set G = G/(apm—a). Then
H = (a) x (b) is an abelian group of type (m — 3,1) and the action of Z on
H is given by an automorphism of H of order p. Such an automorphism
is already given in the paragraph preceding Lemma 1. But because (a)
is not normal, the automorphism is given by ¢(1 + ip™~*4,1;5,k) with
j # 0. Further we claim that k must be 0. Indeed, as ¢~lbc = a**" b
(mod (a”m—s)), if k # 0 we would have |c¢™!bc| > p, which is impossible.
Therefore the automorphism is given by (1 + ip™ %, 1;5,0) with j # 0.
We distinguish two cases.

Case 1. Suppose that the action of Z on H is given by ¢(1,1;7,0).
We show that G ~ G in this case. By our assumption we have

¢ lac = al+°‘pm~3bj._ ¢ he = aﬂpm_ab,
where 0 < a,3 < p — 1. We first note that we can assume § = 0. Indeed,

by setting u = a®c, we have u~lbu = b. We therefore have the following
possibilities:

(i) ¢ tac = ab, ¢ lbe = b,
(i) ¢~ lac = ab?, ¢ lbe = b,
(iii) ¢ lac = aFeP" 7 elpe = b,
(iv) e lac = al*oP" b ¢~lpe = b,

wherelSaSp—1,1<jSp—l. We now set

!

c’ for case (ii),
v=1b"% for case (iii),
b=i'eci’ for case (iv),

where jj' = 1 (mod p). We then have v~ !av = ab. This shows that we can
assume that the action of ¢ on H is given by (i). Then ¢? € Z(G) = (a?).
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As Cg(c) # {c), our assumption forces ¢ to be of order at most p™3.
Hence c? = o for some 7, and consequently (a=7P¢)? = 1. Therefore by
choosing {a,b,a™"Pc} as a generator of G, we have G ~ G7 (m > 5).

Case 2. Suppose that the action of ¢ on H is given by (1 +
ip™™4,1;,0), i # 0. We show that G ~ G1p. By our assumption,

- : m—4 - _ m-—3
¢ lac = g FEHRRIPT g o= lpe = P

where 0 < k,I < p— 1. Setting u = ale, we get u~'bu = b, and so we can
assume ! = 0. We therefore have the following possibilities:
(i) clac = a'**"7'b, e lbe = b,
(ii) ¢ lac = al*P" ' e lpe = b,
(iii) c~lac = al+*?" b, ¢~lbe = b,
(iv) ¢ lac = al*eP™ 'yl o=lpe = b,
where 1 < a < p?—1,pta,1<j<p-1. Let o be an integer with
aa’ =1 (mod p?) and 2’ an integer with 22’ = 1 (mod p). Set
- {b?’(a-l)ca’ if m =5,
' if m > 6.
Then
1 Ja*Pm e for case (iii),
Vo= { 4™ pe'i for case (iv).
a se
This shows that we can assume that the action of ¢ on H is given by (i)
or (ii). Suppose that case (ii) holds and let j' be an integer with jj’ =
(mod p). Then setting
A= aj’, B =a"bh,

where z = 2/(35' + 1)p™ 3, we get
B'AB = Altr

m—3 m—4

¢ Yde= A*P"T B, ¢ 'Bec = B.

This shows that the group given by (ii) is isomorphic to the group given
by (i), and consequently we can assume that the action of ¢ on H is given
by (i). We then have

¢ Pac? = a't?" T = b~ lab,
which implies that ¢ = b (mod Z(G)). But Z(G) = (apz), and hence we

may set ¢® = @ b. Then (a="P¢)? = b. Thus, by choosing {a,b,a™"P¢c} as
a generator of G, we see that G has a presentation

(a,b,c), a?

m—2

— -3 - —4
=P =1,¢c"=b b lab=a"t?"" clac=a*t*P" b
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This shows that G is generated by A = a and B = a?” "¢. But, because
B? is a generator of the commutator subgroup of G, (B) is normal in G.
Therefore, if m = 5, G has a cyclic normal subgroup of order p® (= p™~2),
which contradicts our assumption. Thus we have m > 6. Because A and
B satisfy the relation:

A" =1, AT = BY, AT'BA= B,
we get G ~ Gp.

