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ON RESIDUALLY FINITE RINGS

Dedicated to Professor Kazuo Kishimoto on his 60th birthday

Yasuyvyukl HIRANO

Following K. L. Chew and S. Lawn [3], a ring R is said to be residually
finite if every nonzero ideal of R is of finite index in R. Obviously all finite
rings and all simple rings are residually finite. Other residually finite
rings are said to be proper. Examples of commutative proper residually
finite rings are the ring of algebraic integers of an algebraic number field,
the polynomial ring F[z] and the formal power series ring F[[z]] over a
finite field F. If R is a residually finite ring and if n > 2, then the
ring M,(R) of all » x n matrices over R is a noncommutative residually
finite ring. In [3], commutative residually finite rings were investigated
very well. In this paper, we study residually finite rings which are not
necessarily commutative. A ring R is called a right residually finite ring if
every nonzero right ideal of R is of finite index in R. Clearly commutative
residually finite rings are right residually finite. In §1, we show that a right
residually finite ring is a right fully bounded right Noetherian ring, and
give some characterizations of such a ring. In §2, we show that certain
extensions of a residually finite ring are residually finite. As a result, we
obtain many examples of noncommutative residually finite rings. In §3, we
study the number of ideals in a residually finite ring. Let R be a residually
finite ring, and I a nonzero ideal of R. We define ¥ (1), the norm of I, to
be the number of elements in R/I. We show that given a positive integer
n, the number of ideals I with N (/) < n is finite. As a consequence, we
know that the set of ideals of R is either finite or denumerable.

Throughout this paper, all rings have an identity element 1, and sub-
rings of a ring R are assumed to have the same identity element as R.

1. Right residually finite rings. In this section, we consider a
special class of residually finite rings which contains commutative residu-
ally finite rings. A ring R is said to be right (resp. left) residually finite if
every nonzero right (resp. left) ideal of R is of finite index in R.
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156 Y. HIRANO

Example 1. Let A = Q®Q:i® QJD Qk be the skewfield of quater-
nions over the field Q of rational numbers, and consider the subring
B=Z®Zi® Zj® Zk of A. We claim that B is a right and left
residually finite ring. Let z = a + b7 + ¢j + dk be a nonzero element of B
with a, b, ¢, d € Z and let T = a — bi — ¢j — dk. Then it is easily checked
that the norm N(z) = 2% = Zz ( = a® + b2 + ¢? + d?) of z is a positive
integer. Let I be a nonzero right ideal of B and let z be a nonzero element
of I. Then I contains the nonzero positive integer N(z). Hence B/I is a
finitely generated right module over the finite ring Z/N(z)Z, and so B/I
is finite. This proves that B is a right residually finite ring. Similarly we
can prove that B is also a left residually finite ring.

Example 2. Let P be a prime, n a positive integer greater than
1, and K = GF(p"). Then the map 6 : K — K defined by 6(a) = a?
for all a in K is a non-trivial automorphism of &'. Now consider the skew
polynomial ring K'[X; 6] defined by the relation Xa = 6(a)X foralla € K.
Then we can easily see that K[X; 6] is a noncommutative right and left
residually finite ring.

The proof of the following lemma is similar to that of [3, Lemma 2.1].
However, for the sake of completeness, we shall give the proof.

Lemma 1. Let R be a ring and let A, B be right ideals of finite index
in R. If AN B is finitely generated, then AB is of finite index in R.

Proof. Let ANB =a;R+---+a,R. Then the map f: (R/B)" —
(ANB+ AB)/AB defined by f(ri+B, -+, Tn+B) = a1r1+---+aprn+AB
is an epimorphism. Hence (AN B + AB)/AB is a finite set. On the other
hand, since R/A N B can be embedded in R/A® R/B, R/AN B is also a
finite set. Consequently R/AB is a finite set.

A ring R is called right fully bounded if, for each prime ideal P of R,
every essential right ideal of R/ P contains a nonzero ideal of R/P (cf. [12,
Definition in p. 165]).

