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THE QUASI KO,-TYPES OF THE STUNTED
MOD 4 LENS SPACES

ZEN-1cHI YOSIMURA

1. Introduction Let KU and KO be the complex and the real K-
spectrum respectively. For any CW-spectrum X its K U-homology KU, X
is regarded as a (Z/2-graded) abelian group with involution because the
complex K-spectrum KU possesses the conjugation 1,&"51 : KU —- KU.
Given CW-spectra X and Y we say that X is quasi KO,-equivalent to Y
if there exists an equivalence f : KOAX — KOAY of KO-module spectra
(see [10]). If X is quasi K'O.-equivalent to Y, then K'O.X is isomorphic
to KO.Y as an KO.-module, and in addition KU.X is isomorphic to
KU.Y as an abelian group with involution. In [12] and [13] we have
completely determined the quasi KO.-types of the real projective space
RP™ and its stunted projective space RP}.,; = RP™/RP™. In this paper
we are interested in the standard mod 4 lens space L™(4) instead of the
real projective space RP™. Our purpose of this paper is to determine the
quasi KO,-types of the mod 4 lens space L™ and its stunted lens space
L% .y = L"/L™ along the line of [12], [13] or [15], where we simply denote
by L?*+! the (2k + 1)-dimensional standard mod 4 lens space L*(4) and
by L2 its 2k-skeleton L¥(4).

Let SZ/27(r > 1) be the Moore spectrum of type Z/2", and i : £° —
S$Z/2" and j : §Z/2" — X! be the bottom cell inclusion and the top
cell projection respectively. The stable Hopf map 7 : ¥! — X° of order
2 adomits an extension 7 : £1§Z/2" — X0 and a coextension 7 : £ —
SZ/27 satisfying /i = n and j7 = 5. In [10] and [11] we introduced some
elementary spectra M., P, MP,, V,;, VT',s, W, and so on (r,s > 1)
constructed as the cofibers of the following maps respectively: inp: L' —
§ZJ2, 7 : 22 — S§Z]2", inv i LV E2 - §Z/27 i L185Z/2° —
SZ[2", #j : L1SZ[2° — SZ/27. if+7j : £1SZ/2° — SZ/27 and so
on, although these elementary spectra X, and X,, were written to be
Xor and Xgr 2s. In particular we note that the elementary spectrum W, ,
coincides with the smash product P A SZ/2" where P denotes the cofiber
of the stable Hopf map 7 : X! — £°. In this paper we moreover introduce
some new small spectra Uy ; 5, Vi 15, MUy 15, PUrss and so on (r,t,5 > 1)
constructed as the cofibers of the following maps respectively: (i7,77) :
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$1SZ/2° — SZJ2VSZ2, (if,ivig): S'SZ)2° — SZ[2TVVy, inViijjv :
YLV RV - §5Z/2, Vg, B2V ETIW, — SZ/27 and so on,
where V; = Vi_;; and iy : §Z/2'"1 — V; is the canonical inclusion,
and jv : Vo, — E25Z/2° and ji, : V{, — £25Z/2° are the canonical
projections.

Given CW-spectra X and Y we say that X has the same “type as
Y if KU.X is isomorphic to KU,Y as an abelian group with involution
(cf. [3, 4.1]). Dualizing the K'U-cohomology K U*L™ with the conjugation
¥5' calculated in [5] (or [7]) we can observe the Ztype of the mod 4 lens
space L™ (Proposition 5.1).

Proposition 1.  The suspended mod 4 lens space S'L™(n > 2) has
the same “type as the following small spectrum : Ui_1 21414 MUs—1 2041,
SZJ2'V Warp141, Z°V SZ/28V Wory 441 according as n = 4t, 4t + 1,
4t + 2, 4t 4+ 3. Here Wy should be replaced by £2SZ/4.

More generally we can observe the #type of the stunted mod 4 lens
spaces L} ., (Corollary 5.3, Proposition 5.4 and (5.12)).

Proposition 2. i) The stunted mod 4 lens spaces Limi} and
L{™*™ have the same “types as L™ and £°V L™ respectively.

ii) The suspended stunted mod 4 lens space 21L2;213+2(n > 2) has
the same “type as the following small spectrum : Uy, £°V Uspry,
Szj2%+2y Wit Moo V Wy according asn = 4t, 4t + 1, 46 + 2, 4t + 3.

iii) The stunted mod 4 lens space L:ﬁig”(n > 1) has the same %
type as $2 v Liniit?,

For a CW-spectrum X having the same “type as one of the small
spectrum appearing in Propositions 1 and 2 ii) we can determine its
quasi KO,-type by developing the same method as adopted in [10] or
[11] (Proposition 3.1 and Theorem 3.3). Applying this result to the mod
4 lens space L™ we can easily determine its quasi K'O,-type (cf. [4] and
[9])-

Theorem 3. The suspended mod 4 lens space L'L™(n > 2) is
quasi KO.-equivalent to the following small spectrum : Uszr_1q ar41,2r,
MUz 14r41.2r5 Var V Wargr2041, T2V Vor V Warii 2041, Varar43ars,
MUz ar432041, SZ/27 Y1V Wipin0r42, Z0V SZ/27 1V Wyph3.2042 ac-
cording asn = 87, 8+ 1, ---, 8¢ + 7. Here Vo V Wy ; should be replaced
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by £25Z/4.

In order to investigate the quasi K O,-types of the stunted mod 4
lens spaces L} . in general, we discuss separately in the following three
cases (cf. [15]): 1) LZET(n > 2), i) L3H2(€ > 1) and iii) L2410 >
0). By a quite similar argument to the non-stunted case we can also
determine the quasi K O,-types of Lglzi;‘ and DL%E’L” where DX denotes
the S-dual of X (Theorem 5.8). Dualizing our result for DL%’;"’” we can
immediately determine the quasi KO,-type of Lg:"‘ﬂ (Theorem 5.9). In
order to establish the rest case we construct certain maps fr¢: Yo — Xi ¢
modelled on the bottom cell inclusions i : $2k—4m+2 _, E_“m’HLgtﬁ“‘l
with £ = 2m or 2m — 1, and then prove that the cofiber of each map
fre has the same quasi KO.-type as E““"“Lg’,:ig“"l. Using this fact
we can determine the quasi AO,-type of Lgt”“l, too (Theorem 5.11).
Consequently we can obtain the following main result (cf. [6, Theorem 2]
and (8, Theorem 2]).

Theorem 4. i) X 4L{"I% is quasi K O.-equivalent to L™.

i)y E4mLIm" is quasi K O.-equivalent to the wedge sum 20V L™.

iii) DoAmHlpimEn-2(y > 2) is quasi K O.-equivalent to the following
small spectrum : Uqr,-zf,-lzl,-, EOVU41-‘2-,-,21-, 52/24r+2\/1"/'27~!27», 1M4T+2VW27-.2,-,
Vird2,2r412r+15 2VViarg22r41,20415 VardaVWori1 2041 Mar4aVWari1 2541
according asn=8r, 8+ 1, ---, 874 7.

iv) TodmHpimine2(n > 1) s quasi KO.-equivalent to the fol-
lowing small spectrum :  PUsrq1202r, 0 v PUsry1,2r,20, Pargs V
Warar, B4M Pary32r41.2r+1, S PUsr 4320412041, SV EPUS 43 2041.2041,
E4P4-,-+5 \Y% "’V27-+1'2-,-+1, 24AIP47~+5 Vv M/27-+1:27~+] according as n = 8r,
8r+1,--+, 8 + 7 where PUipp = o1,

Let v be the canonical complex line bundle over L#*+! = L[*(4) or
its restriction to L?* = L(4), and ry denote its realification. The 4m-
dimensional real vector bundle 2mry over L™ is K O-orientable and its
Thom complex T'(2mry) is homeomorphic to the stunted mod 4 lens space
Li™+" S0 we remark that Theorem 4 ii) may be proved by means of [13,
(3.8)] in a different way from ours.

This paper is organized as follows. In §2 we introduce some new small
spectra Uy 45, Vegsy MUr s, PUsy s, R'Us s and so on, and compute their
K U-homologies with the conjugation 1,’)51 and their K’'O-homologies. In
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§3 we determine its quasi KO.-type for a CW-spectrum X having the
same #type as Upgs, MU, 45 or 0V Uy s (Theorem 3.3). In §4 we
consider several maps f: ¥2 _, X to construct desired maps fre:Yee —
Xk, and study their cofibers C(f) and their induced homomorphisms
fo : KUgE¥ — KUpX. In §5 we first investigate the behavior of the
conjugations ;"' on KU*L7, ., and KU.L7, ., and then prove our main
result separetely in the three case as stated above (Theorems 5.8, 5.9 and
5.11).

2. Small spectra U,;,, V;;;, MU,;, and PU,,,

2.1. We first construct small spectra Uy,s41 and U [(r,s > 1) as
the cofibers of following maps respectively:
(i5,75) : £182/2° — §Z/2" v §Z/2  and
invij:8'SZ2/2vE52/2° - §Z/27.
According to [11, Lemma 1.1] these new spectra U, .41 and U/, , may be
given as the cofibers of the following compsite maps
ifjy 1 LTV — 85Z/27 and ivij:E'5Z/2° — Vi

respectively where V) ; = W/, Vo1 = Voy and i, : V], — E25Z/2°
and iy : SZ/2" — V;41 are the canonical projection and inclusion. For
the convenience’ sake we set Ur; = §Z/2"*! and U], = E25Z/2°F!.
Evidently there holds the S-duality U., = Z3DU,,. It is easily seen
that these new spectra U, , and U] have the same #type as Vs and
V,s tespectively. As is implicitly established in [10, Theorem 5.2] or [11,
Thorem 4.2], we can observe more precisely that

(2.1) U,s and U], have the same quasi KO,-types as T%V,_y .41 and
%2V{11,—1 respectively, where Vo, = $25Z/2" and V/, = $Z/2".

We here introduce new small spectra Uris, Ul;s Vittise
V. is1,s(rst,s > 1) constructed as the cofibers of the following maps re-
spectively: »
(in,7j) : £'8Z/2¢ — 5Z/2" v §Z/2¢,
Vi B SZ/2vEISZ/2° — SZ/7,
(i%,iv7j) : B1SZ/2° — SZ/2°V Vi,
iijy Vi s BTV, VEISZ/20 — §Z/2.

(2.2)
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Of course the new spectra U, and Uy, coincide with the previ-
ous elementary spectra U,s4; and Lr-}-l s respectively. For the conve-
nience’ sake we set Vi1 = Vigy1 and V) = V], , and in addition
UrOs—Urso—V;'Os—‘/rs’ UOrs—Lr()s——Vr,os sty VOrs ny‘s
and V/, o = U, . Evidently there hold the S-dualities Uy s = E3DUH,
and Vrt s = £3DV/, .. By a routine argument we can easily compute the
K U-homologies with the conjugation ¢51 and the K’ O-homologies of these

new spectra.