In final, we show that if m = 4 then G ~ G~». Since ¢? is of order at
most p, we may set ¢? = a®Pb®. If 3 # 0 then aP is not contained in {c).
But, because (aP) is the center of (a,b) and its order is p, a” is a central
element of G. Therefore it is contained in Cg(c). Because ¢ is of order p?,
this contradicts our assumption. Thus we have 8 = 0. Set G = G/(aP).
Then, because (a) is not normal in G, we see that G is a nonabelian group
of order p® and exponent p. Hence by [1, §112], we can assume that

ac = cab, bc=ch, (mod (aP)).
Then the action of ¢ on {(a,b) is given by
¢ lac = a'tPb, ¢ lbe = a®Ph.

Hence, setting u = a®h~7¢, we have u~'bu = b. This shows that Cg(u) #

lou =

(u). Therefore by our assumption u is of order p. Then, because u~
ab, by choosing {a,b,u} as a generator of G, we have G ~ G7. Thus we

complete the proof of Proposition 5, and so Theorem 1 is proved.

Remark 1. We show that none of the groups listed in Theorem 1
are isomorphic. We use the following notation: Given a finite p-group G,
®(G) is a Frattini subgroup of G. We set p*©) = |G/®(G)|. 12(G) is the
commutator subgroup of G and G = G/72(G). The group generated by
{z?| z € G} is denoted by GP.

(1) d(G3) = d(G4) = 3 and d(G;) = 2 for i # 3,4.

(2) Z(G3) ~ Cym-s x Cp and Z(Gy) ~ Cym—2.

(3) [G1 : GF) = p° and 12(Gs) = 72(Ge) = 12(G7) = 72(G11) = Cp X Ch.
This implies that the groups G; (¢ =1,5,6,7,11) are nonmetacyclic.
While, evidently G, Gs, Gg and G are metacyclic.

(4) C_;z ~ Cpm—a X sz, ég ~ Cpm—4 X sz, Gg o Cpm—'z X C‘p and
élo ~ Cpm—s X Cp.
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(5) C_;l jad Cpm—Q X Cp and 6'5 ~ éﬁ ~ (_;7 ~ Cpm—s X Cp.

(6) Ca,(12(Gs)) = Caa(12(Ge)) = {a,8) and Cg, (12(Gr)) = (a?.b,c).

(7) For any u € Cg,(®(Gs)) — ®(Gs) = (a,b) — (aP,b) and z € G5 —
Ca,(®(Gs)) = Gs — {a, b}, [[u,z],2] = u%™ ™ where ¢ is some quadratic
residue mod p. On the other hand, for a € Cg,(®(Gs)) — <I>(G6) (a,b) -

(a?,b) and ¢ € Gs — Cg,(®(Gs)) = Ge — {(a, b), [[a,c],c] = a?™ "

These seven claims imply that none of the groups Gi,...,Go are
isomorphic. Because v2(G1) ~ Cp, by (1) and (3) it suffices to show that
none of the groups Gs, Gg, G7 with p = 3, m = 4 are isomorphic to Gy;.
Because Cg,, (72(G11)) = {a,b), (6) implies that G7 is not isomorphic to
G11. Further Gy — Cg,,(72(G11)) contains no element of order 3, but for
it = 5,6, G; — Cg,;(72(G})) contains an element of order p for any prime p.
Hence neither G5 nor Gg is isomorphic to Gy;.

4. Proof of Theorem 2. This section will be devoted to the proof
of Theorem 2. Throughout this section, let G be a nonabelian 2-group of
order 2™ and exponent 2™~ 2, and let a be an element of G of order 2™~ 2,

Proposition 6. Suppose Cg(a) # {a). Then G is isomorphic to one
Of the groups Gl,G2 ..... Gl4,G22 and G23

Proof. Let b be an element of order 2 such that H = (a,b) is an
abelian subgroup of G of type (m — 2,1) and choose ¢ € G so that
G = (H,c). Then the action of ¢ on H follows the action of one of the
automorphisms listed in Proposition 2. We consider nine separate cases,
depending on the action of c.