Theorem 1., If R is an infinite right residually finite ring, then R
is a right fully bounded right Noetherian domain. Consequently an infinite
ring R is a right residually finite ring if and only if R is a residually finite
ring and every nonzero right ideal of R contains a nonzero ideal.
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Proof. Suppose that R is an infinite right residually finite ring.
Clearly R is right Noetherian. By virtue of [6, Theorem 1], every nonzero
right ideal of R contains a nonzero ideal. Now let P be a nonzero prime
ideal of R. Then R/P is a finite simple ring, whence there is no essential
right ideal of R/P except R/P itself. Hence R is right fully bounded. We
shall prove that R is a domain. Assume, to the contrary, that there exist
two nonzero elements a, b in R such that ab = 0. Then the right anni-
hilator r(a) of ¢ in R is nonzero, and hence it contains a nonzero ideal,
say I. Then we have aRI = 0. Since aR and I are of finite index in R,
aRI = 0 is of finite index in B by Lemma 1. This is contradictory to the
assumption that R is finite. Thus R is a domain. Now the latter assertion
is clear.

Trivially, all finite rings and all division rings are right residually finite.
The other right residually finite rings are said to be proper. Let R be a
proper right residually finite ring. By Theorem 1, R is a right Ore domain.
Let Q(R) denote the skewfield of fractions of R. It is easy to see that Q(R)
is the injective hull of the right R-module R.

Corollary 1. Let R be a proper right residually finite ring. Let ¥
be a set of representatives of all the isomorphic classes of simple right R-
modules and let E(S) denote the injective hull of S for each S € ¥. Then
every injective right R-module is isomorphic to a direct sum of some copies

of modules in {Q(R)} U{E(S)| S € £}.

Proof. Since R is right Noetherian, every injevtive right R-module is
a direct sum of indecomposable injective right R-modules by [1, Theorem
25.6). Now let M be an indecomposable injective right R-module. By
Theorem 1, R is a right fully bounded right Noetherian ring. Hence, by
[12, Theorem 7.2.1] and its proof, M is isomorphic to a direct summand of
the injective hull E(R/P) of R/ P for some prime ideal P of R. If P = 0,
M is isomorpohic to @(R). If P is nonzero, then R/P is a finite simple
ring. In this case, M is isomorphic to E(S) for some § € X. This proves
our assertion.

A polynomial f in the free algebra Z (X, X3, ---) is said to be monic
if at least one of the monimials of highest total degree in the support
of f has coefficient 1. A polynomial identity ring, abbreviated to P.I
ring, is defined to be a ring which satisfies some monic polynomial in
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Z(X1, Xa, -++). It is well known that if an algebra A over a commutative
ring R is finitely generated as an R-module, then A is a P. I. ring.

Corollary 2. Let R be an infinite P.I. ring. Then the following
statements are equivalent:

1) R is a right residually finite ring.

2) R is a left residually finite ring.

3) R is a residually finite domain.

Proof. 1f R is a right or left residually finite ring, then R is a domain
by Theorem 1. Hence it suffices to prove that 3) implies 1). So assume
that R is a residually finite domain and let I be a nonzero right ideal of
R. By Amitsur’s result [9, Corollary 13.2.9], I contains a nonzero ideal of
R. Since R is residually finite, this implies that 7 is of finite index in R.

Of course, there is a proper residually finite domain which is neither
right nor left residually finite.

Example 3. Let F(z) be the field of rational functions over a
finite field F, and let B(z,F(z)) be the F(z)-algebra generated by
z,27Y,y and y~! subject to the relation zy = zyx. By [7, Theo-
rem 2.1], B(z,F(z)) is a simple domain, but it is not a division ring.
Now let a # 0 be a non-invertible element of B(z,F(z)) and let R =
F + aB(z,F(z)). Then aB(z,F(z)) is a unique non-trivial ideal of R
and is obviously of finite index in R. Hence R is a proper residually fi-
nite domain. However R/a?B(z, F(z)) contains the nonzero F(z)-subspace
aB(z,F(z))/a®B(z, F(z)), and hence it is not finite. Hence R is not right
residually finite. Similarly we can show that R is not left residually finite.