Proposition 2.1. When X = U, Vits, LMs and V/, (r,t,s >
1), KU1 X =0 and KUpX with the conjugation 1/)0 are given as follows:

i) "The X = U, or Vyys case”

r<s8s<t r<s2>t
KUpgX = ZI2®Z/2° 3 Z]7 Zj2st g Z/2 g Z/2r
1 275 0 -1 —2574%2 g
¥zt = 0 -1 0 0 1 0
0 -1 1 -1 —2s7t1
r>s<t r>s>t
KUgX = z/2tgZz/2trgz/2s7Y Z/2¥l@ Z/2° g Z]217!
1 —2t—s 2t=stl 1 0 0
v = 0 1 0 1 —1 —2s°tHl
0 1 -1 0 0 1
i) "The X =U[,, or V], case”
s<r<t s<r2>t
KUpX = Z|2* @ Z]2" @ Z/2° Z/j2H g Z/2 g Z)2°
-1 0 0 1 0 2r—st!
vy = -1 1 27 1 -1 27
00 -1 0o 0 -1
s>r<t s>r>t
KUoX = Z/2'@z/2M gz/2m! Z/2*l@ Z/27 ¢ Z/217!
-1 0 0 -1 =257+l 9
1;/}51 — 9s—r+l 1 _9s-r+2 0 1 0
-1 0 1 0 1 -1

Proposition 2.2.

For the small spectra X = U, 45, Vig,sy U)

r.t,s and

V! s(r,t,s > 1) their KO-homologies KO; X (0 < i < 7) are tabled as

follows :
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X\i = 0 1 2 3
Uss | Z/78Z]27 Z]2 (#Heni®2/2 22
Vits Z|r gzt 0 Z/2* & Z]2 Z/2
Ulis zZ[2r 0 Z/2tlegz/2tt Z)2
Vids (*)r—1.¢ Z/2  Z/]2@Z/2t 72

4 5 6 7

Z[ 27 g zZz/2t T o Z]2° 0

zZ/rY e z/2 Z[2 (#)s-1. 0

(*)r—1t B Z/2 AP Zj2t 3 Z/2¢ 0

ZI2" & Z)2 0 Z/21 g Z/2° 0

where (¥)p1 = Z/2842 and (+)p, = Z/2"P @ Z/2 if€> 2.
2.2. Choose a map kp; : My — X! satisfying kppipg = 7: §2/2° —
! and 2°kpr = njar 1 My — X1 such that the sequence

2% ip,M k;
(2.3) 0 L p oM H R

is a cofiber sequence where ip : % — P is the bottom cell inclusion. For
the convenience’ sake we set My = £2 and kyy = n: Mg — X1, It is easily
seen that [M,,$'] & Z/2°*! which is generated by the map ks for any
s > 0. We here introduce new small spectra MV/,, QV,¢, QU, 141, V' M, s,
MU, s, UM, s and V' M, 141 5(r, 8,8 > 1) constructed as the cofibers of
the following maps respectively:

inVvaj: v ElsZ/28 — 57/,
mvig:L2vEsz/2t —» §Z/27,

inVinjy : B2V ETWV/ - §Z/27,

(2.4) fkpar : 21M, — SZ)27,

inVajjv BTV, — SZ/2¢,
iviky : BT M, — Vi,
iuikar : B My — Ur g

We moreover choose another map h{, : £2 — V!, satisfying ji-h}, =
i: 3% > §Z/2° and 2°h}, = 14,7 : B2 — V!, such that the sequence
v.p

(2.5) w2 X yr W op, Pp g3

is a cofiber sequence where jp : P, — Y2 is the top cell projection. Notice
that [£2,V{ ] & Z/2**? which is generated by the map A, and [£2, V] ] =
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Z[25%1 @ Z/2 whose direct summands are generated by the maps h}, and
i{,in? whenever r > 2 (cf. (1.4)). As is easily checked, the cofibers of the
maps iy : 5% — V,; and ipfj : £2 — U, coincide with those of the maps
wphy 1 B2 = U], and iy bl $2 — V/; . Therefore the above new
spectra V' M, , U’ﬂl,.,t's and V'M,;,1s may be given as the cofibers of
the following maps respectively:

hyn: 2% = Vi, iyphyn: IRE rts and iy yhyn: 2% = Vs

For the convenience’ sake we set QU,; = Qr41, VIMy 15 = VM4,
VM, = Qp, MUgys = MV, U'M; ;0 = QVry and V' M; ;0 = QU;;
where @, donotes the cofiber of the map 7np: £ — §Z/2".

Similarly to Propositions 2.1 and 2.2 we can easily compute the KU-
homologies with the conjugation 7,")51 and the K'O-homologies of these new
spectra.

Proposition 2.3. When X = V'M,,, MU,;s, U'M;ss and
V'Myps, KUI1X = 0 and KUgX with the conjugation wgl are given as
follows :

i) "The X = V'M,s(r > 1 and s > 0) case”

s<r s>r
KUX =~ Z8Z/7&Z/2° Z&z/2H¢z/2?
1 0 0 1 0 0
T,A'I)E'l — —9r=s=1 1 9r—s 1 —1 —9s-r+2
1 0 -1 0 o 1

ii) ”"The X = MU, s(r >0 and s,t > 1) case”

r<s<t r<s>t
KhhwX = Z@®Z[2'®Z/2°pZ]27 Ze&Z/2Tr g Z/2t g Z/2
-10 0 0 -1 0 0 0
-1 -1 1 2!—3 0 2s—t+1 -1 _2s—t+2 0
Yo = 00 -1 0 -1 0 1 0
00 -1 1 0 -1 =251
r>s<t r>s>t
KUyX 2 ZagzZ/2tgZ/2t g Z/2" Z®Z/27H @ Z/2° 0 Z/217!
-1 0 0 0 -1 0 0 0
vl = -1 1 =—2t=s 2t=sHl 0 1 0 0
¢ - 00 1 0 257t 1 —1 -2t
00 1 -1 -1 0 0 1
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"The X = U'M, ;5 or V'M,; 5(r,t > 1 and s > 0) case”

s<r<t s<r2>t
KUyX =2 Z@Z/20Z/276Z]2° Z&Z/27M'¢Z/27'eZ/2°
1 0 0 0 1 0 0 0
1 0 -1 0 0 -27=s 1 0 27sh!
"/)C - —9gr-s—1 -1 1 9r-s 0 1 —1 or—s
1 0 0 -1 1 0 0 -1
s>r<t s>r2>t
KUpX = ZaZ/2'® Z/2*t' @ Z/r' Zeo Zj2st @ Z[2m ¢ Z /2!
1 0 0 0 1 0 0 0
1 _ 10 -1 0 0 1 -1 -—2s-7+1 0
Vo = | gkt _p _gere2 0 0 1 0
0 -1 0 1 0 0 1 -1

Proposition 2.4.

For the small spectra X = MV, QV;;, QUy,,

VM, s, MUyts, UM,3s and V' M, 5(r,t,s > 1) their KO-homologies

KO;X(0<1i<7) are tabled as follows :

X\i = 0 1 2 3
MV;, Z]% 0 Z®Z/2T 72

QVrs Z®Z/2 0 Z/21 @ Z/2 0

QUvr?t Z@(*)r—l,t Z/2 Z/?t ®Z/2 0

V'M,, ze 2/ 72 (#)o.r 0
MU, | z/rez/22 o zez/2*ez/2 Z/2

UM | Z92/2 0 z/2-'gz/2H 0

ViMyes | Z®()eory  Z/2 Z/20@Z/2%0 0

4 5 6 7

Z]2 % 722 0 Z0 2/ 0

Z® (%)t Z/2 Z]2*e® Z/2 0

AWV 0 Z/2 e Z/2 0

Zg z)2 ! 0 Zj2s+1 0

Z/ 7 g z/2t 0 Z&27/2° 0

Z & (*)T—l,t Z/2 Z/Qt & Z/23+1 0

Z@Z)r 0 Zz/atl@z/ett 0

where (¥)k1 = Z/28%2 and (+)p e 2 Z[2¥1 9 Z/2 if£> 2.
2.3. We next introduce new small spectra V'P;,, U'P/,, and

V'P}441.5(r,t,8 > 1) constructed as the cofibers of the following maps

respectively:
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(2.6) (7§, 7): B152/2° — SZ/27 v £°, (iv#j, 7) : B1SZ/2® — V,, V 5O
and  (iyij. ) : B18Z/2° — Upyr V 52

For the convenience’ sake we set V'P/, . = V'P/,, .. Similarly to Propo-
sitions 2.3 and 2.4 we can easily compute the K'U-homologies with the
conjugation ¢51 and the K O-homologies of these small spectra.

Proposition 2.5. i) The small spectra V'P;,, U'P},, and
VP!, (r,t,s > 1) have the same “types as U'M,;,_1 and V'M, ;.4
respectively, where VM, o= Qr, UM, 10=QV,y and V' M, ;0 = QU, ;.

ii) Their KO-homologies KO;X(0 <t < 7) are tabled as follows :

X\i = 0 1 2 3
VP | ZeZz]Z7  Z)2 (5)o—1.r 0
U'P,, Z®Z]2r 0 Z/2 e Z/2¢ 0
VP, | Z& ()1 Z/2 Z/22®Z/2° 0O
4 5 6 7

Z®Z/2 Y 0 Z]> 0

Z&® (*)r10 Z/2  Z/22@ ZJ2° O

Z®Z/2 0  Z/2'gZ/2* 0

where (¥)i1 = Z[262 and (¥ =2 Z/2* ' @ Z/2 if £ > 2.
We here consider the S-duals PV, ;, PU,;, and PV, 41,5 of V'P!

3,7

U'P},,and VP, (r,t,s > 1) obtained as the cofibers of the following
maps respectively:

(27) 7Vvig: T2V EISZ/2° — SZ/2", 3V injy, : T2V ETIWV, — SZ/27
and Vi, LEVETWU,,, — SZ/27.

For the convenience’ sake we set PV,.1 s = PV;;s4+1. Evidently the §-
dualities are given as PV,, = L®DV'P] , PU,,, = £*DU'P],, and
PV,4s = E3DV'P], .. Asa dual of Proposition 2.5 we can obtain the K U-
homologies with the conjugation %;' and the K O-homologies for these
S-dual spectra.

Corollary 2.6. i) The small spectra PV,,, PU,;; and PV,
(r,t,s > 1) have the same #types as the wedge sums L3V V,_,,, T3 v
Ur—11s and 3V V,_1 4 s respectively, where Vy 5 = £257/2°, Uots = V,,',.,,
and Vou,s = Uf,.

ii) Their KO-homologies KO;X(0 < i < 7) are tabled as follows :
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X\i = 0 1 2 3
PV, zZjor 0 Z/2+71 Z
PU.., | Z/2" ®Z/2 Z[2 (%)s—1.1 Z
PV.is | Z/27 @ Z/2t! 0 zZ]2° VA
4 5 6 7

(¥)r—1., Z/2 zZj2° Z

Z/j2T @ Z/21 0 zZ/2° Z

Z/2" @ Z/2 Z/2 (*)s—1.4 zZ

where (#)p1 = Z/2¥t% and () = Z/2M B Z/2 if € > 2.