Case 1. Suppose that the action of ¢ on H is given by ¢(1,1;0,1).
Then by making use of a similar argument as in Case 1 of the proof of
Proposition 4, we have G ~ G.

Case 2. Suppose that the action of ¢ on H is given by (1 +
2m=3 1;0,0). We show that G is isomorphic to Go(m = 4) or G3(m = 4)
or G or G1g. By our assumption, we have

_ am—=3 -
¢ lac =T, ¢lbe = .

Suppose first that G/(a) is not cyclic. Then {a,c) is a nonabelian 2-group
of order 27! and exponent 2™~2, Hence if m > 5, (a,¢) ~ Mpm_1(2), and
if m = 4, (a,¢) ~ Q3 or D3, and correspondingly G ~ Gg or G ~ G,
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(m=4)or G~ G3 (m = 4). On other hand, if G/{a) is cyclic then we
may set ¢! = a?®, But then, because (a=*c)* = 1, by choosing {a,a"%c}
as a generator of G, we have G ~ G;.

Case 3. Suppose that the action of ¢ on H is given by ©(1,1;1,0).
Then by making use of a similar argument as in Case 3 of the proof of
Proposition 4, we have G ~ G5 or Gg; and Gg ~ G, provided m = 4.

Case 4. Suppose that m > 5 and the action of ¢ on H is given by
w(=142™72,1;0,0). Then

clac=at, ¢ lbe=0b.

From this \\.e have Z(G) = ( a7 b). Asc? € Z(G),c* =1,a2" ", bor
a?" b Ife? =1 (1esp a? ) then G ~ G3 (resp. G3). On the other

hand, if ¢2 = b or a?""b then by choosing {a,c} as a generator of G, we
have G ~ Gg.

Case 5. Suppose that m > 5 and the action of ¢ on H is given by
@(=14+2™~2,1;0,0). Then

¢ tae = a_1+2m_3, ¢ lbe = b.
From this it follows that G/(b) ~ Sy._1, and so we can assume that ¢ =1
or b. We therefore have G ~ G1; or G7.

Case 6. Suppose that m > 5 and the action of ¢ on H is given by
@(=142m72,1;0,1). Because

_ — _ m—3
clac=at, ¢ lbe=a?

b,

c? E Z(G’) (a2m_4b) and consequently ¢ = 1, a2m_3, a?™ ' or a3 27"_46.
If ¢2 = a? then (abe)? = 1. ThlS shows that lf c =1or a® then
G~ Glz On the other hand, if ¢ = a®"7'b or 32" '} then by choosing

{a,c} as a generator of G, we have G ~ Gs.

Case 7. Suppose that m > 5 and the action of ¢ on H is given by
@(=1+2™"2,1;1,0). Then

clac=a"', ¢ tbe=0b.

3

Since ¢* € Z(G), c =1,a2" ", bora® b If ¢ = b (resp. azm_ b),
(ac)? = 1 (resp. a*” ™). Hence we can assume that ¢ = 1 or 2™, and
consequently we have G ~ G13 or G14.
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Case 8. Suppose that m > 6 and the action of ¢ on H is given by
¢(1+2m7%,1;1,1). Because

clac = a2 'p,
G/(a®"'b) is an abelian group of type (m — 3,1), and so we can assume
that ¢? € (a2"'b). Therefore, noting that ¢> € Z(G) = (a?b), we obtain
2 =1ora? . I =a® " then (bc)? = 1. This shows that we can

assume ¢? = 1, and consequently we have G ~ G5,.

Case 9. Suppose that m > 6 and the action of ¢ on H is given by
@(=1+2m%1;1,1). Then

— — m—4 m—3
¢ lac = a7 1H¥ ), 2

b.

cYe=a

From this we have Z(G) = (a2" 'b). As ¢2 € Z(G), it holds that ¢2 = 1,
a?™ ™, a®" b or a®?"7'b. But then (a*c)? = 1, where

. m-3
2 ife?=a?""",

k=<3 ifc?=a?""p,
1 if e = a®?™ ",

and consequently we can assume that ¢ = 1, and so G ~ Ga3.