Following Michler [10], a right ideal I of a ring R is said to be prime
if, for each elements s, t of R, sRt C I implies that either s € [ or t € I.
Now we shall prove a theorem which corresponds to [3, Theorem 2.3 and
Corollary 2.4].

Theorem 2. The following statements are eqivalent:

1) R is a right residually finite ring.

2) R is a right Noetherian ring and every nonzero prime right ideal of
R is of finite index in R.
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3) Every nonzero prime right ideal of R is finitely geberated and of
finite indez in R.

Proof. Obviously 1) implies 2) and the egivalence of 2) and 3) follows
from (10, Theorem 6].

Suppose that 2) holds and let E be the set of nonzero right ideals of
R of finite index. We claim that E is empty. Suppose, to the contrary,
that E is non-empty. Then, since R is right Noetherian, £ has a maximal
element, say M. By hypothesis, M is not prime. Hence there are s, t in
R\M such that sRt C M. Put A=sR+ M and B=tR+ M. Then M
is strictly contained in both A and B. By the maximality of M, A and
B are of finite index in R. Then AB is of finite index in R by Lemma 1.
Since AB C M, this is a contradiction. Thus E is empty as we claimed.

2. Extensions of residually finite rings. In this section, we con-
sider some ring extensions S O R and examine when “residual finiteness”
go up from R to S or go down from S to R. We first show that “residual
finiteness” is a Morita invariant property.

Proposition 1. Let R be a residually finite ring. If a ring S is
Morita egivalent to R, then S is also residually finite.

Proof. By [1, Proposition 21.11], there is an isomorphism F between
the lattices of ideals of R and S, and R/I and S/ F([) are Morita equivalent
for each ideal I of R. Now let I be anonzeroideal of R. Then R/I is a finite
ring. Since S/ F(I) is Morita equivalent to R/I, there is a finitely generated
projective R/I-generator P such that §/F(I) is isomorphic to Endg;/(P).
Therefore S/F(I) is also finite. This proves that § is a residually finite
ring.

A ring extension A/B is called an H-separable extension if A @p A is
A-A-isomorphic to an A-A-direct summand of a finite direct sum A™ of
copies of A. Let R be a commutative ring. By virtue of [4, Theorem 2.3.4],
an R-algebra A is Azumaya if and only if A/R is H-separable and A is
R-central.

Proposition 2. Let A/B be an H-separable extension such that g A
is projective. If B is residually finite, then A is residually finite.
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Proof. Suppose that B is residually finite, and let I be a nonzero
ideal of A. By Sugano [13, Theorem 3.1], it holds that I = A(/ N B)A.
Hence, in particular, we obtain I N B # 0. Hence B/IN B is a finite ring,.
Now by Tominaga [14, Proposition], gA is finitely generated. Therefore,
A/I is a finitely generated left B/I N B-module, whence A/I is a finite
ring. This proves our assertion.

For a ring R, Z(R) denotes the center of R. The following theorem
yields many examples of noncommutative residually finite rings.

Theorem 3. Let S O R be prime rings with Z(S) O Z(R), let K
denote the field of fractions of Z(R), and suppose that S ® z(g) K is finite
dimensional over K. If R is residually finite, then so is S.

Proof. Put Z = Z(R)..By hypothesis there exist s;,- -+, 8, in S such
that Sz A = $;(RQ®z K )+ - +sm(RQ®zK). Letusput M = s R+---+
smB. Then M is a Z-R-subbimodule of S. Let a be a nonzero element
of Z. Then M/aM is a finitely generated R/aR-module. Since R/aR is
a finite ring, the number of elements of M /aM is finite, say n. First we
claim that S/aS has at most n™ elements. This can be proved similarly as
in the proof of [3, Theorem 4.1], but for the sake of completeness we prove
this. Since M /aM has n elements, we have

(1) (@SN M)+aM = (@SN M)+aM =---.