2.4. Denote by @} and R} the elementary spectra constructed as
the cofibers of the maps nfj : £25Z/2! — X0 and 9% : £35Z/2! —
20 respectively. There elementary spectra @} and R} are related via the
obvious map Aj p : $1Q) — R, satisfying AQ.RiQ = RN izl — R} and
jo = JrMor + Qi — T5Z/2'. Choose a unique map hg : £° — Q)
satisfying jbizQ =7 :%% - §Z/2' and then set hgr = )\lQ,RilQ : 86
R; (see [11, (2.2)]). We here introduce new small spectra R'V/,, V'R, ,
R'Uss, UR., , and V'R, (7,t,5 > 1) constructed as the cofibers of
the following maps respectively:

hrj:X°5Z/2° — R),
(74, n*7) : £352/2° — £252/2" v £°,
(2.8) hrijv : £3V,, — Rj,
(ivij,n*7) : £352/2° — £V, v £°,
(iuhg,n*7) : 828 Z/2° — B2y e41 v I°

For the convenience’ sake we set V'R, ; ;= V'R, ., ; and R'Uos,s = R'VY,.
Choose a map ki, : B2V/, — E° satisfying ki,2}, = o7 : £25Z/2" — £°,
whose cofiber coincides with the cofiber of the map hgj: £*SZ/2° — Q..
Since the cofiber of the obvious map g g : Q) — R) is just the cofiber
P of the map 7: &' — X9, the above new small spectra R'V/, and R'U; .,
may be given as the cofibers of the following maps respectively:

nky : Z°V), = £° and nkyjuve BV — 0.

For these new spectra we can easily compute their K'U-homologies with
the conjugation ¥;' and their K O-homologies.
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Proposition 2.7.
U'R,,, and V'R,

T, 1,8

i)

The small spectra R'V{,,

: r1.s(Tst,8 > 1) have the same “type as the wedge sums
LOVV/,, BOVERV],, B0V, EOVERY]

7,8

and £0v¥2V!

V'R]

7,87

t,8

ii)  Their KO-homologies KO; X(0 < i < 7) are tabled as follows :
I\ X= R’ Vt"s V! R;‘s RU,;s
0 |z z/2" g Z/2 Zg Z]2° Ze zj2t g z/2t!
1 zZ[2 Z[2 Z/2
2 (%)s—1,t Z[r @ z[2 (*)s-1.¢
3 0 Z[2 0
4 AW A Y Z P (*)s—1,r Z@&Z|2rd Z[2t!
5 Z[2 VAV zZ[2
6 (%), AV WA (*¥)s—14D Z/2
7 Z/2 0 YAV
U,R;,t,s VIR:‘,t,s
Z@ZI2BZ[2° ZHZ[2 ¢ Z[2°
zZ[?2 Z[2
Z/7 & Z/2 ()14 ® Z/2
0 zZ[2
ZRZI2" D22 ZaZ/2®Z/2°
AV Z[2
(*)r—],t@Z/Q Z/QT@Z/Z
Z/2 0

T
R L'r,t,s;

respectively.

where (¥)p1 = Z/25%2 and (¥)3s = Z/2 0 @ Z/2 if € > 2.

3. The same quasi KO.-type as U,;;, MU, ;; or Z°V U,

3.1. Let X be a CW-spectrum having the same “type as the wedge
sum YVW, , where Y = §Z/2', ¥°vSZ/2! or M;. In this case we note that
there exists an isomorphism KO 1 XB K O2i45 X = KO Y EKOgiysY
for any i. Using the same method as adopted in [10, Theorem 5.2] or [11,
Theorem 4.2] we can easily determine the quasi K'O.-type of such a CW-
spectrum X.

Proposition 3.1. Let Y be the small spectrum SZ/2t, £°v SZ/2!
or My(t > 1). If a CW-spectrum X has the same “type as the wedge
sum Y V W,;, then it is quasi KO.-equivalent to one of the following
wedge sum: i) S¥SZ[2P VW, , and THV,V W, ,: ii) ¥V Y SZ/2t VW, ,,
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Ty UV, v W,, and BYR, Vv W,,; iil) SU¥M, V W, ,(i,j = 0 or 1),
according as Y = SZ/2t, £°v §Z/2t or M.

Let KT be the self conjugate K-spectrum (which is sometimes denoted
by KC). For the small spectra Y = Uy, MU, s and R'U, s 5(r,t,8 > 1)
their KT-homologies KT;Y (0 < ¢ < 3) are easily calculated as follows:

Y\i = 0 1
(3 1) Ur,t,s Z/QT 57 Z/2t (*)s—l,t
' MU, Z|r & Z/2 VA WAPA
RU.is | Z&Z/2 & Z/2 (¥)s-14® Z/2
2 3
Z]2°® Z/2 zj2+t g z/2t-1

72622 & Z/2
Z|2 @ Z)2

Zj2rtl g 7/
AW AVARE WAV

Let X be a CW-spectrum having the same “type as £°V U, ; ;. Then
there exist two isomorphisms 6y : KO1X@KOsX — KO12°@K01U, 4,5 &
Z[2@® Z/2 and 03 : KO3 & KO7X — KO3U,;, = Z/2. Identify
KToX and KToX with K12 & KToUr:s = Z ® Z/2" @ Z/2' and
KDU,.s S Z/2° @ Z/2 respectively. Then the composite homomor-
phisms 81 (—7,7B7')s : KToX — KO1X & KOsX 5 Z/2@ Z/2 is rep-
resented by the matrix ((1) g (1]) 2 Z2®ZI2 D Z[2 — Z]2® Z/2,
and 3(—7,7B7"). : KToX — KO3X @ KO7X 5 Z/2 is given by the
second projection (0 1) : Z/2°@® Z/2 — Z/2. Consider the automor-

1 00
phism ap : KTpX — KTyX represented by the matrix (0 1 0) on

1 01
Z®Z/2 o Z/2'. By a routine computation we can easily get an auto-
morphism ac¢ : KUpX — KUpX such that ¥lac = acyzl : KUX —
KUpX and ac(, = (xar : KTsX — KUgX. Therefore we may regard that

the induced homomorphism #;(—7,7Bf!). is represented by the matrix

1 0 0Y. 1 00 .
(1 0 1) in place of (0 0 1). In other words, it may be regarded

that the isomorphism 6; is expressed by one of three kinds of matrices

10 01 1 1 .
(0 1),(1 O) and (0 1)on Z{2 @& Z/2. Hence the induced homo-

morphism (—7,7B7!). : KToX — K01 X ® KOsX is given as one of the
homomorphism represented by the following three kinds of matrices:
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, 1 0 0\ /0 0 1 10 1
(3.2) (0 0 1)’(1 0 0) and (0 0 1)
26 2/7 6 Z/2 - Z28 Z/2.

Lemma 3.2. For the small spectra’Y = U5, MU,4s and R'U;
(r,t,s > 1) the induced homomorphism 1, : KT5;Y — KQO2;11Y are rep-
resented by the following rows Maiy1(Y):

i) Mi(Unes)=(01):2/2" 6 Z/2" - Z/2,

M3(Urss)=(01):2/2° & Z[2 — Z[2;
i) Ma(MU,:5)=(001):262/2°06Z/2— Z[2
i) Mi(RU,1s)=(Q01):Z®ZJ2" 3 Z/2" — Z/2,
Ms(R'Uy15)=(001):ZBZ/2" 6 Z/2" — Z/2,
M;(R'U,1s)=(0 1):Z/2° @ Z/2 — Z]2.

Proof. We only show our result in the Y = R'U,; , case. The other
cases are very easy. Since the small spectrum R'U, ; ; has the same #type
as the wedge sum £°V U, ., the induced homomorphism (—T,TB}I), :
KToR'Urts = KO1R'Up 4, s ® KOsR'Uy 1 5 restricted to Z/2" C Z@ Z/2" &
Z[2! becomes trivial by (3.2), and 7 : KTgR'Urss — KO7R'Uy s is
given by the second projection (0 1) : Z/2° @ Z/2 — Z/2. Consider the
commutative diagram

rB;!
KO.R, &  KTuR, = KOsR,
= | |

-1

, T . , 7Br, -

KOiR'U,;s < KToR'Us:s, —" KOsRUss
where the vertical arrows are induced by the canonical inclusion igq :
R, — R'U,;s. The both sides arrows are isomorphisms and the central

one is the obvious monomorphism i : Z & Z/2' - Z & Z/2" & Z/2'. Our
result is now immediate from [11, Lemma 3.2 iii)}].

3.2. For a CW-spectrum X having the same %type as the small
spectrum Y = Uy s, MUrss or £°V R'Uyp 4 5(r,t,5 > 1) we determine its
quasi K O.-type by using the same method as adopted in [10, Theorem
5.2] or [11, Theorem 4.2].

Theorem 3.3. LetY be the small spectrum U5, MUy, 45 or £°V
Urss(r,t,s > 1). If a CW-spectrum X has the same %type as the small
spectrum Y, then it is quasi KO, -equivalent to one of the following small
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spectra : 1) VU, 5 and B4V, , ;1 ii) S¥MU, ,,; iii) B¥V SV, ,,, Ty
LYV, s and S¥R'U,, (i,5 = 0 or 1), according as Y = U, ,,, MU, or
YOV Usys.

Proof. We may assume that KO3X = Z/2 and KO;X = 0 since
KO3X & KO;X = Z/2 in any case.

i) Note that KO1X @ KOsX = Z/2. Under the assumption that
KO0:X = KO7X = 0 we first show that X is quasi KO,-equivalent to
the small spectrum V,;,;. Choose a map gv : Vp.ys — KT A X such
that (( Al)gy : Veys — KU A X is a quasi KU,-equivalence. For our
purpose it is sufficient to find a map hy : V,;;, — KO A X satisfying
(e A1)hy = (C Al)gy because such a map hy is fortunately a quasi K O,-
equivalence by virtue of {10, Proposition 1.1]. When ¢ = 1 our assertion
is immediately established as (2.1) is done. When t > 2 we consider the
following cofiber sequence

E]SZ/23 (zﬁ,z_v)n.]) SZ)7 VV, ivVivy Viis iv 2252/25
obtained from (2.2). Recall that the elementary spectrum V; is obtained
as the cofiber of the map 2!717 : £° — P/ where P} denotes the cofiber of
the map 7 : £15Z/2 — £% and 7 : £° — P] is the bottom cell inclusion.
Since the elementary spectrum P| has the same quasi KO,-type as £1,
the composite map (n A 1)(7'B7Tl Algvivy : V; — 2K0 A X becomes
trivial. On the other hand, it follows from Lemma 3.2 i) that the composite
map (n A 1)(B7' A l)gviv : §Z/2" — £2KO0 A X is trivial, too. Now
we can apply [10, Lemma 1.3] to get a map h : §Z/2° - STKOA X
satisfying hjy = (7'BE1 A 1)gy where the map gy might be replaced by
a new one suitably if necessary. Consider the map ky : V; — X! of order
2!+ satisfying kviy = j : §Z/2t71 — T! and 2!"Yky = 75y : V; = T,
whose fiber is the elementary spectrum P. Since the map h admits a
coextension & : £ — KO A X with Aj = h, it is immediately seen that
(n A Dk = hkyivij = (0V hky)(i7,iv7j) : B1SZ/28 — SZ/2"V V; —
YL1KOA X, and hence (nA 1)hjy : Veps — 2K 0 A X is trivial as desired.