We next consider the case where G has no element of order 2™ ~2 whose
centralizer is of order greater than 2™~2,

Proposition 7. Suppose that G has no element of order 2™~2 whose
centralizer is of order greater than 2™~2. If {a) is normal in G then G is
isomorphic to one of the groups Gis,Gi6,G19 and Gop; while if G has no
normal cyclic subgroup of order 2™~2 then G is isomorphic to one of the
groups G17,G18,Ga1,Ga4,G2s and Gas.

Proof. Suppose first that (a) is normal in G. We distinguish two
cases.

Case 1. G/{a) is cyclic. We show that G ~ G19 or Gg. Since G/(a)
is contained isomorphically in Aut(a), we have m > 6. We can choose an
element b of G so that G = {a,b), b* € (a), and we can assume that the
action of b on (a) is given by b~'ab = a't?"™" or a=1+2"™* (see [1, §100]).
Suppose first b~1ab = a'+2™ ™", We may set b* = @**. Then for an integer
k with a + (1 4+ 2™ %)k = 0 (mod 2™~*), we have (a*b)* = 1. Suppose
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next b~lab = a=1*2"7". Then b* € Z(G) = (a2 7). If b* = a®™° then
(ab)* = 1. Therefore we can assume that b* = 1 in either case. Thus we
have G ~ G9 or Goq.

Case 2. G/{a) is not cyclic. We show that G ~ G;5 or Gyg. Since
G/(a} is an abelian group of type (1,1) we have m > 5 and we can choose
elements b and ¢ of G so that

G = (a,b,c), b%,¢*€{a), bc=cb(mod(a)).

Now set b~lab = @', ¢™lac = /. H i = j then be™! € Cgla) = (a),
which contradicts our assumption. Hence i # j. Assume i = —1. Then
i=14 2m=3 or —1 4 ’2’“—3, and

- T2 = 14 md
be)a(b :{a o fi=l4am,
(be)albe) = gream= = 1 1ams,

The above implies that by replacing b and ¢ with suitable elements of
G if necessary, we can assume that ¢ = 14 2™73, j = —1 4 2™~3 and
b? = ¢ = 1. We then have (bc)~'a(be) = a~', and so (a,bc) ~ Dy,
of Qm—1. Therefore (bc)2 = 1 or a2™"", which implies that ¢~ 1be = b or
a?™’b. Thus G ~ G;5 or G in this case.

Suppose next that G has no normal cyclic subgroup of order 2™~2,
Let H be a maximal subgroup of G containing a. Then H is a nonabelian
group of order 2™~! and exponent 2™~%. We first show that m > 5. So
suppose m = 4. Then H =~ (}3 or D3. But, because {(a) is not normal
in G, H is isomorphic to Q3 and G/{a?) is nonabelian. Therefore we can
choose an element u of G so that u? € H — (a?). But then u is of order 8,
which contradicts our assumption. This contradiction shows that m > 5.
If H~ Qpn-1, D1 or S;y—1 then (a) is a characteristic subgroup of H,
and so (a) is normal in G, which is not the case. Hence H ~ M,,_y(2).
Set

H={a,b|a® ™ =1,0® = 1,b7lab = o' +?"7"),
G=(H,c), G=G/(a® ).

Then H = H/{a?" ™"} is an abelian group of type (m—3,1) and G = (H, ).
Therefore the action of ¢ on H is given by an automorphism of H of order 2.
Such an automorphism is already given in Lemma 5. But, because {a) is
not normal, the automorphism is given by ¢(i,1;1,1). Further b must be
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transformed into b by this automorphism, and so ! = 0. Therefore the
automorphisms are as follows:

m=>5: ¢(1,1:1,0), ¢(3,1;1,0);

m>6: ¢(1,1:1,0), o(—14+2"7%,1;1,0), o(£1+2™7%,1;1,0).

We consider four separate cases, depending on the action of &.

