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ON GALOIS EXTENSIONS OF
POLYNOMIAL TYPE OF RINGS

Dedicated to Professor Kazuo Kishimoto on his 60th birthday

Takast NAGAHARA

In this note, we shall present some Galois theory for a special type
of Galois extensions of rings which is contributive by means of that the
discussions are simple and useful, where rings mean associative rings which
are not necessarily commutative. In fact, the ring extensions in [5]-[9] are
Galois extensions of our type. Some parts of discussions in their papers
is simplified by applications of our results (cf. [7, Theorem 4, Lemma 13
and Theorem 14], [8, Theorem 1.2], [9, Theorem 1.2], and etc.). As is
well known, in [1] and [4] we can see elegant deliverances of Galois theory
of fields. On the other hand, restricting the proofs of our results to field

extensions, we obtain an alternatively simple proof of the fundamental the-
~orem in Galois theory of fields (cf. [1, Theorem 14, Corollary 1, Corollary
2 and Theorem 16}, [4, p. 16, Theorem 10 and Theorem 11] and Remark
2).

Throughout this paper, let A be a ring with identity element 1, and
G a finite group of ring automorphisms of A. Moreover, for a subset 5 of
A and a subset H of GG, we shall use the following conventions:

A(H)={a € A; og(a) =aforall o € H}.

G(S)= {0 €G; o(a)=afor all a € S}.

H|S =the restriction of H to S.

|H| =the cardinality of H.

U(S) =the set of inversible elements in S when S is a subring with 1.
[G : H] =the index of H in G when H is a subgroup.

For B = A(G), the ring extension A/B will be called a Galois ex-
tension of polynomial type with respect to (G, F) if there exists a subset
F of A such that F ¥ 0, A = B[F], ao(a) = o(a)a for all ¢ in G, and
{a—0(a); o € G} C U(A)U{0} for each a € F', where F is not necessarily
finite.

Our purpose of this note is to prove the following
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Theorem. Let A/B be a Galois extension of polynomial type with
respect to (G, F). Then, there holds the following
(i) For any subset S of F, A(G(B[S])) = B[S].
(ii) For any subgroup H of G, G(A(H)) = H.
(i) A is a finite left (and right) free B-module of rank |G|.

Now, we shall start at the following lemma which plays an essential
role in our study.

Lemma 1. Let B = A(G), and a a non-zero element of A such that

ao(a) = o(a)a for all ¢ in G, and
{a —o(a); 0 € G} C U(A)U {0}.

Let m = [G: G(B[a])]. Then
() A(G(Bla])) = Blal.
(ii) Ble]=B+Ba+---+Ba™'=B+aB+---+a™ !B,
and 1, o, o%,---, o™~ are linearly left (and right) independent over B.
(iii) If Go is a subgroup of G such that A(Go) = B then

[Go: Go(B[a])] = m.
(iv) There are elements yy, ya2,--+, Ym in Bla] such that
YL e(y;) = 61, o|Bla) for all o in G,

where 8y, 5|Bla) =0 (resp. = 1) if o|Bla] # 1 (resp. = 1 (identity map)).

Proof. We set H = G(B|a]), and G = 01H U ---U 0, H (disjoint)
where 01 = 1. Then oi(a) # o;(a) for all pair ¢ # j. Moreover, we set

{o(a); 0 € G} = {1 = o1(a) = a, az = o3(a), ++, ap = op(a)},
f(X)=(X —a1)--- (X —am)
=X"+am, 1 X™ 1 +---+a1X + ag, and
9(X) = (X - ag)--- (X —an)
=X 4 by a2 X™ 24 4 01 X + b

By E, we denote the commutative subring of A generated by
1, a1,--+, a,,. Then, since the a; are the elementary symmetric polynomi-
alsofay, -+, a,,, wehave that a; € A(G)NE =BNE(i=0, 1,---, m—1).