By a similar argument to the above we can show that X is quasi
K O,-equivalent to the small spectrum U, ;s under the assumption that
KO;X = KO;X = 0, whose proof is simpler than the above case.

ii) Under the assumption that KO1X = KOsX = KO;X =0t is
sufficient to show that X is quasi KO,-equivalent to the small spectrum
MU, . Choose a map gy @ MUrys — KT A X such that (A 1)gayr -
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MU,:s — KU A X is a quasi KU,-equivalence, and then consider the
following cofiber sequence

-1y, AT ] : ! T ] r
Aasl,, TRV Szt MY MU, MY BTAY,,

obtained from (2.4). Since the composite map (n A 1)(7'3;1 ADgauivy
§Z/2' — TL2KO A X is trivial, we obtain a map hy V hy : 22V V,, —
Y3KO0 A X satisfying (hy V h2)jyu = (TB;1 A D)gau where the map gpp
might be replaced by a new one as in the above i) and the map h; is in
fact trivial. Evidently there exists a map h3 : §Z/2° — KO A X satisfying
hajv = (n A 1)hy, and hence a map hy : SZ/2" — T'KU A X satisfying
h4ift = (¢ A 1)ha and hyiy = (rBg' A 1)h4. Since the composite map
hgi : £° — VKU A X is trivial, we get a map hs : SZ/2° — SIKOA X
satisfying (7 A 1)hs = hs, which admits a coextension hs : £° — KO A X
with hsj = hs. Consequently we can observe that (7 A 1)hy = hsnijy = 0
as desired.

iii) Note that KO\ X @ KOsX = Z/2@ Z/2. By a similar argument
to the above i) we can easily show that X is quasi A O.-equivalent to the
wedge sum YoV Urtw when KOs X = KO7X =0, and to v Vrts when
KO1X = KO7X = 0. So we assume that KO X = KO3X & KOs X =
Z[2 and KO7X = 0. According to (3.2) the induced homomorhisms
Tw : KT9;X — KO2i41X, whose matrix representations are denoted by
M3;+1(X), are divided into the following three types:

(1) My(X)=(100), Ms(X)=(001), M3(X)=(01);

(2) Mi(X)=(001), Ms(X)=(100), M3(X)=(01);

(3) Mi(X)=(001), Ms(X)=(101), M3(X)=(01)
where M1 (X), Ms(X):Z3Z/27®Z/2! — Z/2and M3(X): Z/2°DZ]2 —
Z /2. By a similar argument to the above cases we can show that X is quasi
K O.-equivalent to the wedge sum ¥°V Vogs or 4V U, 4 5 according as the
case (1) or (2). In the case (3) we show that X is quasi K'O,-equivalent to
the small spectrum £*R'U, ; ;. Choose a map ggy : £*R'Upp s — KT AX
such that (( A Vgriw : E*R'U, 1 s — KU A X is a quasi KU,-equivalence,
and then consider the following cofiber sequence

3;r hRIV o imT pigs IRty
E‘307‘,5 - Rt g RL'r,t,s - E4"”7',.9

obtained from (2.8). Since the induced homomorphism 7. : KTpX —
KO X restricted to Z C Z & Z/2" @ Z/2' is trivial, the composite map
(7'BJT1 Agpuipyip : £ — KOA X becomes trivial. Hence we obtain a
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map hg : ESSZ/'Zt — KO A X satisfying h()j;{ = (TBj_nl A Dgruiry. By
virtue of Lemma 3.2 iii) we see that the composite homomorphism (7 B! A
1)ugru, : KO4R'U, s s — KOsX is trivial, and hence ho. : KOpSZ/2¢ —
KOsX is trivial, too. This implies that the composite map (7 A 1)(7‘351 A
Vgruiry : LR, —» KO A X is trivial. So we obtain a map Ay : Z3V, s —
KO AX satistying h1jrv = (TB7' Al)griy where the map gry might be
replaced by a new one as in the above i) or ii). Evidently the composite
homomorphism hi.ty. : KOoSZ/2" — KOsX is trivial. Therefore there
exists a map hy : £8§7/2° — KO A X satisfying hojy = (7 A 1)h,
and hence a map h3 : £75Z/2" — KU A X such that (¢ A 1)hy = haif}
and (rBEl A 1)hy = hyiy. Since the composite map hzi : 7 — KU A

X is trivial, we get a map hy : 2752/25 — KO A X satisfying (n A
1)h4 = hy, which admits a coextension hy: T8 — KO A X with h4] = hy.
Consequently we can observe that (n A 1)h; = hanjjv = h4]thR]]V
because jhhp = 71 : B2 — SZ/2!, and hence (9 A 1)hyjriy = 0 as desired.

Combining Theorem 3.3 with Propositions 2.2, 2.4, 2.5 and 2.7 we
obtain

Corollary 3.4. i) Uy, and V/, (r,t,s > 1) are quasi KO.-
equivalent to EzUt_Ls.,.l,r and £ Vi—1,s41,r respectively, where Upsy1, =
Virrr and Vosyrr = Ugyy

i) U'M,ss and S4V'M, ,; o(r,t,s > 1) are quasi KO.-equivalent to
Y2MU;1 541, where MUy s41,r = MV, ..

iii) U'P/,, and V'P;, (r,t,s > 1) are quasi KO.-equivalent to
UM 151 and V'M, ;.1 respectively, where U'M;;o = QV,; and
V’MrtO = QUrt

iv) U'R;,, and Z*V'R], (r,t,s > 1) are quasi KO,-equivalent to
R,Ut_1,3+1l7- where R U[)=s+1,,,- = Rle+l,r

4. The cofibers of certain maps f: X% — X

4.1. For any k(0 < k < s) the cofiber of the map 2¥i: £° — SZ/2°
is just the wedge sum £' A §Z/2F. Thus we have the following cofiber
sequence

. ; 8=k Al _ s
(4.1) w0 2 gzy9s W) miy gz/0k A

where p = p, 1 SZ/2° — SZ/?" is the obvious map. For any s > 2
we choose a map hy : £2 — V,, of order 2°7! satisfying the equalities
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jvhy = 2i 1 X0 — SZ/2° and hyj = —iyif : B15Z/2 — V,,, whose
cofiber is the wedge sum £3 A V,;;. Note that such a map hy is uniquely
chosen. As is easily calculated, [E2,V, ] & Z/2°7! & Z/2 whose direct
summands are generated by the maps hy and iv# (cf. (1.4)). For any
k(1 <k < s) we set

(4.2) fve =26Thy 4 iy £ = Vi

Lemma 4.1. Assume that 1 < k < s. Then the cofiber of the map
fvx : £2 — V, 5 is the wedge sum 3V W, , and the induced homomor-
phism fy g KUyx? — KUyV, ; is given as follows:

frps(l) = (2F, 251 4 27"y € Z/2° @ Z/2" when r < s;
fvas(1l) = (2r,2k_1) €Z/27 ¢ Z/2°"!  whenr > s.

Proof. Choose a map f : £2 — V,, of order 2°* satisfying the
equalities jy f = 2% : 20 — §Z/2° and —fj = iy (if + 77) : £15Z/2F —
Vrs. Since such a map f is uniquely determined, it is exactly the map fvx
given in (4.2). When r < s the induced homomorphism Ay, : KUpE? —
KUyV, s is expressed as hy,(1) = (2,¢) € Z/2° @ Z/2" for some c. Using
the behavior of the conjugation ¢51 on KUV, s we can immediately show
that ¢ = 1 mod 2771, thus ¢ = 1 or 14+ 27!, Note that the cokernel of Ay,
is isomorphic to K UpV,4q but not to KUgW, 41 as an abelian group with
involution. From this fact it follows that ¢ = 1. On the other hand, when
r > s we may express as hy.(1) = (a,b) € Z/2"*1 @ Z/2°7! {or some a, b
with the relation —a + 2b = 2 mod 2°. Then it is immediately shown that
a = 0 mod 27, thus (a,b) = (0,1) or (2",1). We can also verify that (a,b) =
(0,1) by a similar observation to the above case. Evidently the induced
homomorphism iy, : KUgX? — KUV, , is given by iy 7,(1) = (0,277 1) €
Z[2° @ Z/2" when r < s, and iyv7.(1) = (27,0) € Z/2"*' @ Z/2°~1 when

r > s. Therefore our result is now immediate.

Lemma 4.2. Assume that 1 < k < s. Then there exists a map
fur : PILIN Urt,s whose cofiber is the wedge sum Py V W, and whose
induced homomorphism fy i« : KUpX? — KUoU,; s s given as follows :

i) fU,k*(l) — (_Qt—s+k—l,2k,2k—l + 2r—1) c Z/2f‘ B Z/QS D Z/Qr
whent < 8 < t;

i) foas(1) = (25,0287 g or-Yye Z/2sH g Z/2 @ Z/27
when r < s > t;
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i) fogs(1) = (=207sth=1 o ok=1y ¢ Zyot g Z/27H1 g Z/25-1
when > 5 < 1;
iv)  furd1) =(27,25710) € Z/27 1@ Z/2° B Z/2 " whent > s > t.

Proof. Consider the cofiber sequence
§2/2 Y Unps " v, " wisz)2,

Using the map fyx : £ — V;, we choose a map fyi : £2 = Uy,
satisfying the equalities juv fux = fvg : £2 = Vi, 2275 f 1 = dyij -
PILIN Urts and furijw = 0 : W — Y10, ;, so that its cofiber is
the wedge sum P; V W, ;. Then we can easily check that the induced
homomorphism fy 4. : KUyE%2 — KUyU,, s is expressed as desired, after
replacing the map fyx by (1+ 25—k)fU=k = fur + w7 if necessary.

Recall that the small spectrum MU, is given as the cofiber of the
composite map iyin: ¥ — U, ;s where iy : SZ/2 — U, s is the canoni-
cal inclusion. Using the map fyj : % — U, obtained in Lemma 4.2 we
consider the composite map

(4.3) fuuk = iumufur : Z = MUry,s

for any k(1 < k < s), where iy 2 Urgs — MU, s is the canonical
inclusion.

Lemma 4.3. Assume that 1 < k < s. Then the cofiber of the map
fauk + T2 = MU, is the wedge sum M P, V W, and the induced
homomorphism fary g : KUpx? — KUoMU, s is given by farie(1) =
(0, fur«(1)) € ZOKUoU,, s where fir.(1) is precisely expressed in Lemma
4.2.

Proof. The cofiber of the map farp i coincides with that of the map
(ipin,0) : B! —» P,VW, i whereip : §Z/2! — P, is the canonical inclusion.
Thus it is exactly the wedge sum M P,V W, as desired. The latter part
of our result is obvious.

