IDEALS AND SYMMETRIC BI-DERIVATIONS OF PRIME AND SEMI-PRIME RINGS *

M.SERIF YENİGÜL and NURCAN ARGAÇ

Throughout this paper, R will represent an associative ring and Z(R) will denote the center of R. We shall write [x,y] for xy-yx. A mapping $B(.,.): R\times R\to R$ is called symmetric if B(x,y)=B(y,x) holds for all pairs $x,y\in R$. A mapping $f: R\to R$ defined by f(x)=B(x,x) is called the trace of B, where $B(.,.): R\times R\to R$ is a symmetric mapping. It is obvious that, if $B(,.,): R\times R\to R$ is a symmetric mapping which is also bi-additive (i.e. additive in both arguments), then the trace f of B satisfies the relation f(x+y)=f(x)+f(y)+2B(x,y) for all $x,y\in R$. A symmetric bi-additive mapping $D(.,.): R\times R\to R$ is called a symmetric bi-derivation if D(xy,z)=xD(y,z)+D(x,z)y is fulfilled for all $x,y,z\in R$. Then the relation D(x,yz)=yD(x,z)+D(x,y)z is also fulfilled for all $x,y,z\in R$.

In [4], J. Vukman has proved some results concerning symmetric biderivation on prime and semi-prime rings. We shall substitute R for a non-zero ideal I of R and show that the results which are obtained in [4, Theorems 1, 2 and 3] are also valid in this situation.

We shall need the following well-known lemmas.

Lemma 1 ([3, Lemmas 2.1 and 2.2]). Let $D: R \to R$ be a derivation of a prime ring R and I a non-zero ideal of R. Suppose that either (i) aD(x) = 0 for all $x \in I$ or (ii) D(x)a = 0 all $x \in I$ holds. Then a = 0 or D = 0.

Lemma 2 ([1, Lemma 1]). Let R be a prime ring and I a non-zero right ideal of R. If I is commutative, then R is commutative.

The following lemma is a generalization of [2, Lemma 3.10].

Lemma 3. Let R be a prime ring of char $R \neq 2$ and I a non-zero ideal of R. Let a, b be fixed elements of R. If axb + bxa = 0 is fulfilled for all $x \in I$, then either a = 0 or b = 0.

^{*}This work has been supported by TUBITAK, Ankara (TBAG-Ç2)

Proof. We have a(xbrax)b = -(b.xbr.a)xa = axbr(bxa) = -axbraxb for all $r \in R$, and so 2(axb)r(axb) = 0 for all $r \in R$. Since R is a prime ring of char $R \neq 2$, we get axb = 0 for all $x \in I$. Hence a = 0 or b = 0.

Lemma 4. Let R be a prime ring of char $R \neq 2$ and I a non-zero left (or right) ideal of R. Let $D(.,.): R \times R \to R$ be a symmetric bi-derivation and d the trace of D. Suppose that d(x) = 0 for all $x \in I$. Then d = 0, that is, D = 0.

Proof. We have

$$d(x) = 0 \text{ for all } x \in I. \tag{1}$$

The linearization of (1) gives us d(x) + d(y) + 2D(x, y) = 0 for all $x, y \in I$. Since d(x) = d(y) = 0 and $\operatorname{char} R \neq 2$, then

$$D(x,y) = 0 \text{ for all } x, y \in I.$$
 (2)

Substituting y by ry $(r \in R)$ in (2), we arrive at D(x,r)y = 0 for all $x,y \in I$ and $r \in R$. Since the left annihilator of a non-zero left ideal is zero, we have

$$D(x,r) = 0$$
 for all $x, y \in I$ and $r \in R$. (3)

Now, substituting x by rx in (3), we get d(r)x = 0 for all $x \in I$ and $r \in R$. Hence d(r) is an element of the left annihilator of I. As the above, d(r) = 0 for all $r \in R$.

Theorem 1. Let R be a non-commutative prime ring and I a non-zero ideal of R. Let $D(.,.): R \times R \to R$ be a symmetric bi-derivation such that $D(I,I) \subset I$ and d the trace of D.

- (a) If $\operatorname{char} R \neq 2$ and [x, d(x)] = 0 for all $x \in I$, then D = 0.
- (b) If $\operatorname{char} R \neq 2, 3$ and $[x, d(x)] \in Z(R)$ for all $x \in I$, then D = 0.
- *Proof.* (a) I is not a commutative ideal of R by Lemma 2. Since I is a non-zero ideal of a prime ring R of char $R \neq 2$, I itself is a non-commutative prime ring of char $I \neq 2$. Therefore, d(x) = 0 for all $x \in I$ by [4, Theorem 1] and d(r) = 0 for all $r \in R$ by Lemma 4.
- (b) Since char $I \neq 2, 3$, we have [x, d(x)] = 0 for all $x \in I$ by the proof of [4, Theorem 2]. Hence d(r) = 0 for all $r \in R$ by (a).