ON GALOIS EXTENSIONS OF POLYNOMIAL TYPE OF RINGS 149

Noting f(X) € (B N E)X] and f(a;) = 0, it is easily seen that
f(X) = (X — a1)h(X) in the polynomial ring ((B N E)[ey])[X]. Since
g(X), h(X) € E[X] and X — a; is not a zero divisor in E[X], we have
g(X) = h(X), that is, b; € (BN E)[q] (¢ =0, 1,--+, m —2). Now, we set

6= g(al) = afln'_1 + bm_gaT—2 + -+ byay + bg, and
Bo = A(H) (D Blea))-
Then 6 € Blay]NU(A) C BonU(A) = U(By) and so 6! € Bg. Hence
A P (Y R B a1(b1671) + b6~ =1, and
bi6"' € By (i=0, 1,---, m —2).
We put here
mlza;n—lt x2:a{1n—2’ tty T;m-1 =0, :L'm:l, and

p1=06"1, Ya=bm20l ot Ymo1 = 6167, ym =boé7L.

Then ™ ,2;y; = 1 (z; € Blai], yi € Bo). Let o be an element of G such
that o|B[a;] # 1 (identity map). Since G = o1 H U ---U 0, H (disjoint),
it follows that oy € {o(a3), -+, olay,)} and so

Y io(y:) = (a1 — 0(ag)) -+ (a1 — o(am))o(671) = 0.
Therefore, we obtain
Y1 2i0(Yi) = b1, 5|B[ay) for €ach o in G.

where &), ;|Bja,] = 0 (resp.=1) if o|Bla;] # 1 (resp.=1). Let ¢ be the map
of By into A defined by setting

t(a) = o1(a) + - -+ om(a) (a € By).
Then, for any a in By, we have
Ty zit(yia) = Z_T:l( =1 2i05(yia))
= z;'nzl(z;ll z;0(y:))oj(a) = a.

Since G(By) = H, we have o(t(a)) = t(a) for all ¢ € G and a € By.
This implies that ¢(a) € B for each a € Bo. Particularly yia € Bo and
t(y;a) € B for each a € By. Since z; = "7, it follows that

BoC Y™, ;B =Y"3"ai B C B[] C By = A(H).
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This proves (i). Next, we shall prove that 1, aj,---, a7"~! are linearly
right independent over B. We assume £*;'aia; = 0 (a; € B). Then

Yrotoj(ar)a; =0for j=1,--+, m.

Since the m x m matrix (0;(a;)?) is non-singular, we obtain a; = 0 for
i=0,1,-+-, m— 1. Symmetrically, it is seen that Bla;| = E;":f)l Ba’i and
1, ay, -, a;"_l are linearly left independent over B. Thus, we obtain

(ii). To see (iii), we set Ey = B N E. Then by (ii), we have

Eyenl = Eo+ anEo+ -+ + OIT_IEO,

and 1, ay,---, a;n'l are linearly right independent over Eg. Next, for Gg

given in our lemma, we set n = [Go : Go(B[a1])] (a1 = «). Then by (ii),
we also have

Eolon) = Eg+ a1 Eg+---+ a?_lEo,

and 1, aq,---, a’l‘"l are linearly independent over Ey. Since Eglaq] is

a commutative ring, the lengths of free Eg-bases of Eg[ai] are uniquely
determined. Hence it follows that m = n and so [Go : Go(B[a1])] = m.

Lemma 2. Let B = A(G), and F a finite subset of A such that
F Zo,

Bo(3) = o(3)8 for all 0 € G, and
{8-0(B8); o€ G} CUA)U{0}

for each 3 in F. Then
(i) A(G(B[F])) = B[F). If G(B[F]) = {1} then B[F] = A.
(ii) If Go is a subgroup of G containing G(B[F)) then G(A(Gy)) =
Go, and in case A(Gg) = B, Gy coincides with G.
(iii) Let F = {By,--+, B}, my =[G : G(B[A])], and
mi = (G(B[By, . Bi]) : G(B[r, - Bil)]
fori=2,.--, . Then B[F| has a right (resp. left) free B-basis

{Bir--B;08sismi—1,15isr}
(resp. {By' -++Byr; 0 si<my—1, 1<i<r}).