4.2. Recall that the small spectrum U], , is obtained as the cofiber

of the map iyv#j : £152/2° — V,,. Using the map fy, : X% — .t given
in (4.2) we consider the composite map

(4.4) for =ivufve: 22 > U,
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for any k(1 < k < ¢), where iy : Viy — Uj,  is the canonical inclusion.
Lemma 4.4. Assume that s < k < t. Then the cofiber of the map

fl’J,k 18?2 U] ;s is the wedge sum L3VW,VEIS5Z/2°, and the induced

homomorphism fi; . : KUp®? — KUoUy, ; is given as follows :

D () = (2828142771 0) € Z/2'  Z/2" & Z/2° whens <1 < t;
ii) f{,;k*(l) =(27,2F1,0) € Z/2rt @ Z/2t" 1 @ Z/2° when s <1 > t;
i) fig(l) = (25,20 — 27 25 € Z/2t @ Z/2°F @ Z/277 when
s>r<t.

Proof. Under the assumption that k > s we observe that fy;j =
fviipsk = tv(if + 75)pse = —ivij : B1SZ/2° — V,;. Therefore the
cofiber of the composite map fj;, = vy fvx coincides with the wedge
sum L3V W, Vv £25Z/2° because Lemma 4.1 says that the cofiber of the
map fyy is just the wedge sum 3 v W, when 1 < k < t. By a routine
computation we can easily show the latter part of our result.

For the map h{, : £ — V/_ chosen in (2.5) its induced homomorphism
Ry, : KUgZ? — KUoV/, is expressed as follows:

(4.5) i) R =(-27"%"11)€ Z/2" & Z/2° whenrT > s;
i) Ry (1)=(1,0)€ Z/22t @ Z/2""!  whenr < s.

Here the map A}, might be replaced by (1 + 2°)h}, = R}, + i, 7 if neces-
sary. Recall that the small spectrum MV is given as the cofiber of the

7,8
composite map iy, 7 : B! — V. For any k(0 < k < s) we set

(4.6) Rl = 2R}, : T2 = V], and Phagvi = tyavhig : 82— MV,

where iy, 50, 1 Vo — MV, is the cononical inclusion.

Lemma 4.5. Assume that 0 < k& < s. Then the cofibers of the
maps hy;, : B2 — V] and hiyy, @ 52 — MV, are the wedge sums
P,vX25Z/2% and M P,vX25Z/2F respectively, and the induced homomor-
phisms by, : KUoZ? — KUoV/, and Ryyy,, : KUoL? — KUgMV], are
given by hiy . (1) = 2%k, (1) and Ry, (1) = (0,25R),,(1)) € Z KUV,
where hi,, (1) is precisely expressed in (4.5).

Proof. Choose a map f; : £% — V, ; satisfying the equalities jj, f =
26120 = §Z/2°, 27k f = i, : B2 = V! and frj = 0: 2'§Z/2% -
Vs so that its cofiber is the wedge sum P, v ¥257/2F. Evidently f, =
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i1 = 2°hi,, and in general fi = 2%k}, + ai}, 7} for some a because #},in?; :
T1§Z/2F — V!, is never trivial when r > 2. Note that the cofiber of the
maps Ay, and fr = (1+ 2°=Fa)h}, , coincide in the k < s case. Now the
first of our result is easily shown. The latter part is obvious.

4.3. The cofiber of the map 2%j : £-1§Z/2% — §Z/2° is just the
wedge sum S§Z/2°+k=¢v §7/2¢ for any £ < Min(s, k). Thus there exists a
cofiber sequence

$-157/2F L 57700 WD gzpaetk-ty sz79t PGP 579k

in which each of p is the obvious map. As is easily seen, under the assump-
tion that £ < Min(s,k — 1) we get a map g{,,,t,;El.SfZ/?’c — V], satisfying
the equalities ji gi,, = 2%j : 5Z/2% — £15Z/2°, gl,p = 14, (iff + 7j) :
D18§Z[2sk=t S V! and gl ,p = 0:£15Z/2% — V], so that its cofiber is
the wedge sum W, ;4 ¢ V £25Z/2¢. Thus we have the following cofiber
sequence

(pviw ,mv]

s157/9¢ 4t v W, opnoe V525228 PWU70) 52679k,

T8

Assume that 0 < £ < k < s+ k — £ < t. Using the above two

maps h},, : 5% — V; and 9V£ ¥1§5Z7/2F — V!, we then obtain a map

e : E — V!, , making the following diagram with four cofiber se-
quénces commutative

2 — »2
L vk | Ay
Vi, = Vi, ~ v VA gy,
4.7 | le | , |
V!, = PIVW, kg VERSZ/2 — PV E25Z/2k Mo VY,
I !
3 - »3

because gy ¢pr—1kiy = i (1] + 17)Pt-1.s4k-2Ty = iy ifijy -

Lemma 4.6. Assume that 0 < £ < s<r < s+ k—f <t Then
there ezists a map fy,, ,: 2 — V], , whose cofiber is the wedge sum Py V
Wi s4k—e V EzSZ/2‘ and whose induced homomorphism fv,k,e* KUp? —
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KUoV!,, is given by fi; (1) = (28,271 98y e Z/2'@ Z[27 9 Z/2°.
Proof. Use the commutative diagram (4.7). The induced homomor-
phism fi,, ,, : KUoZ? — KUoVy, , is expressed as f;; ,.(1) = (2,b,¢) €
Z[2' Z/2" @ Z/2° with the relation b+ 2"*"l¢ = 0 mod 2"~1. On the
other hand, the induced homomorphism ¢, : KUoV;, ; = KUoWrsyx— ¢ ®
T 2m+1 u
KUyX25Z/2¢ is represented by a certain matrix (y -1 ’b) 1 Z/2t
z 0 1
Z|2T @720 — Z]2sth-t1 g 7/97- 15 7 /2¢ with the relations 2 4+ 2™y —
2k=f» = 1 mod 2% and u + 2™t v = 2~ mod 25%~! where m = s — r +
k — £ > 1. Using the behavior of the conjugation t,’)El on KUoW, s4k—¢ @
KUyX25Z7/2% we see that u +2(2™ — 1)v = 2"~° mod 27. Hence it follows
that u = 25=f+1(1 — 2™~1) mod 2***~Y and v = 2"~*"1(2™ — 1) mod 2",
thus u = 2514’ for some u' and v = 2"~ !¢’ for some odd v’ when-
ever s > 1. Since gaf{,’k‘l 152 5 VW, ke V ¥257/2¢ is trivial, it is
shown that 26z + 2t1p 4+ cu = 0 mod 2°FF— 1 _p 4+ ¢y = O mod 27!
and ¢ = O mod 2¢, thus b = 27=5+-1) and ¢ = 2! for some ¥/, ¢,
and in addition z + b + 2¢/v’ = 0 mod 2°~¢*!. Moreover we notice that
b + ¢ = 0mod 2°7¢ because b+ 277°"'¢ = 0 mod 2"~!. Consequently
Fope(1) = (25,2740, -2%) € Z/2' @ Z/2" & Z/2° for some odd
b'. In this case we may take ' = 1 by replacing suitably the direct sum
decomposition of KUoV/, , = KUoV/ ® KUpV/, if necessary.

Since the map 7 : £15Z/2 — £9 has order 4 we can choose a map k’ :
P — X0 satisfying kpip = 4 : £ — X0 and ikp = fli125p : P} — 5Z/4,
where cofiber is the small spectrum U/; constructed as the cofiber of the
map 72 : 25Z/2 — §Z/4 with jf 2 = 7 (see [14, 1.1]). Composing this
map kp : P{ — L before the map fi,, ,: %% — V/, , obtained in (4.7) we
get a map
(4.8) ke = fupekp : TP — V/

r.t,s

when 0<fé<k<s+k-£<t.

Lemma 4.7. Assume that 0 < € < s<r < s+ k—¢€ < t. Then
the cofiber of the map gy, ,: P — V/, | is quasi KO,-equivalent to the
wedge sum VW, 41— eVE®Vyy1, and the induced homomorphism g{/,k,e* :
KUpZ?P| — KUoVyys is given by gy, ., (1) = (2kF1,2r—s+f _ot+1) ¢
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Z|2® Z[2" ® Z)2°.

Proof. The cofiber of the composite map gy, , = fy/; #p coincides
with the fiber of the map iy = ¥, Vi Vs 1 Py Y, VVT’s+k_gV $257/2" —
B30, where o = 2071 5p v (=29-455, Vi : PLVW, ;11 - VE25Z/20 — ¥3,
Since P; and U; have the same quasi KO,-types as £7 and $65Z/2
respectively, it follows that [P,X3K0 A U] & KOgSZ/2 = 0 and
[E°. KO AU &[22, KO A §Z/2) = Z/4. Obviously the composite map
(,.r ALYy 1 Pp — E3K0 A Uy is trivial where 1 : § — KO denotes the
unit of KO. Since 27jjw = in?jiw : Wy spk—e — L'SZ/2 is trivial, the
composite map (tp A 1)Y2 : Wy gph—t — Y3K 0 A U; becomes trivial under
the assumption that £ < s. On the other hand, the cofiber of the map
V3 = iyj E_ISZ/QZ — U, coincides with the small spectrum Ugyq ob-
tained as the cofiber of the map 2%k} : P} — £°, which has the same quasi
KO.-type as £V (see [14, (1.4)]). Using these facts we observe that
the cofiber of the map gg/,k,e is quasi K O,-equivalent to the wedge sum
PV W, k-6 VE2Ups and hence it is quasi K'O,-equivalent to the wedge
sum S7V W, s1k—¢ V 26V, as desired. Since the induced homomorphism
b : KUgP] — KUpX® is the multiplication by 2 on Z, the latter part of
our result is immediate from Lemma 4.6.

4.4. For any s > 1 we choose a map hy : £? — W, s of order 2°
satisfying the equalities jwhw = 2i : £% — §Z/2°, 2" hy = iwd :
Y2 = W,s and hwj = —iwifj : £152/2 — W, s so that its cofiber is the
small spectrum PV, constructed in (2.7). Evidently [E2,W, ] & Z/2°
which is generated by the map hy-. After the map hy is replaced by
1+ 2s‘l)hw = hw + iw 7 if necessary, the induced homomorphism A . :
KUpX? — KUgW,, is expressed as follows:

(49) 1) Aw.()= (=27t 1) e z/27 @ Z/2°"1 when r > s;
i) hwa(l)=(2,1)eZ/2° Z/2 when r = s;
i) hw.l)=(2-2""t1)e Z/25*1 0 Z/2""! when r < s.

<k<

For any k(1
(4.10) hwi =25"Thy : 22 > W, .

s) we set

Lemma 4.8. Assume that 1 < k < s. Then the cofiber of the map
hwe : 82 — W, s is the small spectrum PV, and the induced homomor-
phism hwi. : KUgE? — KUgW,, is given by hw (1) = 2k_1h,w*(1)
where hy.(1) is precisely expressed in (4.9).
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Proof. Similarly to the proof of Lemma 4.5 we choose a map fj :
Y2 — W,, satisfing the equalities juw fi = 2Fi : 9 — §7/23, 25k f, =
iwn : 22— W, and fij = iwifj : EISZ/2’° — W, s so that its cofiber
is the small spectrum PV, ;. Evidently f, = iw# = hw, and fi = hwy
or hwi + tw# when k < s. Since the cofibers of the maps hw, and
hwi + iwn = (1 + 'ZS‘k)hWJC coincide under the assumption that & < s,
our result is immediate.