Let b be an arbitrary element of S. Since S®z K = M @z K, we can write
b=c/dwithce M and 0 # d € Z. Since R/dR is finite, there exists a
positive integer k£ such that

(2) a*R+dR =a*'R+dR=---.
Hence we have a¥ = a**!z + dr for some z, r € R, whence 1 = az + dr/ak

in S ®z K. Thus we have
(3) b = a(c/d)z + cr/a* = er/a* (mod aS).

k

We show that & = u/a™! (mod aS) for some u in M. In view of (3),
we may assume that n < k. Since cr = a¥(er/a®) € a*Sn M, by (1)
we have ¢r = a**ls + at for some s € S and t € M. It follows that
¢/d = er/a* = as +t/a*"! = t/a¥~! (mod aS). Continuing this process,
we obtain

e/d=t/a* ! = ... = u/a”! (mod af),
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where £, ,u are elements of M.

Let z,, z9, ---, *, be the complete representatives of the distinct
cosets of aM in M. Then u = z;: 4+ azy + -+ + a® 'z, + a™y, where
1/, 2, ---, n' belong to {1, 2, ---, n} and y € M. Thus we obtain

b= u/a”—1 = :cl:/a."_1 + Ig//a"_2 + -+ 2, (mod a§).

Therefore S/aS has at most n™ elements.

Now let I be a nonzero ideal of S. Since § ® 7 K" is a simple Artinian
ring, I®z K = S®z K. Clearly this implies that TN Z # 0. Hence, by the
result proved above, we conclude that S/I is a finite ring. This completes
the proof.

In Example 1, we showed that Z ® Zi® Zj ® Zk is a right and left
residually finite domain. By virtue of Corollary 2 and Theorem 3, we know
that any subring of a finite dimensional division Q-algebra is a right and
left residually finite ring. More generally we have

Corollary 3. Let R be a commutative residually finite domain, and
K the field of fractions of R. Let D be a finite dimensional division K-
algebra. Then all subrings of D containing R are right and left residually
finite rings.

Using Theorem 3, we can construct many noncommutative residually

finite rings.

Example 4. Let R be a commutative residually finite domain and
let I, J be two nonzero ideals of R. By virtue of Theorem 3, we can easily

see that
R I
J R

Let R be a subring of a ring S. We say that S is a finite normalizing
extension of R if there exist ay,---,a, in S such that § = Ra;+---+ Ra,
and Ra; = a;R for each i.

is a residually finite ring.

Theorem 4. Let R be a right Noetherian prime ring and let S be a
prime finite normalizing eztension of R. Then S is residually finite if and
only if R is residually finite.
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Proof. Clearly § is also right Noetherian. Suppose that S is residu-
ally finite and let P be a nonzero prime ideal of R. By [9, Theorem 10.2.9],
there is a prime ideal 7 of § such that P is a minimal prime over I N R.
Since 0 is a prime ideal of R, I N R must be nonzero and hence I # 0.
Therefore R/I N R can be considered as a subring of the finite ring S/I.
Thus R/IN R and hence R/P is finite. Therefore R is residually finite by
(3, Theorem 2.3].

Next suppose that R is residually finite. Let P be a nonzero prime
ideal of S. Since S is right Noetherian and since 0 is a prime ideal of §,
we get PN R # 0 by [9, Propositions 10.2.12 and 10.2.13]. Hence R/PNR
is finite. Since S/P is finitely generated as an R/P N R-module, /P is
also finite. This completes the proof.

Corollary 4. Let R be a prime P.I. ring and let S be a prime finite
normalizing extension of R. Then S is residually finite if and only if R is
residually finite.

Proof. By virtue of Theorem 4, it suffices to prove that R is right
Noetherian. If R is residually finite, then R satisfies the ascending chain
condition on two-sided ideals by [3, Theorem 2.3]. Then R is right Noethe-
rian by [9, Theorem 13.6.15]. On the other hand, if S is residually finite,
then S satisfies the ascending chain condition on two-sided ideals by [3,
Theorem 2.3]. By the way S is also a P.I ring by [9, Corollary 13.4.9],
whence 5 is right Noetherian by [9, Theorem 13.6.15]. By Formanek and
Jategaonkar [5, Theorem 4], we conclude that R is right Noetherian.