which consists of [G : G(B[F])] elements.
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Proof. (i). For a subset S of F, we set H = G(B[S]), and assume
A(H) = BJ[S], which holds for the case § = @ (empty). Since H C G, it
follows from Lemma 1(i) that

A(G(B[S, B])) = A(G(B[S][8])) = A(H(B[S)18])) = B[S][8] = B[S, 4].

for any 3 € F. Hence by induction methods, we obtain A(G(B[F])) =
B[F]. (ii). We set B = By and B; = B[By,-+-, ;] (1 £ i< 7). Then
B; = B;_1[3:] (1 £ i £ 7). Now, for Gy given in our Lemma, we assume
that A(Gp) = B and

Go(B:) = G(By) for some t < r,
which holds for the case t = r by our assumption. By (i), we have
A(Go(By—1)) = Bi_1 = A(G(B:_1)). and Go(Bi_1) C G(Bi_1).
Hence by Lemma 1(iii), we have
[Go(Bi-1) : Go(B:)] = [G(Bi-1) : G(By)).

Therefore, it follows that Go(B:—1) = G(B¢-1). Hence by induction meth-
ods, we obtain Go = Go(B) = G(B) = G. From this, (i) and Lemma 1(ii),
the other assertions will be easily seen.

Now, we are at the position to prove our theorem.

The Proof of Theorem. Let S be an arbitrary subset of F. Since G
is a finite group, there is a finite subset Sy in § such that G(B[So]) =
G(B[S]). Then by Lemma 2, we have

B[So] = A(G(B[Sq])) = A(G(BI[S))) > B[S] > B[S0).

Hence we obtain B[Sp] = A(G(B[S])) = B[S]. In particular, A = B[F] =
B[Fp] for some finite subset Fy of F. The other assertions follow from
Lemma 2 immediately.

Corollary 3. Let A/B be a Galois extension of polynomial type with
respect to (G, F). Then, the extension A/B has a G-Galois coordinate
system, that is, there are elements ay,--+, as; by,--+, by in A such that
¥ ja;0(b;) = 61,5 for all o in G. Hence A/B is a G-Galois extension
which is separable in the sense of [10].
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Proof. As in the proof of Theorem, we have A = B[Fy] for some
finite subset Fy of F. We set Fy = {81,-:-, B;}, Bo = B, and B; =
B[By,-++, B;] (1 £ 5 £ 7). Applying Lemma 1(iv) and Lemma 2(i) to
the extensions A/B;_; and B;/B;j_1, we see that there is a finite subset
{z; L), yl(”, i=1,--+, m;} in B; such that

T ePo(y?) = 8, 15, forall o€ G(Bj1).

We set here

a(ip,ooey ) = z(’) . fll), and b(iy,---,0) = yz1 yf:]

where 1 £¢; Smj; and j = 1,---, r. Then, it is easily seen that
Zi, a(ip, -+, 21)o(b(iy, -+, 4;)) =61, , forall o€G.

where ; (resp. j) runs over all the 1 £ 4; £ m; (resp. 1 £ j < r). Hence
A/ B is a G-Galois extension (cf. {10, p. 116]). Since B is a direct summand
of B-module A, A/B is a separable extension (cf. [3, Proposition. 3.4]).

Remark 1. The result of Theorem (ii) follows from [10, Proposition
2.2] and Corollary 3. If A is commutative and A/B is a Galois extension
of polynomial type with respect to (G, F) then, by Corollary 3 and (2,
pp. 22-23, Theorem 2.2], there exists a 1-1 dual corespondence between
the set of G-strong separable B-subalgebras of A and the set of subgroup
of G in the usual sense of Galois theory.

Remark 2. Let K be a (commutative) field, and G a finite group of
automorphisms of K. Then, since k' = K(G)[U(K)], i/ K(G) is a Galois
extension of polynomial type with respect to (G, U(K)). Hence, it follows
from Theorem that K'(G(Bg)) = Bo(= K (G)[U(By)] ) for any intermediate
field By of K/K(G). Therefore, the result of Theorem directly contains
the fundamental theorem in Galois theory of fields. Moreover, from the
proof of Lemma 1, it is easily seen that there are elements 3;,---,8, € K
and a polynomial h(X) € K(G)[X] such that §; # g8; for each i # j,
K = K(G)[B1,--+, 8] and h(X) = (X = B1)--- (X = Bs).