Denote by 7y : £2 — V; the composite map iy 7 : 2 — SZ/2!"1 -V,
when ¢ > 2, and the bottom cell inclusion 7 : 2 — ¥£257/2 when ¢t = 1.
Using the maps hy : 2 W5, 1:52— §Z/2' and fjy : £2 — V, we
consider the two maps

(4 11) f”’,k (h‘"[",k: f)) : 22 g VV'r,s \' SZ/2t and
) fwvik = (hwr,fiv) : 2 = W, , VV,

for any k(1 < k < s).

Lemma 4.9, Assume that 1 < k < s. The cofibers of the maps
Fwr 152 > W, ,VSZ/2 and fwvy : PILIEN W, s V'V, are the small spectra
PU.ir and PV, respectively, and the induced homomorphisms fuw i« :
KUp¥? — KUW, s ® KUoSZ/2' and fwvi. : KUpS?2 — KUoW,, &
KUoV; are given by fwra(1) = firvie(1) = (hwi«(1),2071) € KUW, ; &
Z /2t where hw k.(1) is expressed in Lemma 4.8.

Proof. The cofiber of the map fi coincides with that of the com-
posite map #(2°°% v (=j))jpv : PV,p — X3V £2§7/2F - 3
Y15Z/2. Note that (in? vV 0)jpy : PV,p — E1S§Z/2! is trivial because
(7Vin)jpy : PV,x — £1SZ/27 is trivial. Hence the above composite map
(2°~% v (—5))jpv is rewritten to be (0V (—7j))jpv. Therefore the cofiber
of the map fw x coincides with of the map Vv iy}, : Z2VE"1V{J€ — SZ/2.
Thus it is the small spectrum PU,;, given in (2.7). By a similar argu-
ment we can also observe that the cofiber of the map fwy is the small
spectrum PV, ;. The latter part of our result is obvious.

4.5. For any k(0 < k < r)and £(0 < {<t) we set
(4.12) gmp =251 120 = M, and gwe = 2biwi: 0 — W,

The cofiber of the map gasx is the wedge sum Tlv My where My = X2,
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Thus we have the following cofiber sequence

2RV (—k)
"

50 2k g, B s1y g, 5!

in which the map ks is appearing in (2.3). On the other hand, the cofiber
of the map g, is the wedge sum X! v W, ;, and when £ < ¢ the cofiber
of the map gw, coincides with the small spectrum V M, constructed as
the cofiber of the map (nj,i7) : £1§Z/2° - Zlv 52/2‘. Note that
VMg, = S'M] and VM;, is the S-dual of MV, given in (2.4), thus
VM;, = Z°DMV],. We see immediately that the induced homomorphism
IM ks * KUpx® — KUoM, and gwy. : KUoZ® — KUoW,, are expressed
as follows:

(4.13) i) guu(1) =(0,2") € Z@ Z/27;
i) gwee(1) = (28571 28 € Z/25F @ Z/217) whent < s;

i) gwe(1) = (0,25 € Z/2° ® Z/2¢ when t = s;
V) gwe(1) = (281 — 2t-sti1 98 ¢ Z/ott1 g 772571 when
t > s. ’

Using these two maps gy : L0 — M, and gwy : £° — W5 we
consider the map

(4.14) guwke = (gM k. gwe) 1 B° — M, vV Wy,

for any k(0 < k < r)and £(0 < £<1).

Lemma 4.10. Assume that 0 < k<rand 0 < €<t <r—-k+¢
Then the cofiber of the map gywire : B° — M,V Wy, is the wedge sum
SV MUpiik—es or B'V My V W, s according as k > £ < t or otherwise,
and the induced homomorphism gyywi e : KUpZ® — KUoM, & KUoWy s
is given by gpwke(1) = (0,2k,gw1*(1)) €EZ®Z/2" ® KUW,; s where
gw.ex(1) is precisely expressed in (4.13).

Proof. The cofiber of the map garw k¢ is obtained as the cofiber of
the composite map gw¢(2"~% V (=ka)) : Z°V Z71 My — Wy,. Evidently
the latter map is rewritten to be 0V (—2%wikys) under the assumption
that 7 — k + £ > t. Set gyw,e = 2%iwikpy : S My — W, ,. Then the
cofiber of the map garw ¢ is just the wedge sum of £! and the cofiber of
the map gaprw,. Since 2%ikar = injar : 7M. — §5Z/27, it is easily seen
that the map garwye : LMy — W, is trivial if k£ < £ or ¢t = £. Therefore
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the cofiber of the map gasw, is exactly the wedge sum My vV W, in the
k <fort=£{case. Assume that £ > £ < {. Then the cofiber of the map
2lkas : 1M — IO is just the wedge sum PV SZ/2¢ because the cofiber
of the map kp : £71M; — X0 is the elementary spectrum P. Evidently
the cofiber of the composite map 2¢ikys : S-1 M, — SZ/2! is the wedge
sum Mppr—¢ V SZ/Q‘. Thus there exists a cofiber sequence

w1a, M gz0t P8 ar v SZ/28 S M.

Here i = 'Zk_eip__M’ip : 30 - Migp—e, kprer = J ¢ 5Z/2t — T! and
wi=1:%% — SZ/Q‘? in which the map ipar : P — Myyi—¢ is appearing
in (2.3). Asis easily seen, ¢17) = iy7: £2 — Myyk—¢ and g = pret+aing
5Z/2t — §Z/2¢ for some a where p;, is the obvious map. Since 2ipi} :
Y18§Z/2* — P is trivial, it follows that ¢ (iff + 7j) = infjj : £15Z/2° —
Miyk_¢ and @o(if) + 77) = (1 + aing) : T15Z/2° — §Z/2¢. Hence we
can observe that when k£ > £ < ¢ the cofiber of the map gypw, = 2w ikag
coincides with that of the map (iy797,i7(1+aing)) : E1SZ/2° — M r_oV
SZ/2¢, which is exactly the desired spectrum MUgstk—t,s-

5. The stunted mod 4 lens spaces

5.1. Let L*(4) be the (2k + 1)-dimensional standard mod 4 lens
space and LE(4) its 2k-skeleton. For simplicity we set LZ+1 = L[k(4)
and L% = Lf(4). Recall the structure of KU-cohomology KU*L" (see
[5] or [7]). The inclusion i : L* — L%+ induces an isomorphism
@ KUL¥+1 S KUOL? and KU'L?+! = Z and KU'L%* = 0. The
ring KUCL?+! = KUOL2F is generated by o = ¥ — 1, whose multiplica-
tive structure is given by the two relations (¢ + 1) = 1 and o*t! = 0.
Here 7 denotes the canonical complex line bundle over L?*+! = L*¥(4) or
its testriction to L?* = L(4). According to [5, Theorem 4.6] the KU-
cohomology KUCL?*+1 =~ KUCL?*(k = 2m or 2m + 1) is explicitly given
as follows:

KUCLAm !l > gpOLim = 7/02m+1 g z/9m @ Z /9™~ 1
KUOL™ 3 > RUOLIm+2 = 7/0?m+2 ¢ 7 /9™ @ Z /2™
whose direct summands are generated by the elements o, (1) and o(1)oc+

2™+l in the former case, and o, 0(1) + 2™*!o and o(1)o in the latter
case, where 0 =y — 1 and o(1) = 7% - 1 = 0% + 20.
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We next study the behavior of the complex Adams operation ¥7 on
KUCL?+1 > K01 after changing the above direct summands slightly
as follows:

(5.1) i) KU°LY™Hl o~ gyOLim ~ z/92mtl g Z/om g 7Z/2m~1
with generators o, o(1)o + o(1) and o(1)o + 2™*'0, and
i) KUOLY+3 > KUOLim+t > 7/02m+2q 7/om @ Z /2™
with generators o, o(1)o + o(1) + 2™*'o and o(1) + 2™*10.

Since 1/)6"’40 = Y50 and ¢6+20(1) = ¢¥go(1), it is evident that @[)(’}H =

Y5 on KUCPL#+! = KUCL?*, Asis easily calculated, the complex Adams
operation ¢}, on KUOL*+! = KUCL%*(k = 2m or 2m + 1) is given as
follows:

52) i) ¢¥¥ =0 and ¥¥T! =1;
c c

omtl g —2m+1l g 0
i) vyt?= 1 0 0] and 0 0 0];

-1 0 0 1 00
1 0 0 1 —2mtl gmt2 g
i) ypatd = (1 ~1 —2) and ( 1 -1 0)
0 0 1 0 0 1

which operate respectively on KUCLAm+! ~ K[O[4m =~ 7Z/22m+1 g
Z/2mg Z/2m~ 1 and KUCLA™+3 = KUCL4m+2 & 7/92m+2q 7 /o™ Z /2™
whose direct summands are given as in (5.1) i) and ii). Here the matrices
behave always as left action.

Dualizing (5.1) and (5.2) we can study the behavior of the complex
Adams operation ¥% on KU.L™ ® Z[1/r], and in particular the conju-
gation ¥;' on KU.L™. Note that KU_ L% = KUCL?*, KU_,L[%+! =
KU_12%+1 @ KU_,L% and KUyL* = KUyL?**! = 0. By virtue of
(5.1) the induced homomorphism i : KU°L%+2 — KUCL?*+! is actually
represented by the following matrix Ax(k = 2m or 2m + 1):

1 2m+1 2m+2 1 _.2m+1 2m+2
(53) Agm = (0 1 1 ) and A2m+1 = (0 1 1 )

0 0 -1 0 0 -1

where Ay, 1 Z/22 2@ Z/2m @ Z/2™ — Z[2™H ¢ Z/2m @ Z/2™ ! and
Agmyr 2 Z)22B3g Z/2m g Z /2™ — Z)2¥ 2 Z /2™ @ Z/2™. Therefore
the induced homomorphism 7, : KU_;L%*+! - KU_,L%*2 s given by the
following matrix Bx(k = 2m or 2m + 1):
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r 2 0 0 v 2 0 0
(5.4) Bom = (y 11 0 ) and Bygper=| v -1 2 0
z 2 1

-1 w 1 1 -1

where By : Z @ Z/22H g Z/2m @ Z[2m Y — Z 22 Z /2" p Z )2
and Bopmy1 1 Z@ Z/22mt2g Z/2m p Z[2™ — Z[2m 3 g Z2mt g Z/2m,
Since the above induced homomorphism ¢, is an epimorphism in any case,
it follows that z and « must be odd. Using this fact we show

Proposition 5.1. The suspended mod 4 lens space S'L™(n > 2)
has the same #type as the small spectrum Upm—_12m+1.m, MUm-12m+1,m,
SZ/2m \Y I’Vg,,l_*.l,m.*_] or EO \Y SZ/2m \ M’;Z'm+1,m+l according asn = 477?.,
4m + 1, 4m + 2 or 4m + 3, where Wy, should be replaced by ¥2SZ/4 in
the n = 2 and 3 cases.