Case 1. Suppose that m > 5 and the action of ¢ on H is given by
¢(1,1;1,0). We show that G ~ G17 or G26. By our assumptoin we have
the following possibilities:

(i) ¢ tac = ab, ¢ lbe =b,
(ii) ¢ lac = a“‘zm_sb, ¢ lbe = b,
(iii) ¢ lac = ab, ¢ Ybe = a?™ 7,

(iv) e lac = a'*2" b, ¢ 1be = 2™ .

If c7lbe = azm_sb, setting u = ac, we have u~'bu = b. This shows that it
will suffice to consider cases (i) and (ii). But if (ii) holds then, setting » =
be, we have v~lav = ab, and consequently we can assume that the action
of c on H is given by (i). Then as ¢2 € Z(G) = (a?), we may set ¢ = a*e,
If m > 6, (a=(2+277)2¢)2 = 1. Hence, by choosing {a,b,a=(+2""")ac} as
a generator of G, we have G ~ Gy7 in this case. On the other hand, if
m=2>5,c2=1ora’, and so G ~ Gy7 or Gy,

Case 2. Suppose that m > 5 and the action of ¢ on H is given by
@(=142™73,1;1,0). Then by a similar argument as in case 1, we can
assume that the action of ¢ on H is given by

¢ tac=a’'h, ¢ lbc=0b.
Then ¢~ 2ac® = b~'ab, which implies that ¢2 = b (modZ(G)). But, because
Z(G) = (a?"°), we have ¢ = bor a®" b, If ¢ = a2™ b then (a2¢)? = b,
This shows that we can assume ¢ = b, and hence G ~ Gs.

Case 3. Suppose that m > 6 and the action of ¢ on H is given by
¢(1 +2™7*,1;1,0). Then by a similar argument as in Case 1, we can
assume that the action of ¢ on H is given by

—- m-—4
1 142 b

¢ ac=a , ¢ lbe=hb.

Then ¢~ 2ac? = b~ 'ab, which implies that ¢? = b (mod Z(G)). But, because
Z(G) = (a?), we may set ¢ = a?®b. If o is odd then c is of order 2™~2
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and Cg(c) # (c). This is not the case. Hence « is even. We then have
= b,

(a=%c)? which shows that we can assume ¢? = b. Thus G has a
presentation
(aabac>, a2m—2 = b2 = 1, 02 = b, b_lab = (11—'-2771_31 C_—la.c = a1+2m_4b.

Now set B = a2” "c. Then G is generated by ¢ and B, and these elements
satisfy the relation:

m~—3 - —
a? =B* a'Ba=B"L.

Thus we get G ~ Ga1.

Case 4. - Suppose that m > 6 and the action of ¢ on H is given by
w(=1+2™7%,1:1,0). By a similar argument as in Case 1, we can assume
that the action of ¢ on H is given by

clac = a‘l"'zm_qb, ¢ loe = b.
Then ¢? € Z(G) = (azm_s), and so ¢ = 1 or @®"°. Hence G ~ Ga4
or Gs. This completes the proof of Proposition 7, and so Theorem 2 is
proved.

Remark 2. We show that none of the groups listed in Theorem 2
are isomorphic. Given a finite 2-group G, we denote by I(G) the set of all
the involutions in G, and by ¢(G) the number of elements in I(G). The
class of G is denoted by cl(G). The other notation we use here is given in
Remark 1.

(1) d(G;) = 2 or 3; and d(G;) = 3 only when ¢ = 2,3,4,10,11,12,15 or
16.

(2) c(Gy4) = l(Gro) = 25 and cl(G;) = m—2fori=2,3,11,12,15 and
16.

(3) Z(G4) ~ sz—’z and Z(Gl()) ~ sz—s X Cz.

(4) Z(Gz) ~ Z(Gg) >~ Z(Gll) ~ Cz X CQ; Z(G]g) ~ C4 and Z(G15) o~
Z(G]e) ~ Cg.

(5) <I(G2)) = Z(Gz), (I(Gg)) = G3 and (I(G11)> o~ Dm_2 X CQ.

(6) Z(G15) = gm—2 + gm-—3 + 3 and l(Gls) = 2m-3 + 3.