Theorem 2. Let R be a prime ring of char $R \neq 2$ and I a non-zero ideal of R. Suppose that there exist symmetric bi-derivations $D_1(.,.)$: $R \times R \to R$ and $D_2(.,.)$: $R \times R \to R$ such that $D_1(d_2(x),x) = 0$ for all $x \in I$, where d_2 denotes the trace of D_2 . Then either $D_1 = 0$ or $D_2 = 0$.

Proof. It is enough to show that $d_1(I) = 0$ or $d_2(I) = 0$ by Lemma 4. We get, by the proof of [4, Theorem 3],

$$d_2(x)D_1(x,y) + d_1(x)D_2(x,y) = 0 \text{ for all } x, y \in I,$$
(4)

and

$$d_1(x)yd_2(x) + d_2(x)yd_1(x) = 0 \text{ for all } x, y \in I.$$
 (5)

Suppose that $d_1(I) \neq 0$ and $d_2(I) \neq 0$. Then there exist $x_1, x_2 \in I$ such that $d_1(x_1) \neq 0$ and $d_2(x_2) \neq 0$. In particular, $d_1(x_1)yd_2(x_1) + d_2(x_1)yd_1(x_1) = 0$ for all $y \in I$ by (5). Since $d_1(x_1) \neq 0$, we have $d_2(x_1) = 0$ by Lemma 3. Similarly, we get $d_1(x_2) = 0$. Then the equation (4) reduces to the equation $d_2(x_2)D_1(x_2,y) = 0$. Using this relation and Lemma 1, we obtain that $D_1(x_2,y) = 0$ holds for all $y \in I$ because of $d_2(x_2) \neq 0$ (recall that the mapping $y_1 \mapsto D_1(x_2,y)$ is a derivation). In particular, we have $D_1(x_2,x_1) = 0$. In the same way, we get $D_2(x_1,x_2) = 0$. Substituting $x_1 + x_2$ for y, we have $d_1(y) = d_1(x_1) + d_1(x_2) + 2D_1(x_1,x_2) = d_1(x_1) \neq 0$, and by the similar argument we have $d_2(y) \neq 0$. Hence we have $d_1(y) \neq 0$ and $d_2(y) \neq 0$; a contradiction by (5) and Lemma 3. So we get $d_1(I) = 0$ or $d_2(I) = 0$.

Difinition. Let R be a ring and I be a non-zero left (resp. right) ideal of R. We shall say that a mapping D(.,.): $R \times R \to R$ acts as a left (resp. right) R-homomorphism on I if D(rx,y) = rD(x,y) and D(x,ry) = rD(x,y) (resp. D(xr,y) = D(x,y)r and D(x,yr) = D(x,y)r) for all $x,y \in I$ and $x \in R$.

Let S be a set. $\ell_R(S)$ (resp. $r_R(S)$) will denote the left (resp. right) annihilator of S.

Theorem 3. Let R be a ring and I a non-zero left (resp. right) ideal of R such that $\ell_R(I) = 0$ (resp. $r_R(I) = 0$). Let $D(.,.): R \times R \to R$ be a symmetric bi-derivation. If D acts as a left (resp. right) R-homomorphism on I, then D = 0.

Proof. Suppose that I is a left ideal such that $\ell_R(I)=0$ and D acts as a left R-homomorphism on I. Then rD(x,y)=D(x,ry)=D(x,r)y+rD(x,y) for all $x,y\in I$, $r\in R$ and D(x,r)y=0 for all $x,y\in I$, $r\in R$. Hence $D(x,r)\in \ell_R(I)=0$. Then we have 0=D(sx,r)=sD(x,r)+D(s,r)x=D(s,r)x for all $x\in I$ and $r,s\in R$. As the above, D(r,s)=0 for all $r,s\in R$.

Corollary 1. Let R be a prime ring and I a non-zero left (resp. right) ideal of R. Let $D(.,.): R \times R \to R$ be a symmetric bi-derivation. If D acts as a left (resp. right) R-homomorphism on R, then D=0.

Corollary 2. Let R be a semi-prime ring and $D(.,.): R \times R \to R$ a symmetric bi-derivation. If D acts as a left (or right) R-homomorphism on R, then D=0.

REFERENCES

- [1] Y. HIRANO, A. KAYA and H. TOMINAGA: On a theorem of Mayne, Math. J. Okayama Univ. 25(1983), 125-132.
- [2] I. N. HERSTEIN: Topics in Ring Theory, Univ. of Chicago Press, Chicago, 1969.
- [3] K. KAYA: Prime rings with α -derivations, Hacettepe Bull. of Noth. Sci. and Eng. 16(1987), 63-71.
- [4] J. VUKMAN: Symmetric bi-derivations on prime and semi-prime rings, Aequationes Math. 38(1989), 245-254.

DEPARTMENT OF MATHEMATICS
EGE UNIVERSITY
BORNOVA, IZMIR, TURKEY

(Received July 25, 1992)