Proof. The n = 2k case is just shown as the dual of (5.2). On the
other hand, the conjugation ;' on KU_;L?*! is represented by the
following matrix:

-1 0 0 0 1 0 0 o0
P I a0 o d 1-2mhogmi2 g
c -l 0 -1 0 e 1 -1 0

c 0 -1 1 f 0 0 1

according as £k = 2m or 2m + 1. Using the equality z;’)ali,., = i,z,")(_;l :
KU_{L*+ & KU_,L%*%? we get immediately that a = 2 + 2™a’, b = 0,
c=2—-2,d=2""d e = —d and f = 0. As is easily verified, we
may take z = —1, @’ = ¢ = 0 and d’ = 0 after changing the direct sum
decomposition of KU_; L**! ~ Z @ KU_;L?* suitably if necessary. Now
our result is immediate from Propositions 2.1 and 2.3.

5.2, The stunted mod 4 lens space L*/L™(n > m > 0) is simply
written to be L7, ., as usual. We here study the behavior of the conju-
gations ¢z' on KU*LY,, and KU.L% . Similarly to (5.3) the induced
homomorphism * : KUL?* — KUCL?*(¢ > k) is represented by the
following matrix Ay x:
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1 0 2ntt—ogmHl
A2n,2m = (0 1 0 )
0 0 1
1 2n+1 2n+1 +2m+1
Asnt1om = (0 1 1 ,
0 0 -1
(55) 1 2n+1 _ 2m+l 2n+1 _ 2m+l

Azt12m41 = (0 1 0 )
0 0
1 _2m+1 -2n+2

Agny22mi1 = (0 1 1 )
0 0 -1

where Agnom 1 Z/27H @ Z/2" @ Z/2°Y — Z/2¥H g Z)2m @ Z)2m 1,
Agnyrom @ Z[27P2 @ Z/2" @ Z/20 — Z/22mHl g Z/2m @ Z/2m1,
Any12me1 + 222 @ Z/2" @ Z/20 — Z/2¥™2 g Z/2™ @ Z/2™ and
Aznt22myr 2 22203 g Z/onHl @ Z/on — Z/22mt2 g Z/om @ Z)/2™.
The projection p : L% — Lgf; +1 induces a monomorphism p* :
I(UOL%f;_H — KU°L?, which is represented by the following matrix Cy g

2%m 0 0
CZm,2n = 0 2m 0 s
2'2m—1 _ 2m—1 0 om
22m 0 0
Comant1 = | 22m"1—-om=1 om ¢ ||
m—1 2m-—1 m
Comt12n41 = ( 22m m 0 )
2m2_ -212m —om 2m+1
24m 0 0
Com+12n+2 = ( 2™ 2mtt 0 )
22m —9m 0 gm

where Com gy 1 Z/220~ 2+l g Z/on—m @y Z/on—m—1 _, Z/0Wn+l gy 7/9n g
ZI2*7, Companr )22 g Z v Z /o™ — Z[2 g Z /o @
Z/2"’, C2m+1,2n+1 . 2/22n~2m+1 = Z/Qn—m o Z/Qn_m—l - Z/22~n+2 b
ZI2* ® Z[2" and Comyiangz @ Z/27Im32 g Z/om™ gy Zj2n ™
Zj23 g Zjomtl g Z /2,

Using the equality p*yg5! = ¢51p* : KUOLg‘,‘ZH — KU°L* we can
easily show the following result by virtue of Proposition 2.1.
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Proposition 5.2. The S-dual DLgﬁ_zlk of the stunted mod 4 lens
space L%ﬁ'ﬁk (€ > 1) has the same “type as the small spectrum Uszp p.n,
SZ/2"V Wantint1, Un—1.2n410 or SZ[22+¥2V W, . according as (k,£) =
(2m,2n), (2m,2n+1), (2m+1,2n) or 2m+1,2n+1), where Wy, should

be replaced by £25Z/4 in the (k,£) = (2m,1) case.

Dualizing Proposition 5.2 we can immediately obtain

Corollary 5.3. The suspended stunted mod4 lens space Zngﬁﬁk
(€ > 1) has the same “type as the small spectrum Up_1 2n41,n, SZ/2™V
Want1n41; Uznnm or SZ[22"F2V W, . according as (k,£) = (2m,2n),
(2m,2n+1), (2m+1,2n) or (2m+1,2n+1), where Wy 1 should be replaced

by £28Z/4 in the (k,£) = (2m,1) case.

The induced homomorphism p. : KU_;L%* — KU_ngf;+l is repre-
sented by the following matrix Cj; dual to (5.6):

1 0 2n+l _ 2n—m+1
Cén,2m = (0 1 0 ]
0 0 1
1 2n+l _ -2n—m+1 2n—m+1 — 2n+1
C'én+1,2m = (0 1 0 ) ’
(5.7) 0 0
. 1 2n+1 2n—m+l _ 2n+l
C‘én+1,2m+1 = (0 1 -1 )
0 0 1
1 2n—m+1 2n+2 _ 2n—m+2
Cong22mt1 = (0 1 0 )
0 0 1

where C3, o, @ Z/2241 g Z/2™ p Z/2"" — Z[2:mIml g Z/9n-m g
Z[2 Y Coprom * 2222 @ 220 @ Z) 2" — Z )2 tmA2g Z /o™ g
22", Chugramn * ZI2 @ 2)2°® 2/2" — 2[4l @ Z[3nm g
z/2" 1 and Coppgomer : Z2/22F3 @ Z/2H @ Z/2" — Z/2m—mt2 g
Zjanm g Z[2m™,

Notice that KU_; L3t} = KU1 S*¥H @K U_ L3, | and KUo L%, =
0. The induced homomorphism p, : KU_; L3**! — KU_ILgﬁ_ll is repre-
sented by the matrix

. 1 0 - -
(5.8) (0 Cék) :Z® KU LY - Z®KU_ L%,
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in which the matrix C} ; is explicitly expressed in (5.7). Since the induced
homomorphism p, : KU_, L¥**+! — KU_, Lgﬁ_ll is an epimorphism, we can
easily show the following result by means of Proposition 5.1.

Proposition 5.4. The suspended stunted mod 4 lens space
21L§£1€k+1(£ > 1) has the same % type as the small spectrum
JMUn——l,2n+l,n; v SZ/Qn Vv W2n+l,n+1; xov U‘Zn,n,n or 1M2n+2 \ Wn,n ac-
cording as (k,£) = (2m,2n), (2m,2n+1), (2m+1,2n) or (2m+1,2n+1),
where Wy 1 should be replaced by £25Z/4 in the (k,€) = (2m,1) case.

5.3. By means of (5.6) we can easily give the matrix represen-

tation of the induced homomorphism j* : I&'UOLgi"ﬁk — KUOLgiﬁk

where j : L%,itz]k - Lgiﬁk denotes the canonical projection. Note that

KUCLYY* ~ Ryon? g KUCLZA? and KU'LIT? = 0. Then the

2642k 2042k
L L3

21 induces an epimorphism

bottom cell collapsing j :

it KUOLgi“k — Ix’UOLgilek, which is represented by the following
matrix By ¢ similarly to (5.4):

T 2 00 z2 2 0 0
Bomaon = (Z/l -1 1 0) s Bomang1 =2 -1 2 0
(5.9)

21 1 0 2 zz -1 1 1
Z3 2 0 0 T 4 2 0 0
Boms1,2n = (ys 1 1 0), Bamtr2np1={ya 1 2 0
z3 0 -1 2 24 0 0 1

where By on : Z@ Z/20 @ Z/2" @ Z/2" 7 - Z/2? i Z/2m g Z/2",
Bomang1 1 Z @ Z)272 g Z/2" @ Z[2" — Z[2* 3 g Z/ovH @ Z)27,
Bomy12nt Z® Z/20 P @ Z)2" @ Z)2" ! — Z[2?"Y2 g Z/2" @ Z/2™ and
Bomitant1 1 Z® Z[27¥2 Z/2" @ Z /2" — Z[223 @ Z/ 2" @ Z /27,
Notice that all of z;(1 < ¢ < 4) must be odd. By a quite similar argument
to Proposition 5.1 we show

Proposition 5.5. The S-dual DL%;;"'% of the stunted mod 4 lens
space Lgfc’*’z(f > 1) has the same “type as the small spectrum £°V Usy s
0 v SZ/?”' \Y W2'n+1,n+1y MUn—l,2'n+l,n or 1M2n+2 V W, according as
(k,€) = (2m,2n), (2m,2n + 1), 2m + 1,2n) or (2m + 1,2n + 1), where
Wi 1 should be replaced by ¥2SZ/4 in the (k,£) = (2m.1) case.
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Proof. By virtue of Proposition 5.2 the conjugation ‘t,")El on
K UOL%"'?" is expressed by the following matrix:

1 0 0 0 1 0 0 0
a;z 1 0 0 ap 1-—27t1 ontZ g
by 1 -1 =21} | b 1 -1 0o}’
g 0 0 1 ¢ 0 0 1
-1 0 0 0 -1 0 0 O

az 1 2°t1 0 or | @ 1 0 0

b 0 -1 0O by 0 -1 -1

e 0 -1 1 cqg 0 O 1

according as (k,£) = (2m,2n), (2m,2n+1), (2m+1,2n) or (2m+1,2n+1).
Using the equality j*zj)al = z_r;'alj" : I(L’OL%“" — KU°L¥+% we see that

2k—1
Daj=c¢; =0,by = -y — z1; ii) az = 2"Ha), by = —a), 2 = 0;
iii) az = 3+ 2“(13, b3 = 0, C3 = 233 and iV) a4 = T4, b,; = —2Z4, Cq4 = —224.
As in the proof of Proposition 5.2 we may take a}, = a5 = 0, z3 = 24 = —1

and by = ¢3 = by = ¢4 = 0. Thus a;, b; and ¢;(1 < ¢ < 4) are taken to
be zero except a3 and a4, while a3 = a4 = 1 as desired. Now our result is
immediate from Propositions 2.1 and 2.3.

By means of (5.7) we can represent the induced homomorphism j, :

I\"U_ll,gf:zlk — I&'L"_ngi'ﬁk by the following matrix D g:

1 _-2n+1 2n+l 1 _.2n+l _2n+2
D2n,2m = (0 1 0 ) . D2n+1,2m = (0 1 1 )
(5.10) L 1 0 0 1

1 nH 1 2w+t
Donams1 = (0 1 —1) s Dang1,2me1 = (U 1 0)

0 0 1 0 0 1

where Donam : Z/2272 @ ZJ2* @ Z/2" — Z/2+1 @ Z/2" @ Z/2°,
Dopti19m : Z/22n+3$Z/2n+I@Z/2n - 2/22n+2$z/2n@2/2n’ DQn’gm.*_] :
2/ @ Z/90 @ Z/20 — Z/2H @ Z/2" @ Z/2% ) and Donyramer
Z[]2m3 gy Zzjomtl g Z /2" — Z)2 2 g Z)om @ Z/2".