Next, we shall present an example. Let B be a field, and X an in-
determinate. For f(X) € B[X], f(X) will be called to be separable if
f(X)B[X]+ f(X)B[X] = B[X], where f/(X)is the derivative of f(X). As
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is easily seen, the above h(X) is separable over K'(G). To see the converse,
let f(X) be a separable plynomial in B{X], and A" = Blaj,--+, ay] asplit-
ting field of f(X), that is, K is a field and f(X) = (X — 1) -+ (X — an).
Now, by making use of our theorem, we shall prove that the extension
K/B is Galois. Let Xj,---, X, be indeterminates and consider the ho-
momorphism

@ B[Xl,"" Xn]—"B[ala"'s an] (Xi_’aia 1 él

A

We set M = kere and f(X)= X"+a; X" '-.-+a,1X +a,. Moreover,
let sy,--+, s, be the elementary symmetric polynomials of X;,---, X,
where deg s; =i, 1< i< n. Thens;—a; € M fori=1,---, n. Let 5,
be the group of B-automorphisms of B[X,,---, X, ] induced by permuta-
tions of Xy, -+, Xy, and {o(M); 0 € S,,} = {M; = M, My,---, M, }
where M; # M; for each i # j. We set here ] = My N--- N My,
A = B[X1, -+, X,]J/I (the ring of residue classes modulo I), and
B; = X;+Ifori=1,---, n. Then INB = {0}, s; —a; € I for
i=1,-++, nyand f = (X — B1)---(X — B,). Since f(X) is separable, we
have f/(3;)B[3;] = B[B:)C Afori=1,---, n, and 8; —3; € U(A) for each
i # j. Hence the group G of automorphisms of A induced by §, is of order
n!, and A/A(G) is a Galois extension of polynomial type with respect to
(G, {B1,+*+, Bn}), where n! = n(n—1)---2-1. Applying our theorem to
this extension, we obtain [A : B] = |G|[A(G) : B] = n![A(G) : B]. On the

other hand, we have

f(X) = (X _ﬂl)"'(X _ﬁS)fS(X) € B[ﬁh"% fgs][X]v and fs(ﬂs+l) =0

where s = 1,---, n— 1. Since A = B[#;.-:-, (], one will easily see that
[A : B] £ nl. Therefore, it follows that [A : B] = n! and [A(G) : B] =
1, that is, A(G) = B. Now, since the ideals M; in B[Xy,---, X,] are
maximal, by the chinease remainder theorem, we have

A= B[Xy,--+, Xa)/M1 & -+ & B[X1, -, Xp]/Mn

Hence A = Aey @ --- & Ae,,, where {e1,-+-, €} is the set of primitive
idempotents of A and the Ae;/Be; are field extensions. We set {o(e1); o €
G} = {o1(e1) = ey, o2(e1),+ -, os(€1)} (C {e1,+++, em}) and e = o1(ey )+
---+04(e1), where o7 = 1 (identity map) and o;(e;) # oj(e1) if i # j. Then
o(e) = e for all 0 € G and so e € B which implies e = 1 and t = m. We
set G({e1}) = Gy, and b = 0y(@1) + -+ + o (aq) for an arbitrary element
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a; € Aei(Gi|Aey). Then, noting G = 601G U -+- U 6,G; (disjoint), We
have o(b) = b for all ¢ € G, whence b € B and so a; = be; € Be;. Hence
Aei(Gy1|Aey) = Beq, and Ae;/Be; is a Galois extension. Now, we consider
the B-algebra homomorphism

d): AZB[ﬂl?"', ;Bn]_)I{ZB[ala“'s an] (ﬂi_}aie 1§i§n)

Then Blai, -+, an] = A/kert) = Ae; (as B-algebras) for some i (1 £ ¢ <
n). Since o] '(Ae;) = Aey, it follows that K/B is a Galois extension.
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