In the rest of this section, we consider when “residual finiteness” go
down from a ring S to a subring R.

Proposition 3. Let S be a residually finite ring and let R be a sub-
ring of S. If R contains a nonzero ideal I of S, then R is residually finite.

Proof. Ovbiously we may assume that S is a proper residually finite
ring. Let J be a nonzero ideal of R. Since S is a prime ring by [3, Corollary
2.2], IJ1I is a nonzero ideal of S contained in J. Since IJI is of finite index
in §, J is of finite index in R. Therefore R is residually finite.

Example 5. Let F be a finite field and consider the formal power
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series ring F[[z]]. We can easily see that F([[z]] is residually finite. By the
routine argument on cardinality, we obtain an element y of F[[z]] such that
z and y are algebraically independent over F. Then the subring F[z, y]
of F[[z]] is not residually finite. However the subring F[y] + z F[[z]] is
residually finite by Proposition 3.

Let A be an integral domain and let & be the field of fractions of A.
Then A is said to be completely integrally closed if, for k € K and a € A
with a # 0, ak™ € A for all n > 0 implies k € A. It is well known that if A
is completely integrally closed then A is integrally closed, and the converse
of this is true if A is Noetherian.

Theorem 5. Let R be a residually finite prime P.1I. ring and let F be
the field of fractions of the center Z(R) of R. If C is a completely integrally
closed subring of F containing Z( R), then C is a residually finite Dedekind
domain and is the center of a residually finite Dedekind prime ring which
contains R.

Proof. By Posner-Formanek-Rowen theorem [11, Theorem 1.7.9], the
ring Q(R) of central quotients of R is Artinian simple. By the same way
as in the proof of [2, Lemma 2.1.1], we can show that RC is integral over
C'. Since C is integrally closed, the center of RC is C. By [8, Corollary
VII.3.4], there exists a maximal C-order A of Q(R) containing RC with
Z(A) = C. By [2, Proposition 2.1.2 a)], A is a maximal order of Q(R).
Since Q(R) D A D R, A is residually finite by Theorem 3. In particular,
A is a Noetherian ring (see the proof of Corollary 4), and the classical
Krull dimension of A is equal to or less than 1. Then, by [9, Theorem
13.9.14], C is a Dedekind domain and A is a maximal classical C-order
and a Dedekind prime ring. Since A is integral over C, the pair (4, C)
satisfies “Lying over” by [9, Theorem 13.8.14]. That is, if p is a prime ideal
of C, then there is a prime ideal P of A such that PNC =p. If p # 0, then
P # 0, and hence C/p is a subring of the finite ring A/P. Hence C/p is a
finite ring. By [3, Theorem 2.3], this implies that C is residually finite.

Corollary 5. Let R be a residually finite prime P.I. ring and let F be
the field of fractions of the center Z(R) of R. If C is a Noetherian subring
of F containing Z(R), then C is residually finite. In particular, Z(R) is
residually finite if and only if Z( R) is Noetherian.
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Proof. Let C denote the integral closure of C'in F. Since C is Noethe-
rian, C is completely integrally closed. Then C is residually finite by
Theorem 5, and hence C is residually finite by [3, Theorem 4.2].

Remark 1. This corollary also follows from [11, Corollary 5.1.4],
Theorem 3 and Corollary 4.

3. The number of ideals in a residually finite rings. Let R be
a residually finite ring and let I be a nonzero ideal of R. The number of

elements in R/I we shall call the norm of I and denote it by N(I). The
following is well known for rings of algebraic integers.

Proposition 4. Let R be a residually finite Asano order. Then, for
any nonzero ideals I, J of R, we have N(IJ)=N(I)N(J).