Evidently the induced homomorphism j, : KU_,LX%t%*+1

KU_, Lgiﬁk"'l is represented by the matrix

1 0 . .
610 (g py, ) 2@KUALEY ~ 20 KU L
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in which the matrix Dy is explicitly expressed in (5.10).
Consider the exact sequence
0—- KUiLy, —» KU Ly — KUpT?* KUpLy, — KUpLyy, — 0

induced by the cofiber sequence L2 — Ly — Ly, — N+ (n > 2k)
where KUpL3; ., = 0. Assume that KUpL% = 0, and then KU L, | =
Z ® KU,L;,. When n = 2f this is evidently a contradiction because
KU,L% ., ® Q = 0. Inthe n = 2 + 1 case our assumption implies
that KU3 LI = KU\ LY || because KUI LAY = Z @ KU LY, ). In

KU, Lgf;tll there exists an element of order 23_’”'2, but in KU, Lgf:_ll there
exist no elements of order 2(=%*2 under our assumption. As is easily
checked, this is a contradiction, too. Therefore it is verified that KUp L}, =

Z, and hence there exist isomorphisms
(5.12) iv: KUS® 35 KUgLy, and ju: KU_ L3 S5 KU_\L}

for any n > 2k where i : £2F L3, and j : Ly — L3, denote the
bottom cell inclusion and collapsing respectively.
Using (5.11) and (5.12) we can immediately show

Lemma 5.6. The induced homomorphism i, : KU_ L%+ —
KU_ L3241 > 1) is identified with the homomorphism ¢y ¢ defined
as follows:

Prman(1) = (0,22"71,2°7,0) € Z@ Z/2*" 1 @ Z/2" @ Z/2" 7Y,
Pamantr(1) = (0,227,201, 20" Y e 2 g Z/2™ 2 g Z/2" @ Z/2
Camp12n(1) = (0,227 20V 0) e Z @ Z/2 P g Z/2" @ Z/2"

Gamir2n41(1) = (0,277,0,2°" Ny e Z § Z/2*" 2 g Z/2" & Z/2".

5.4. Inorder todetermine the quasi A'O.-types of the stunted mod 4
lens spaces L7, = L"/L™ we only need the following part (cf. [15,
Lemma 2.2]), although KO*L},,, and hence KO.L} ,, are completely
calculated in [6, Theorem 2] and [8, Theorem 2].

Lemma 5.7. i) KO4mLZ$i’1’ =0= I&'O4mL3$i’;‘ ifn=1,2,3,4,
5 mod 8. :
i) KOumpalimd? =0=KOumyaLlimt} ifn=0,1,5,6,7 mod 8.
iii) KOumysLimi? = 0= KOsmyeLintl for alln.
iv) KOm=3[im+2t — o = gKOIm-3[im+20 if¢ = 1,2 mod 4.
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v) KOm-Tpim+2t _ g = gOim- ‘ijgf if £ = 0,3 mod 4.
vi) KoY~ 5L3z+” = 0= K0 SLimt2 for all L.

Using Corollary 5.3, Propositions 5.4 and 5.5 and Lemma 5.7 and then
applying Proposition 3.1 and Theorem 3.3, we can first determine the quasi
KO.-types of L% and DLIF¥.

Theorem 5.8. i) E“"’““Liﬁi?(n > 2) is quasi KO,.-equivalent
to the following small spectrum: Uzr—i4ar4+12r, MU2r_14r4127, Vor V
Warg12r41, 3%V Var V. Wagi2r41,  Vorarssordl,  MUzeares2rtr,
SZ/'ZC“T"'1 V Wiris ars2, oy SZ/'22’+1 V Wary32ry2 according as n = 8r,
8 +1, .-+, 82 + 7. Here Vo vV Wy should be replaced by E2SZ/4 in the
n =2 and 3 cases.

i) potmtlpimin=2(n > 2) is quasi K O.-equivalent to the following
small spectrum: U4‘,-'27-727-, ZOV L‘Y_.;,-,zr'z,-, 5Z/24T+2 \ W27‘27-, 4M4r+2V1‘VgT:2,',
Var+2,20+1,2041, B VVarg2 204120415 VareaVWorg 2041, MarraVWorin 2041
according asn =8, 8r +1, ---, 8r 4+ 7

iii) SmDLI™ (e > 1) is quasi KO.-equivalent to the follow-
ing small spectrum: X° V Ugrarzr, Z°V S4Vor V Warg12r41, X0V
E4V’:4r+272r+1727-+1, ¥ov SZ/22T+1 \Y VV.;T+3,27+2 according as £ = 4r, 4r + 1,
47 + 2, 47 + 3. Here L4V, v Wh.1 should be replaced by Y=25Z/4 in the
£ =1 case.

iv) DAmDLAmtA-2(4 > 1) is quasi KO.-equivalent to the follow-
ing small spectrum: MUszr_1ar412rs Marg2 V Worar, SIMUsraryzarin,
S4Myrya V Wopp1,2r41 according as £ =4r, 4r +1, 41 + 2, 4r 4+ 3.

From [10, Corollary 1.8] we recall that

(5.13) two finite spectra X and Y have the same quasi KO,-type if and
only if their §S-duals DX and DY have the same quasi K O,-type.

By virtue of Theorem 5.8 iii) and iv) and (5.13) we can next determine
the quasi K O,-types of L2k+2f with the aid of Corollary 3.4.

Theorem 5.9. i) I~ H1LIm+28(0 > 1) is quasi K O.-equivalent
to the following small spectrum : SV Upr_1 4r41.27) 21V Var V Warg1.2r41,
IV Vorar43,2r41: PV SZ[22 Y Wy i3 2r 42 according as £ = 4r, 4r 41,
4r + 2, 4r + 3. Here Vo vV W11 should be replaced by Y25Z/4 in the £ = 1
case.
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i) ToamHILAmA2-2(p > 1) is quasi KO,.-equivalent to the follow-
ing small spectrum : PUsry12r2r, Parg3 V Worr, T4PUsry3 20412041,
T4 Parys V Wory1 2741 according as £ = 4r, 4r + 1, 4r + 2, 4r + 3.

5.5. Using the maps appearing in Lemmas 4.3, 4.4, 4.5, 4.7, 4.9 and
4.10 we here consider the following maps fi¢ : Yi¢ — Xi¢ modelled on
the bottom cell inclusions i : $2k-4m+2 , wi-dm+1 [RALH igh k= 2m
or2m-—1:

(5.14) (1) fom1 = (0,6) : 52 — £V £257/4;

(2) fame= hf'wv,o D YL MV3y;

(3)  famant2 = faum 1 B2 = MU onyantrs

(4)  fomar—1 = (0, fwar—1) : B2 = B0V Wy 2, vV §Z/277 1

(5)  femar41 = (0, fwviar) : B2 = TV Warp1 2741 V Vars

(6)  fam—11 = imi: B0 — My

(7) f2m—1,2 = (OaiV":) IS RV V2,2;

(8) fam—1.4r = (0, f;4,) : 20~ 50 E_2U£T,4r+l,2r—1;

(9) fom-rar+2 = (0,9V,4,0,) 1 ZP = T4V E2VG 4 4 ia 0
(10) f2m—l.2n+1 = gMWwW2nn—1 -+ 20— 1M2n+2 \% Wn,n

(n,r > 1) where the small spectrum P, has the same quasi KO,-type as
4. According to Theorem 5.8 i) and ii) combined with Corollary 3.4,
the small spectrum Xj ¢ has the same quasi KO.-type as Z~4m+! Lgﬁf”l
where & = 2m or 2m — 1. Using Lemmas 4.3, 4.4, 4.5, 4.7, 4.9 and 4.10
with the aid of (5.13) and Corollary 3.4, we can observe that

(5.15) i) the cofiber of the map fie has the same quasi KO.-type as
the following small spectrum Zyo: T4V 3, M Py, M Py V Wy p,
LOVPU4r 1971201, BVEPUgrt1 252, BVE?, BIVEWVE2S5Z/4,
SIVEOY Wyy9, vV SZ/27 1, BV EAY Wergr 2741 V Vo, BV
MUy,_12n-1n corresponding to the case (1), (2), ---, (10) of (5.14),
and moreover

ii) the induced homomorphism fg ¢ : KUpYi e — KUpXg e is i-
dentified (up to signs) with the homomorphism ¢y ¢ defined in Lemma
5.6.

Proposition 5.10. Let X and Y be CW -spectra having the same
quast KO.-types as Xy ¢ and Yi ¢ given in (5.14) respectively. Let f :
Y — X be a map whose induced homomorphism f. : KUpY — KUyX is
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identified with the homomorphism ¢y defined in Lemma 5.6. Then the
coftber of the map f is quasi KO,-equivalent to the small spectrum Zj ¢
appearing in (5.15) i).

Proof. Choose quasi KO.-equivalences hg : ¥ — KO A Yy, and
hy: X — KO A X ¢ satisfying (¢ A feg)ho = (c ADRf Y — KU A Xie
where ¢ : O — KU denotes the complexification. It is sufficient to show
that the equaility (1A fy¢)ho = h1f : Y — KOA Xy ¢ holds in any case. By
means of [10, Propositions 4.2 and 4.5] and Propositions 2.2 and 2.4 it is
immediate that [Y,Z' KO A Xy ¢] = [Yie, B* KO A Xi ¢] = 0 except (k,£) =
(2m,4r — 1). Therefore our assertion that the equaility (1 A fi¢)ho = b1 f
holds is valid unless (k,£) = (2m,4r — 1). In the (k,£) = (2m.4r — 1)
case we next show that our assertion is also valid after changing the quasi
KQO.-equivalence hy : X — KO A Xyp 4r—1 suitably if necessary. As is
easily seen, we can choose a certain map g = (an?,2% " 2hw, 7 + bin?) :
¥2 5 B0V Wyror 20 V SZ/2271 with a,b € Z/2 satisfying (1 A g)ho =
hif:Y = KOA(E®YWyr_12-VSZ/2271). Consider the involution a on

1 0 anj
¥ov W12, V 52/22’_1 represented by the matrix | 0 1 0 ,

0 0 1+4biny
and replace the quasi K'O.-equivalence hq by the composite map hf = (1A

a)hi. Then we get the equalities (cA1)h] = (¢A1l)hy and (1A fre)ho = R\ f
for the new quasi K O.-equivalence h]. Hence our assertion is valid even
if (k,£) = (2m,4r - 1).

Combining Proposition 5.10 with Lemma 5.6 we can finally determine
the quasi KO,-types of L§£+2€+1’

Theorem 5.11. i) X-4mHipim+24lp 5 o) 45 quasi KO,-
equivalent to the following small spectrum: £V MUszr_y ar4120r, E1VEY
Vor V Wirg1,2041; Z'V MUy gr432r41, BTV EOV §Z/27741 v Wy 39,42
according as £ = 4r, 4r + 1, 4r + 2, 47 + 3. Here MU_110 = Y2 and
Vo V W11 should be replaced by 2232/4 in the £ =1 case.

i) poAmHlpAmd2-1(g > 0) is quasi KO.-equivalent to the fol-
lowing small spectrum: ¥° v PUsr41,2r.27, TAMPyry3 V War 2r, Tty
Z4PU47-+3'2T+1:2T+1, E4JMP47-+5 \% W"27«+1,27+1 according as £ = 4r, 4r + 1,
4r 4+ 2, 47 + 3 where PUypg = L
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