The above implies that when m # 4 none of the groups generated by
exactly three elements are isomorphic. Let m = 4. Then G3, Gs and G4
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are the groups generated by exactly three elements and all of them are of
class 2. But by (3), (4) and (5) none of them are isomorphic.

(7) 72(G17) =~ 72(G2s) ~ C3 X Cq; and for each i € {5,13, 14, 18,22,23,
24,25}, 72(G;) is a cyclic group whose generator is not the square of an
element of GG. This implies that the groups G; (i = 5,13,14,17,18,22,23,
24,25,26) are nonmetacyclic. While evidently G; (1 = 1,6,7,8,9,19,20,
21) are metacyclic.

(8) cl(G1) = cl(Go) = cl(Gr9) = 25 cl(G21) = 3; and cl(Gs) = cl(G7) =
c(Gg) = cl(G) = m —2 (> 3).

(9) 72(G1) ~ 72(Go) = C2 and 712(G19) ~ Cy; G1 ~ Cym-s x C4 and
Gg ~ C-lm—z X C’z.

(10) Z(GG) ~ Z(GT) >~ Cg X C2, Z(Gg) ~ C4 and Z(Ggo) ~ CQ;
(z?| 2 € Gs — Cgq(12(Ge))) = (b°) = Cy,
(2| 2 € G1 = Cor (12(G7))) = (a*77,0%) = Ca x Ca.
(11) cl(Gs) = 2, cl(G17) = cl(G22) = cl(G6) = 3 and cl(G;) = m — 2
(> 3) for i = 13,14,18,23,24 and 25.
(12) 92(Gh7) ~ Cq x Cy and 72(G22) ~ Ca.
(13) Z(Gw) jad Z(Gl4) jod Cz X C2, Z(Glg) >~ Z(Gz4) jad Z(G25) ~ Cg
and Z(Ggg) >~ Cq.
(14) 1(G13) = ’I(G24) = 2m—'2 + 3; Z(qu) = 2(G25) = 3 and I(G]g) =
2m=3 4 3.

(7) through (14) imply that when m # 5 none of the groups generated
by exactly two elements are isomorphic. Now let m = 5. Then G; (i =
6,7.8,13,14,17,18,26) are the groups of order 2° which are genenrated by
exactly two elements and of class 3. But 72(G17) ~ ¥2(Gae) =~ C3 x C3
and 72(G;) ~ Cym-s for the other i. Hence by (7), (10), (13) and (14)
it suffices to show that Gi; with m = 5 is not isomorphic to Gqg. This
follows at once from the fact that i(G2s) = 3 and #(G7) = 11 provided
m=3.

Remark 3. Burnside [1] has given all the types of the groups of
exponent p™~2 under the assumption that the groups have cyclic normal
subgroups of order p™~2. But, when p = 2 there are two clerical errors:
one groﬁp is omitted and two groups which are isomorphic are listed as
distinct groups.

(1) Suppose that m > 5, Cg(a) # {(a) and G/{a} is cyclic. As for such
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groups, the following five distinct types are given in pp.138-139:

2771—2

(a,b] a =1, b =1, b7 lab = a®),
where a = —1, £1 4+ 2™73, £1 4+ 2™~4, But there is one more type, that
is, the group Gg in Theorem 2 should be added in the list.

(2) The groups of type (xi) and (xii) in p.139 are isomorphic. These
groups are given by

Gy = {a,b,c| a?" " = 1,62=1, =1, ab = ba,
clac=a™t, ¢ lhe = azm_sb);

Gxii = (a,b,c]| a2 = 1, =1, =1, ab = ba,
¢ lac = a“1+2m_3, ¢ lbe = azm_sb).

Gyii is generated by A = ab, b and c; and these elements satisfy the
following relation:

ctde=A"", ¢ lbe= AT,

This shows that Gy; ~ Gy;.

Remark 4. By using our results, we can calculate the nilpotency
indices of the radicals J(kG) of the group algebras kG over a field k£ of
characteristic p for p-groups G with cyclic subgroups of index p?, and
consequently we can characterize the p-groups G of order p™ such that the
nilpotency indices of J(kG) are greater than or equal to p™~2 (see [5]).
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