Proof. Let I be a nonzero ideal of R. By [9, Theorem 5.2.9],
we can write I = M]'MJ?-.-M;" for some distinct maximal ideals
My, M,,---, M, and some positive integers ny, nz,---, n;. Using Chinese
remainder theorem, we have N(I) = N(M")--- N(M{"). Now let M be
a maximal ideal of R and let k be any positive integer. Then M* is a pro-
generator as a left or right R-module. Hence the functor Ng — N @ M*
provides a category equivalence from Mod- R to Mod-R. Since R/M Qr M*
is isomorphic to M*/M*+1 M¥/M*+1 has the same lemgth as R/M. How-
ever both of them are modules over the finite simple ring R/M. Hence
they have the same number of elements. From this, we can easily show
N(M*) = N(M)*. Therefore we obtain N(I) = N(M;)™ «-- N(M;)™.
Now the assertion in this proposition is obvious.

We shall show that given positive integer n, the number of ideals I of
a residually finite ring R satisfying N(I) £ n is finite. To do this, we need
the following.

Lemma 2. Let R be a residually finite ring and let I be a nonzero
ideal of R satisfying N(I) £ n. Then we have ™ = z™*t™ (mod I) for all
T €R.

Proof. By hypothesis, R/I is a finite ring and the number of elements
in R/I is equal to or less than n. Let a be an arbitrary element of R/I.
Then we have a' = a’ for some i, j with 1 £ i < 7 £ n+4 1. Hence



ON RESIDUALLY FINITE RINGS 165

a*(1 — a’~%) = 0, and so a™(1 — @) = 0. Therefore R/I satisfies the
identity z”? — z™+™ = 0. This proves our lemma.

Theorem 6. Let R be a residually finite ring and let n be a positive
integer. Then the number of ideals of R satisfying N(I) < n is finite.

Proof. If R is a finite ring, then there is nothing to prove. Hence,
in view of [3, Corollary 2.2], we may assume that R is an infinite prime
ring. Let J denote the intersection of all ideals I satisfying N(J) £ n. If
J # 0, then R/J is a finite ring, whence the assertion is trivial. Suppose
that J = 0. Then R satisfies the identity X™ — X™*" = (. This implies
that R is a prime P. I. ring and a periodic ring. In particular, the center
of R is a periodic field. Then R is simple by [11, Corollary 1.6.28]). This
proves the theorem.

As an immediate consequence of this theorem, we have

Corollary 6. The set of ideals of a residually finite ring is either
finite or enumerable.

In view of Theorem 1, right residually finite rings are right fully
bounded right Noetherian rings. Moreover, as shown in the proof of Corol-
lary 4, residually finite P. I. rings are right fully bounded right Noetherian.

Proposition 5. Let R be a right fully bounded right Noetherian and
proper residually finite ring. Then the set of ideals of R is enumerable.

Proof. By [3, Corollary 2.2], R is prime. Suppose, on the contrary,
that R has only finitely many ideals. Let J denote the intersection of all
nonzero ideals of R. Since R is prime, J is nonzero. Since R is right fully
bounded, J coincides with the intersection of all essential right ideals of
R. By [1, Proposition 9.7], we have Soc(Rr) = J # 0. Since R is a right
Noetherian prime ring, Soc(RR) is generated by a central idempotent of
R, whence we conclude that Soc(Rg) = R.

We conclude this paper with the following

Example 6. Any simple ring is trivially a residually finite ring with
exactly two ideals. Given a positive integer n > 3, we shall construct a



166

Y. HIRANO

proper residually finite ring R with exactly n ideals. For let F' be a finite
field and let S be F'if n = 3 and for n 2 4 let S be the F-subalgebra of
M, _o(F) generated by

01 0 0

0 1
-0
-1

0 0

Then S is a finite ring having exactly n-1 ideals. Let R be the set of
countable matrices over F of the form

Ax 0

0

where @ € § and Ay is an arbitrary k X k& matrix over the ring M, _»(F)
and k is allowed to be any integer. Then we can easily see that R is a

proper residually finite ring with exactly n ideals.
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